

advances.sciencemag.org/cgi/content/full/5/4/eaav2671/DC1

Supplementary Materials for

Structure and mechanisms of sodium-pumping KR2 rhodopsin

Kirill Kovalev, Vitaly Polovinkin, Ivan Gushchin, Alexey Alekseev, Vitaly Shevchenko, Valentin Borshchevskiy, Roman Astashkin, Taras Balandin, Dmitry Bratanov, Svetlana Vaganova, Alexander Popov, Vladimir Chupin, Georg Büldt, Ernst Bamberg*, Valentin Gordeliy*

*Corresponding author. Email: valentin.gordeliy@ibs.fr (V.G.); ernst.bamberg@biophys.mpg.de (E.B.)

Published 10 April 2019, *Sci. Adv.* **5**, eaav2671 (2019) DOI: 10.1126/sciadv.aav2671

This PDF file includes:

Fig. S1. KR2 ion uptake pore.

Fig. S2. Comparison of orientations and cavities inside different KR2 structures.

Fig. S3. Comparison of extracellular regions of different KR2 structures.

Fig. S4. Activity tests of KR2 potassium-pumping mutants.

Fig. S5. Structural alignment of potassium-pumping KR2 mutants with the model of wild-type protein.

Fig. S6. Structures of potassium-pumping KR2 mutants.

Fig. S7. KR2 crystal soaking.

Fig. S8. KR2 dry and wet forms.

Fig. S9. Activity tests of KR2 at different pH.

Fig. S10. Electron density maps of KR2 structures.

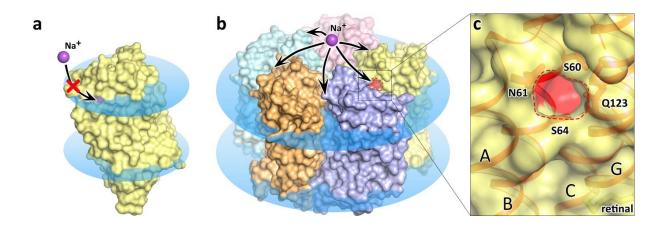

Table S1. Summary information of crystal structures obtained.

Table S2. Data collection and refinement statistics of the wild-type KR2.

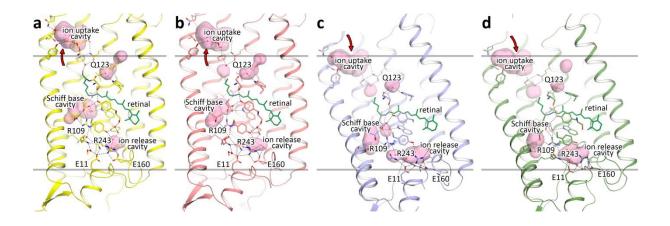
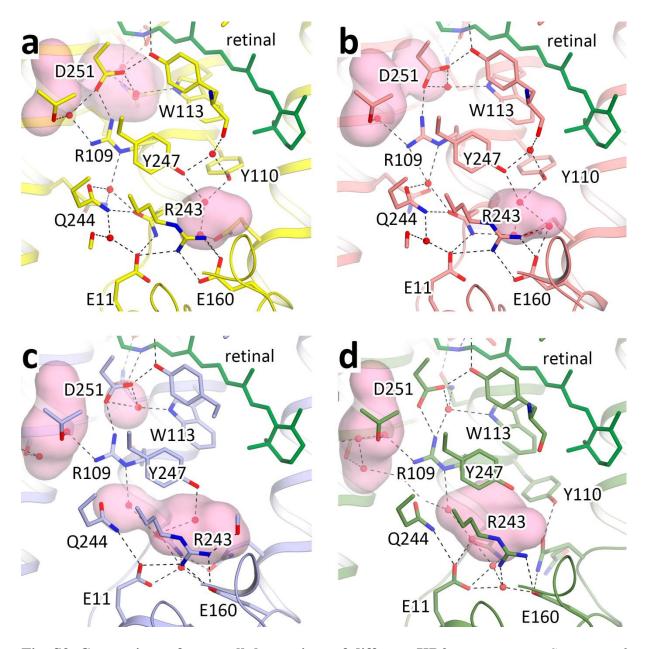
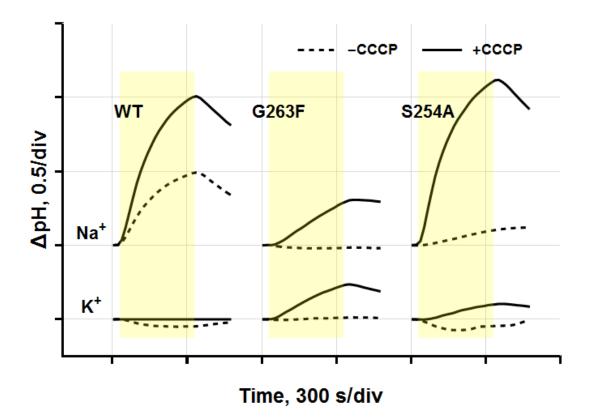
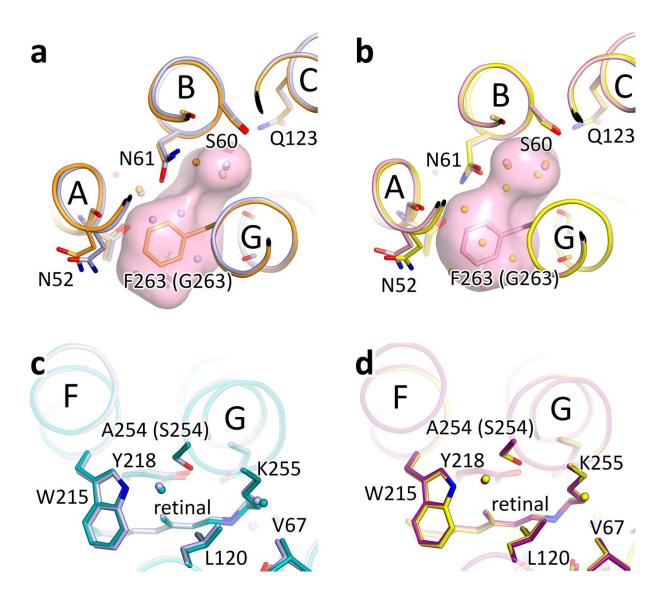
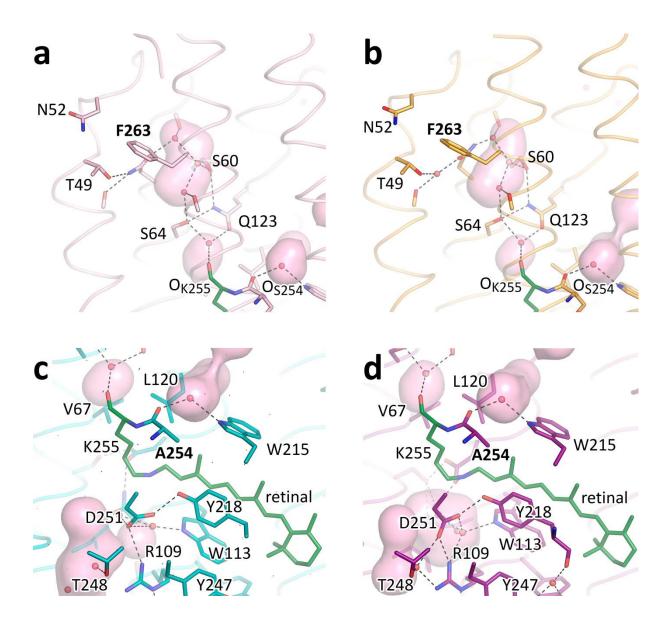

Table S3. Data collection and refinement statistics of KR2 mutants.

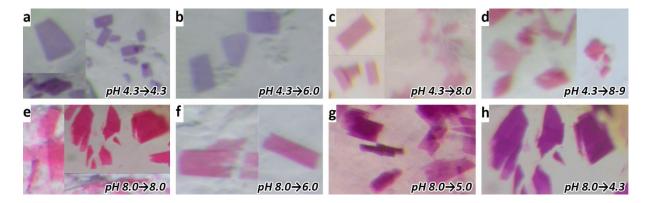
Table S4. Distance between Asp¹¹⁶ oxygen and RSB nitrogen atoms in KR2 models.

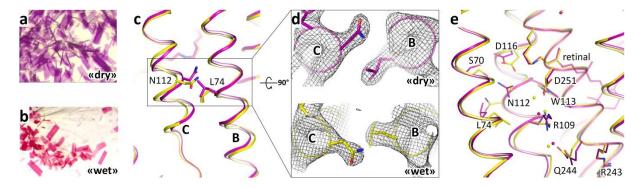

Supplementary materials

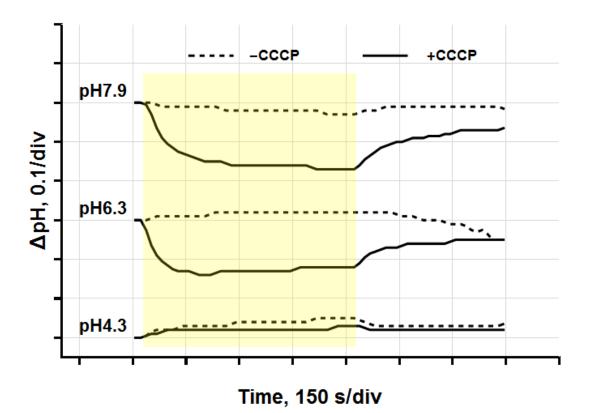

Fig. S1. KR2 ion uptake pore. a. Overall surface view of KR2 monomer in the membrane. Pore entrance is contoured red. Red contoured cross shows the blocking of the sodium passage due to the ion uptake vestibule burying into the membrane. **b**. Overall surface view of KR2 pentamer in the membrane. Pore entrance is contoured red. Ion uptake vestibule is positioned in the cytoplasmic space and is accessible for sodium. The hydrophobic membrane core boundaries are shown with the blue planes. **c**. Detailed view of the pore. Asn61, Gln123, Ser60 and Ser64 are colored red and located in the bottom of the cavity. The pore is formed by A and G helices.


Fig. S2. Comparison of orientations and cavities inside different KR2 structures. a. Structure of chain A of pentameric Na⁺ pumping form (expanded conformation, pH 8.0, present work) is shown in yellow. **b**. chain E of 4XTN model (compact conformation, pH 4.9) is shown in salmon. **c**. 4XTL model (compact conformation, pH 4.3) is shown in light blue. **d**. 3X3C model (compact conformation, pH 7.5-8.5) is shown in green. Red contoured arrows show the important change in the position of the ion uptake cavity relative to the cytoplasmic side in case of pentameric form. The hydrophobic membrane core boundaries are shown with the black lines. The cavities are colored pink. A prosthetic group retinal is colored dark green.


Fig. S3. Comparison of extracellular regions of different KR2 structures. a. Structure of chain A of pentameric Na⁺ pumping form (expanded conformation, pH 8.0, present work) is shown in yellow. **b**. chain E of 4XTN model (compact conformation, pH 4.9) is shown in salmon. **c**. 4XTL model (compact conformation, pH 4.3) is shown in light blue. **d**. 3X3C model (compact conformation, pH 7.5-8.5) is shown in green. The hydrophobic membrane core boundaries are shown with the black lines. The cavities are colored pink. A prosthetic group retinal is colored dark green.


Fig. S4. Activity tests of KR2 potassium-pumping mutants. Pumping activity of KR2 and its mutants in *E.coli* cells suspension. The solutions contain 100 mM NaCl or KCl (black, dashed) and 100 mM NaCl or KCl and 30 uM CCCP (black, solid). pH of the starting solutions was around 7. The cells were illuminated for 300 s (yellow area on the plots).


Fig. S5. Structural alignment of potassium-pumping KR2 mutants with the model of wild-type protein. a. Alignment of G263F (orange) and WT monomeric forms (PDB 4XTL, lightblue). **b.** Alignment of G263F (lightpink) and WT pentameric forms (yellow). The cavities inside WT protein are shown and colored pink. **c.** Alignment of S254A (cyan) and WT monomeric forms (PDB 4XTL, lightblue). **d.** Alignment of S254A (purple) and WT pentameric forms (yellow).


Fig. S6. Structures of potassium-pumping KR2 mutants. a. Cytoplasmic region of G263F monomeric form. **b**. Cytoplasmic region of G263F pentameric form. **c**. Retinal region of S254A monomeric form. **d**. Retinal region of S254A pentameric form. The cavities are colored pink. A prosthetic group retinal is colored dark green.

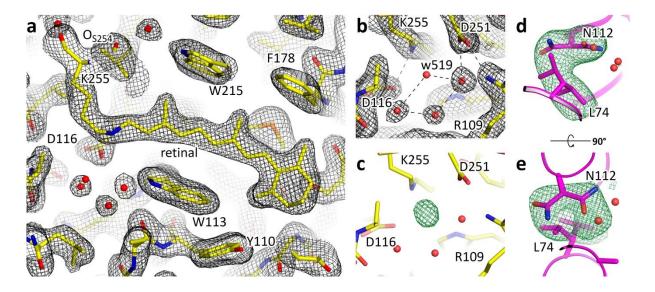

Fig. S7. KR2 crystal soaking. a-d. Crystals grown at pH 4.3, contain protein monomer in asymmetric unit. **e-h**. Crystals grown at pH 8.0, contain protein pentamer in asymmetric unit. Size of KR2 crystals, grown at pH 4.3 and 8.0 were 50-100 μm and 100-200 μm respectively.

Fig. S8. KR2 dry and wet forms. a. Crystals of pentameric KR2 grown at pH 8.0, wizened and changed their color from red to purple with drying after 6 months in the crystallization plate, revealing "dry" conformation of the protein. **b**. The same wizened crystals after soaking in 3.4 M sodium malonate pH 8.0, revealing "wet" conformation of the protein. **c**. Side view of the aligned protomers (helices B and C) of the "dry" and "wet" KR2 models. Asn112 and Leu74 side chains positions are shown with sticks. **d**. $2F_0$ - F_c electron density maps are shown for Asn112 and Leu74 side chains in "dry" and "wet" conformations. Maps are contoured at the level of 1.5 σ . **e**. Detailed view of the two protomers aligned. Key amino acids side chains in KR2 are shown with sticks. Helix A is hidden for clarity.

Fig. S9. Activity tests of KR2 at different pH. Pumping activity of KR2 reconstituted into lipidic vesicles. The unbuffered solutions contain 100 mM NaCl (black, dashed) and 100 mM NaCl and 30 uM CCCP (black, solid). Starting pH was adjusted by dialysis against 100 mM NaCl unbuffered solution with needed pH. The liposomes were illuminated for 600 s (yellow area on the plots).

Fig. S10. Electron density maps of KR2 structures. a. Example of $2F_o$ - F_c electron density map around retinal in KR2 structure at pH 8.0. The map is contoured at the level of 1.5σ . **b.** $2F_o$ - F_c electron density map around water molecule 519. The map is contoured at the level of 1.5σ . Hydrogen bonds are shown with dashed black lines. **c.** F_o - F_c difference electron density map of KR2 model at pH 8.0 without Wat519 refined against experimental data. The map is contoured at the level of 4.0σ . The density has spherical shape and is located at reasonable distances from neighbor water molecules and residues. **d**, **e**. Model of KR2 at pH 5.0 is shown in magenta. Difference F_o - F_c electron density map of the model at pH 5.0 without both Asn112 and Leu74 side chains refined against experimental data is shown in green mesh. The map is contoured at the level of 3.0σ . Two conformations fit difference map accurately, however they are poorly ordered, especially Leu74, which $2F_o$ - F_c map is shown to be weak. Two perpendicular views are shown.

	pH of precipitant	4.3			8.0				
Protein	pH of soaking buffer	4.3	6.0	8.0	8.9	4.3	5.0	6.0	8.0
KR2 wild type	Conformation	Compact 1.45 Å	Compact 2.3 Å	Compact 1.8 Å	Compact 2.5 Å	Bad diffraction 7.0 Å High mosaicity	Double: Expanded- compact 2.6 Å	Expanded 2.7 Å	Expanded 2.2 Å
	Oligomeric state	Monomeric Pent				ntameric			
HOOK	Conformation								Compact 2.2 Å
НЗОК	Oligomeric state					Monomer			Monomeric
Y154F	Conformation								Compact 1.8 Å
1154F	Oligomeric state						-		Monomeric
G263F	Conformation	Compact 2.0 Å							Expanded 2.4 Å
G203F	Oligomeric state	Monomeric		-			-		Pentameric
S254A	Conformation	Compact 2.1 Å							Expanded 2.4 Å
	Oligomeric state	Monomeric		-			-		Pentameric

Table S1. Summary information of crystal structures obtained.

	Pentameric		Monomeric			Pentameric, "dry"	Pentameric, "wet"	
pН	8.0	6.0	5.0	6.0	8.0	8.9	8.0	8.0
Data collection								
Space group	C2221	C222 ₁	C222 ₁	I222	I222	I222	C222 ₁	C222 ₁
Cell dimensions								
	131.36,	131.43,	130.24,	40.33,	40.41,	40.60,	128.18,	130.63,
a, b, c (Å)	239.59,	240.79,	241.39,	81.25,	82.32,	82.25,	239.72,	240.47,
	135.25	135.74	135.11	233.36	233.35	234.18	131.91	135.61
0 (0)	90, 90,	90, 90,	90, 90,	90, 90,	90, 90,	90, 90,		
<i>α</i> , <i>β</i> , γ(°)	90	90	90	90	90	90	90, 90, 90	90, 90, 90
Wavelength (Å)	1.000	1.000	0.978	1.000	0.978	1.000	0.976	0.976
	48.03-2.2	48.21-2.7	48.08-2.6	40.62-2.3	40.60-1.8	40.70-2.5		
Resolution (Å)	(2.24-	(2.77-	(2.66-	(2.39-	(1.84-	(2.60-	47.28-3.0	48.13-2.8
()	2.20)	2.70)	2.60)	2.30)	1.80)	2.50)	(3.12-3.00)	(2.89-2.80)
	13.0	19.0	8.7	10.5	,	10.7		12.9
R_{merge} (%)	(143.5)	(130.8)	(174.6)	(105.8)	$3 U (/(1) \times 1)$	(153.7)	30.4 (147.5)	(118.7)
$R_{\rm pim}$ (%)	1.5 (16.7)	9.1 (62.7)	4.1 (79.4)	4.9 (50.6)	1.9 (20.1)	5.3 (75.0)	12.7 (61.8)	10.0 (91.5)
Ι/σΙ	30.8 (4.4)	7.9 (1.1)	9.7 (0.9)	10.4 (1.5)	19.1 (3.3)	9.4 (0.9)	5.7 (1.4)	5.6 (1.2)
	99.6	99.1	99.9	99.7	99.9	9.9 99.9	98.9 (66.2)	
CC1/2 (%)	(96.2)	(63.2)	(44.8)	(68.3)	(92.5)			99.7 (78.2)
Completeness	100.0	96.9	98.9	99.7	99.9	99.6	00.0 (100.0)	00 ((00 4)
(%)	(100.0)	(98.6)	(99.8)	(99.5)	(99.9)	(99.9)	99.9 (100.0)	99.6 (99.4)
Unique	107966	57277	64789	17576	36723	14043	41018	52539
reflections	(5398)	(4469)	(4559)	(1841)	(2179)	(1557)	(4562)	(4497)
Refinement					· · · ·		<u> </u>	
Resolution (Å)	48.08-2.2	48.26-2.7	48.13-2.6	20.00-2.3	20.00-1.8	20.00-2.6	47.32-3.0	48.17-2.8
No. reflections	102,502	54,451	61,464	16,711	35,277	11,878	38,937	49,912
$R_{\rm work}/R_{\rm free}$ (%)	14.9/17.2	22.3/25.0	19.1/24.5	20.2/25.8	14.2/18.1	22.1/27.1	21.7/25.2	18.8/22.3
No. atoms								
Protein	10886	10872	10910	2125	2247	2129	10753	10872
Water	541	316	97	47	93	13	41	192
Lipid fragments	1210	899	417	275	185	54	201	895
Retinal	100	100	100	20	20	20	100	100
Sodium ions	5	5	5	1	1	-	5	5
<i>B</i> factors (Å ²)				T	T	T	T	п
Protein	35.1	38.3	75.7	43.7	35.4	64.3	45.5	62.2
Water	44.5	35.2	72.1	50.3	52.3	58.3	36.1	55.7
Lipid fragments	76.6	69.0	93.7	78.3	62.2	73.6	56.0	95.1
Retinal	28.7	32.3	71.1	35.3	30.2	62.0	52.3	61.4
Sodium ions	25.6	33.1	69.9	58.9	44.1	-	34.9	50.3
R.m.s deviations		1	1					
Protein bond lengths (Å)	0.0041	0.0024	0.0023	0.0029	0.0035	0.0023	0.0030	0.0028
Protein bond angles (°)	0.831	0.560	0.541	0.584	0.767	0.504	0.590	0.600

Table S2. Data collection and refinement statistics of the wild-type KR2.

Table S3. Data collection and refinement statistics of KR2 mutants.

		1				1
	G263F, monomeric	G263F, pentameric	S254A, monomeric	S254A, pentameric	Y154F, monomeric	H30K, monomeric
pH	4.3	8.0	4.3	8.0	8.0	8.0
Data collection		0.0		0.0	0.0	0.0
Space group	I222	C222 ₁	I222	C222 ₁	I222	I222
Cell dimensions			L			1
<i>a</i> , <i>b</i> , <i>c</i> (Å)	40.77, 81.96, 232.93	131.68, 239.68, 134.58	40.80, 83.00, 234.10	131.40, 240.04, 135.14	40.47, 81.85, 233.57	40.74, 84.18, 234.54
<i>α</i> , <i>β</i> , γ(°)	90, 90, 90	90, 90, 90	90, 90, 90	90, 90, 90	90, 90, 90	90, 90, 90
Wavelength (Å)	0.976	1.003	0.968	1.000	0.972	0.968
Resolution (Å)	40.5-2.0 (2.05- 2.00)	47.94-2.40 (2.45-2.40)	40.78-2.1 (2.16-2.10)	48.05-2.4 (2.45-2.40)	40.93-1.8 (1.84-1.80)	42.09-2.2 (2.27-2.20)
R_{merge} (%)	4.8 (40.5)	12.7 (167.4)	8.8 (167.4)	11.9 (148.1)	6.1 (87.0)	15.8 (170.2)
$R_{\rm pim}$ (%)	2.7 (22.6)	5.3 (68.0)	4.6 (86.6)	6.0 (74.2)	3.1 (42.8)	7.3 (79.6)
$I/\sigma I$	14.8 (3.2)	9.8 (1.3)	10.9 (1.0)	9.1 (1.0)	13.2 (1.7)	7.4 (1.0)
CC1/2 (%)	99.9 (90.1)	99.8 (71.0)	99.9 (53.0)	99.8 (52.1)	99.8 (88.5)	99.7 (47.6)
Completeness (%)	99.5 (100.0)	99.9 (99.9)	99.4 (100.0)	99.9 (99.9)	99.6 (99.6)	99.9 (100.0)
Unique reflections	26,858 (1983)	83,145 (4490)	23679 (1936)	83365 (4530)	36488 (2168)	21097 (1825)
Refinement		1				1
Resolution (Å)	20.00-2.0	47.98-2.4	20.00-2.1	44.91-2.4	20.00-1.8	20.00-2.2
No. reflections	25,525	78,915	22,551	79,117	36,450	20,046
$R_{\text{work}}/R_{\text{free}}$ (%)	17.7/22.7	17.2/20.5	22.6/27.9	18.1/21.2	16.3/20.3	20.9/23.8
No. atoms		1	I	1		1
Protein	2161	10877	2126	10867	2239	2111
Water	54	462	28	328	97	38
Lipid fragments	337	1648	291	894	162	289
Retinal	20	100	20	100	20	20
Sodium ions	1	5	1	5	1	1
<i>B</i> factors (Å ²)						
Protein	39.2	49.7	51.4	52.4	32.4	38.8
Water	47.0	56.3	48.7	55.4	50.4	39.8
Lipid fragments	80.4	98.6	84.0	91.7	56.0	74.6
Retinal	31.3	43.4	42.1	48.0	26.7	32.2
Sodium ions	42.4	41.4	69.6	42.7	37.3	60.9
R.m.s deviations						
Protein bond lengths (Å)	0.0043	0.0033	0.0028	0.0028	0.0016	0.0038
Protein bond angles (°)	0.769	0.704	0.570	0.628	0.614	0.730

PDB	pН	Oligomeric state	Distance, Å
	8.0		2.8
	6.0	Pentameric	2.9
This	5.0		3.2
This work	8.9		3.3
WOIK	8.0	Monomeric	3.3
	6.0	wonomeric	3.7
	4.3		3.6
4XTO	5.6		3.3-3.9 (compact)
4XTN	4.9	Pentameric	2.9 (expanded) -3.5
4711	4.9		(compact)
4XTL	4.3		3.6
3X3B	4.0	Monomeric	3.7
3X3C	7.5-8.5		2.5-3.3

Table S4. Distance between Asp¹¹⁶ oxygen and RSB nitrogen atoms in KR2 models.