Science Advances

advances.sciencemag.org/cgi/content/full/5/4/eaau8237/DC1

Supplementary Materials for

GABARAPs dysfunction by autophagy deficiency in adolescent brain impairs GABA_A receptor trafficking and social behavior

Kelvin K. Hui, Noriko Takashima, Akiko Watanabe, Thomas E. Chater, Hiroshi Matsukawa, Yoko Nekooki-Machida, Per Nilsson, Ryo Endo, Yukiko Goda, Takaomi C. Saido, Takeo Yoshikawa, Motomasa Tanaka*

*Corresponding author. Email: motomasa.tanaka@riken.jp

Published 10 April 2019, *Sci. Adv.* **5**, eaau8237 (2019) DOI: 10.1126/sciadv.aau8237

This PDF file includes:

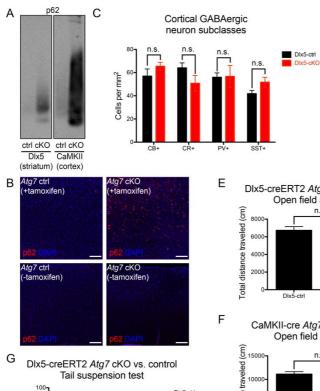
Fig. S1. Atg7 deletion in forebrain GABAergic neurons by Dlx5-creERT2.

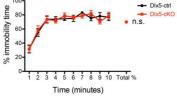
Fig. S2. GABARAPs mislocalized to $p62^+$ aggregates in affected neurons of Dlx5-creERT2 and CaMKII-cre *Atg7* cKO mice.

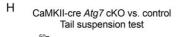
Fig. S3. Autophagy deficiency led to a reduction of surface GABA_A receptors but no change in excitatory signaling.

Fig. S4. Reduction of GABA_A receptors in cortical GABAergic interneurons due to compromised functions of GABARAPL2 by autophagy deficiency.

Fig. S5. Levels and localizations of BIG-2 and NSF were not affected by autophagy deficiency. Fig. S6. GABA_A receptors are not substantially localized to endosomal and lysosomal


compartments in cortical GABAergic interneurons and are not altered by autophagy deficiency.


Fig. S7. Reduced surface GABA_A receptor expression by manipulation of p62 levels.


Table S1. shRNA sequences used in this study.

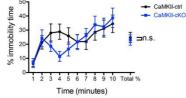
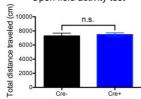

Table S2. Antibodies used in this study.

Table S3. Patient information for frozen postmortem human brain samples.



Κ L mPFC-specific CaMKII-cre Atg7 cKO vs. control Open field activity test

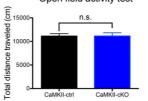
DIx5-creERT2 Atg7 cKO vs. control Open field activity test n.s.

D

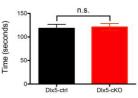
of cells in subclass 80

%

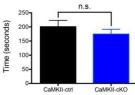
60

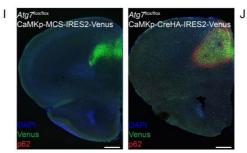

Cortical GABAergic

neurons with p62⁺ aggregates


n.s

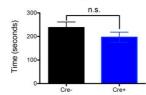
CaMKII-cre *Atg7* cKO vs. control Open field activity test


Dix5-cKO

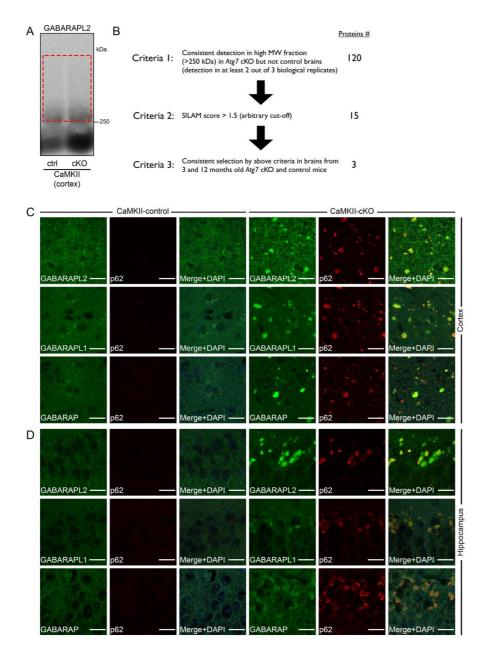


DIx5-creERT2 Atg7 cKO vs. control Open field activity test [centre time]

CaMKII-cre Atg7 cKO vs. control Open field activity test [centre time]



mPFC excitatory neurons with p62⁺ aggregates 100



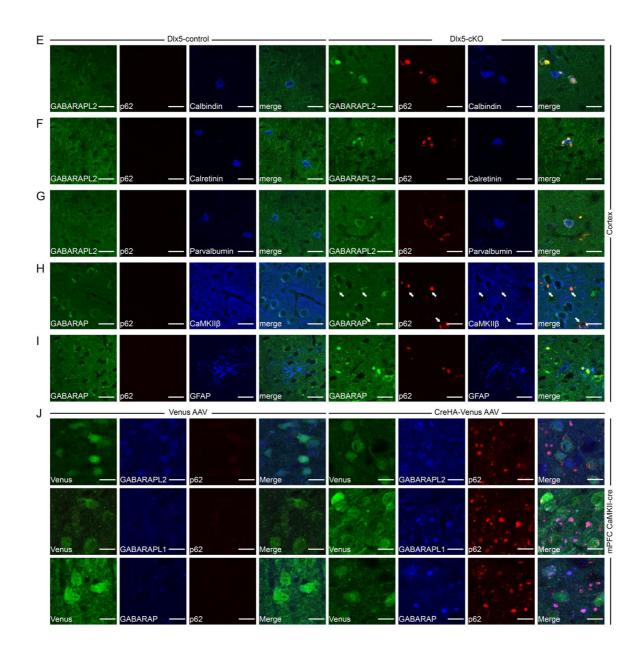

mPFC-specific CaMKII-cre Atg7 cKO vs. control Open field activity test [centre time]

Fig. S1. *Atg7* **deletion in forebrain GABAergic neurons by Dlx5-creERT2.** (A) p62 accumulation resulted in the formation of high molecular species as detected by SDD-AGE.

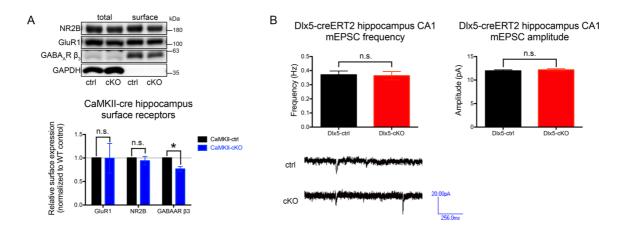

(**B**) $p62^+$ aggregate formation was observed only in tamoxifen-treated Dlx5-creERT2 Atg7 cKO mice (cortex shown), indicating little or no non-induced Cre-mediated recombination to delete Atg7. (C) Cell counts of major cortical GABAergic interneuron subclasses did not show any significant differences between Dlx5-creERT2 Atg7 cKO and control mice. n = 6animals per genotype. (D) Cell counts of major subclasses of cortical GABAergic interneurons of Dlx5-creERT2 Atg7 cKO mice showed that approximately half (49-52%) of each subpopulation had formed clear somal $p62^+$ aggregates. n = 4 animals per genotype. (E-**F**) No significant differences were observed in open field activity between Dlx5-creERT2 or CaMKII-cre Atg7 cKO mice and littermate controls. n = 10 (Dlx5-control), n = 8 (Dlx5-cKO), n = 16 (CaMKII-control), n = 15 (CaMKII-cKO). (G-H) No significant changes were observed in tail suspension test for Dlx5-creERT2 or CaMKII-cre Atg7 cKO mice. n = 10(Dlx5-control), n = 8 (Dlx5-cKO), n = 16 (CaMKII-control), n = 16 (CaMKII-cKO). (I) Representative immunofluorescence images showing the infected mPFC excitatory neurons (Venus⁺) and $p62^+$ aggregate formation in cells also expressing Cre recombinase. (J) Cell counts of Venus⁺ neurons showed that nearly all infected cells (90%) had accumulated and formed clear somal p62⁺ aggregates. n = 4 animals per genotype. (K-L) $Atg7^{flox/flox}$ mice with mPFC-specific expression of Cre recombinase driven by CaMKII promoter showed no difference in movement and exploration compared to control mice. n = 7 animals per genotype. Data are presented as means \pm SEM; n.s. indicates not statistically significant by unpaired, two-tailed Student's t-test (C, E, F, G, H, K, L) or one-way ANOVA (D). Scale bars: (**B**), 200 μm; (**I**), 500 μm.

Fig. S2. GABARAPs mislocalized to p62⁺ aggregates in affected neurons of Dlx5-

creERT2 and CaMKII-cre *Atg7* **cKO mice.** (**A**) Detection of GABARAPL2 protein in high molecular weight fraction (>250 kDa) by SDD-AGE followed by immunoblotting. Indicated area closely corresponds to excised gel from which proteins were extracted for quantitative mass spectrometric analysis. (**B**) Schematic diagram of selection criteria applied and the number of selected proteins in the quantitative SDD-AGE/SILAM mass spectrometry experiment. (**C-D**) GABARAP family proteins accumulated and mislocalized to p62⁺ aggregates in cortex and hippocampi of CaMKII-cre *Atg7* cKO mice. (**E-I**) Mislocalization of GABARAPL2 or GABARAP to p62⁺ aggregates formed specifically in different cortical GABAergic interneuron subclasses of Dlx5-creERT2 *Atg7* cKO mice but not in CaMKII⁺ cortical excitatory neurons or GFAP⁺ astrocytes. (**J**) p62⁺ aggregates formed specifically in mPFC excitatory neurons with *Atg7* deletion and sequestered GABARAPs. Scale bars: (**C**), (**D**), (**E**), (**F**), (**G**), (**H**), (**I**), and (**J**), 20 µm.

Fig. S3. Autophagy deficiency led to a reduction of surface GABA_A receptors but no

change in excitatory signaling. (A) A significant reduction in surface expression of GABA_A receptors was observed in hippocampi of CaMKII-cre *Atg7* cKO mice. n = 8 animals per genotype. (B) No differences were observed in both frequency (left) or amplitude (right) of miniature excitatory postsynaptic currents (mEPSC) recorded from CA1 pyramidal cells between Dlx5-creERT2 *Atg7* cKO and control hippocampi. Representative traces are shown on the bottom. n = 40 cells recorded from 6 different animals (Dlx5-control) and 34 cells recorded from 5 different animals (Dlx5-cKO). Data are presented as means ± SEM; * P < 0.05, paired, two-tailed Student's *t*-test. n.s. indicates not statistically significant.

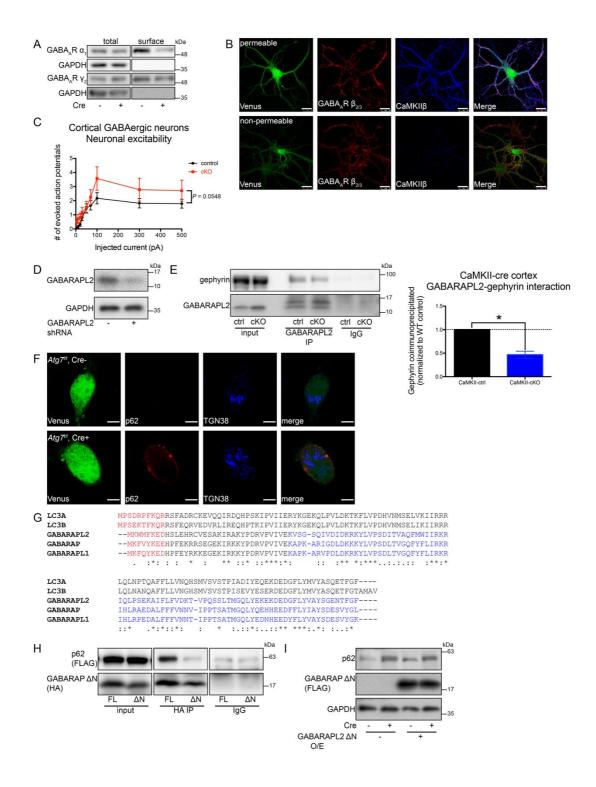
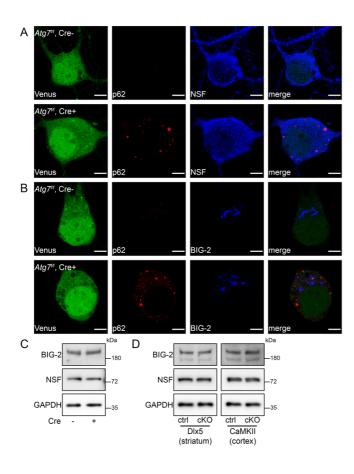
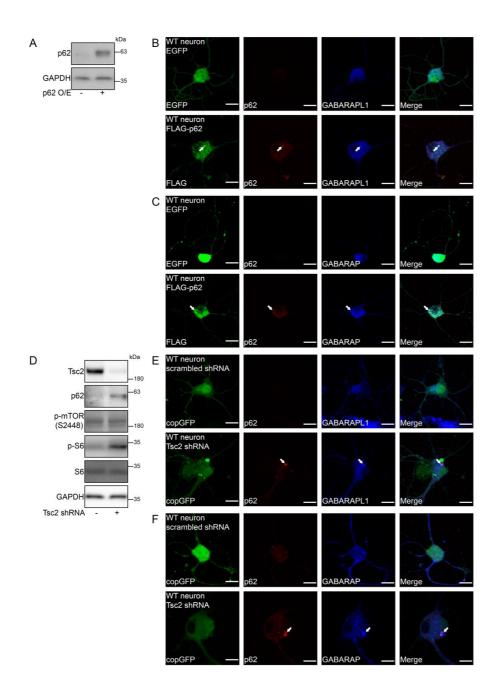



Fig. S4. Reduction of GABA_A receptors in cortical GABAergic interneurons due to compromised functions of GABARAPL2 by autophagy deficiency. (A) Significant reductions of other GABAA receptor subunits were also observed in Atg7 cKO cultured cortical GABAergic interneurons. (B) Verification of non-permeable condition for immunofluorescence analysis of surface GABA_A receptors ($\beta_{2/3}$ subunit) in WT cultured cortical excitatory neurons using CaMKIIB as an intracellular protein control. Note that CaMKIIB, a highly abundant intracellular protein, was not detected under the non-permeable condition. (C) The number of action potentials evoked over a range of different current injections was increased in Atg7 cKO cultured cortical GABAergic interneurons (P = 0.0548by two-way ANOVA). n > 25 cells per genotype from three distinct preparations of primary cultured neurons. (D) Gabarapl2 knocked down by gene-specific shRNA in WT cultured cortical GABAergic interneurons. (E) GABARAPL2-gephyrin interaction was significantly reduced in the brains of CaMKII-creERT2 (cortex) Atg7 cKO mice. Quantifications shown represent the amount of gephyrin co-immunoprecipitated normalized by total gephyrin and amount of GABARAPL2 immunoprecipitated from individual samples. n = 4 independent experiments using tissue homogenates from distinct animals. (F) $p62^+$ aggregates formed in Atg7 cKO cultured cortical GABAergic interneurons do not reside within the trans-golgi network as marked by TGN38. (G) Amino acid-level sequence alignment of LC3 and GABARAPs. Red lettering indicates region required for interacting with p62 and blue lettering indicates GABARAP fragment previously shown to interact with gephyrin. (H) Interaction between GABARAPL2 and p62 was disrupted by the removal of the first 8 amino acids (GABARAPL2 Δ N). (I) Overexpression of GABARAPL2 Δ N in Atg7 cKO cultured cortical GABAergic interneurons and controls. Data are presented as means \pm SEM; * *P* < 0.05, paired, two-tailed Student's *t*-test. Scale bars: (**B**), 25 µm; (**E**), 5 µm.


Fig. S5. Levels and localizations of BIG-2 and NSF were not affected by autophagy

deficiency. (**A-B**) Immunofluorescence analysis revealed that BIG-2 and NSF did not mislocalize to $p62^+$ aggregates formed in *Atg7* cKO cultured cortical GABAergic interneurons. (**C**) BIG-2 and NSF did not accumulate in *Atg7* cKO cultured cortical GABAergic interneurons. (**D**) BIG-2 and NSF levels were not altered by autophagy deficiency in Dlx5-creERT2 and CaMKII-cre *Atg7* cKO mice. Scale bars: (**A**) and (**B**), 5 µm; insets, 2 µm.

A	Atg7 ^{rr} , Cre-	GABA _A R β ₂₃	Rab5 —	merge —	
	Atg7 [#] , Cre+	GABA _A R β ₂₀	Rab5 —	merge	
В	Atg7 [™] , Cre-	GABA ₃ R β ₂₃	Rab11 —	merge —	
			Conne a		
	Atg7 ^{tif} , Cre+	GABA _A R β ₂₃	Rab11 —	merge —	
				1997 1997 - 1996 1997 - 1996	

С	Atg7™, Cre-	GABA _λ R β ₂₀	Rab7 —	merge
			- Lineage	
	Atg7 ^m , Cre+	GABA _A R β _{2/3}	Rab7	merge
			Č.	
D	Atg7", Cre-	GABA _A R β ₂₃	LAMP-1 —	merge —
			SA	
	Atg7", Cre+	GABA _A R β ₂₃	LAMP-1 —	merge —

Fig. S6. GABA_A receptors are not substantially localized to endosomal and lysosomal compartments in cortical GABAergic interneurons and are not altered by autophagy deficiency. (A) Immunofluorescence images showing that few GABA_A receptors (<1%) were localized to early endosomes (Rab5⁺) in *Atg7* cKO cultured cortical GABAergic interneurons and controls. (B) Immunofluorescence images showing that few GABA_A receptors (<1%) were localized to recycling endosomes (Rab11⁺) in *Atg7* cKO cultured cortical GABAergic interneurons and controls. (C) Few GABA_A receptors (<5%) were observed by immunofluorescence to be localized in late endosomes (Rab7⁺) in *Atg7* cKO cultured cortical GABAergic interneurons and controls. (D) Few GABA_A receptors (<5%) were observed by immunofluorescence to be localized in LAMP-1⁺ lysosomes in *Atg7* cKO cultured cortical GABAergic interneurons and controls. Scale bars: (A), (B), (C), and (D), 5 µm; insets, 2 µm.

Fig. S7. Reduced surface GABA_A **receptor expression by manipulation of p62 levels.** (A) p62 overexpression in WT cultured cortical GABAergic interneurons. (**B-C**) p62⁺ aggregates formed in WT cultured cortical GABAergic interneurons due to overexpression caused mislocalization of GABARAPL1 and GABARAP, similar to GABARAPL2 shown in Fig. 5A. (**D**) *Tsc2* knockdown in WT cultured cortical excitatory neurons led to mTOR hyperactivation as indicated by increased phosphorylation of ribosomal protein S6 and subsequent p62 accumulation due to autophagy suppression by enhanced mTOR signalling. S2448 phosphorylation of mTOR was unchanged, consistent with allosteric activation of mTOR via Tsc1/2-Rheb signalling, rather than phosphorylation via the PI3K-AKT-S6K1 pathway. (**E-F**) p62 accumulation and aggregate formation was observed due to autophagy suppression by hyperactivated mTOR in WT cultured cortical excitatory neurons with *Tsc2* knockdown, and in turn sequestered GABARAPL1 and GABARAP, in addition to GABARAPL2 shown in Fig. 5D. Scale bars: (**B**), (**C**), (**E**), and (**F**), 15 μ m.

Table S1. shRNA sequences used in this study.

Gene	Sequence
Gabarapl2	Targeted: ATGAAGATGGATTCTTGTATG
	Scrambled: GGATTTATGACGTGATATGAT
Sqstm1 (p62)	Targeted: CCGCATCTACATTAAAGAGAA
	Scrambled: GACCCGACATAATTGCATAAA
Tsc2	Targeted: GGTGAAGAGAGCCGTATCACA
	Scrambled: GGCGAATGGGCTCGAATACAA

Antigen	Source	Catalogue number	Application details
p62	Progen Biotechnik	GP62-C	IB 1:2000
			IF 1:4000
Atg7	Cell Signaling	2631	IB 1:2000
	Technologies		
LC3	Novus Biologicals	NB100-2331	IB 1:1000
GAPDH	Santa Cruz	sc-32233	IB 1:10000
	Biotechnology, Inc.		
Tsc2	Cell Signaling	4308	IB 1:2000
	Technologies		IF 1:200
GABARAP	Santa Cruz	sc-377300	IB 1:500
	Biotechnology, Inc.		IF 1:100
GABARAPL1	Proteintech	11010-1-AP	IB 1: 1000
			IF 1:300
GABARAPL2	Proteintech	18724-1-AP	IB 1:1000
			IF 1:300
NR2B	NeuroMab	75-097	IB 1:2000
GluR1	EMD Millipore Co.	AB1504	IB 1:1000
GluR1	NeuroMab	75-327	IB 1:1000
GABA _A receptor α_1	NeuroMab	75-136	IB 1:1000
GABA _A receptor β_3	NeuroMab	75-149	IB 1:1000
GABA _A receptor $\beta_{2/3}$	EMD Millipore Co.	05-474	IB 1:1000
			IF 1:200
GABA _A receptor γ_2	NeuroMab	75-442	IB 1:1000
gephyrin	Synaptic Systems	147-111	IB 1:4000
			IF 1:600
GAD67	EMD Millipore Co.	MAB5406	IB 1:1000
			IF 1:4000
Calbindin	Sigma-Aldrich Co.	C9848	IB 1:1000
			IF 1:200
Calretinin	EMD Millipore Co.	MAB1568	IB 1:1000
			IF 1:100
(1	1	

Table S2. Antibodies used in this study.

Parvalbumin	Swant	235	IB 1:1000
			IF 1:400
Somatostatin	EMD Millipore Co.	AB5494	IB 1:1000
			IF 1:200
CaMKII-β	abcam	ab34703	IF 1:200
GFAP	Dako	Z0334	IF: 800
phospho-mTOR	EMD Millipore Co.	09-213SP	IB 1:1000
(S2448)			
S6	Cell Signaling	2217	IB 1:1000
	Technologies		
phospho-S6	Cell Signaling	4858	IB 1:2000
	Technologies		
Rab5	Cell Signaling	3547	IF 1:200
	Technologies		
Rab7	Cell Signaling	9367	IF 1:200
	Technologies		
Rab11	Cell Signaling	5589	IF 1:200
	Technologies		
LAMP-1	Developmental	1D4B	IF 5 µg/mL
	Studies Hybridoma		
	Bank		
TGN38	Santa Cruz	sc-271624	IF 1:100
	Biotechnology, Inc.		
BIG-2	Atlas Antibodies	HPA026078	IB 1:250
			IF 1:50
NSF	Synaptic Systems	123-002	IB 1:1000
			IF 1:200

	A=Autism					
#	C=Control	Age	Ethnicity	Sex	PMI Group (hours)	RIN
1407		0.461		6 1	10 22	
1407	C	9y46d	African American	female	18 - 23	
1182	A	9y354d	African American	female	24 - 29	3.7
1846	C	20y221d	Caucasian	female	6 - 11	
1638	A	20y277d	Caucasian	female	> 48	6.4
4337	С	8y90d	African American	male	12- 17	8.4
4721	А	8y304d	African American	male	12 - 17	6.1
5408	С	6y309d	African American	male	12-17	7.6
4849	А	7y171d	African American	male	18 - 23	6.7
5163	С	14y315d	Caucasian	male	12- 17	7
4899	А	14y126d	Caucasian	male	6 - 11	6.5
1376	С	37y140d	African American	male	12- 17	
5027	А	37y353d	African American	male	24 - 29	6.8
4590	С	20y179d	Caucasian	male	18 - 23	
4999	A	20y274d	Caucasian	male	12-17	7.5
4781	С	45y364d	Caucasian	male	12- 17	7.4
5115	A	46y135d	Caucasian	male	24 - 29	7.3
5391	С	8y286d	Caucasian	male	12- 17	6.9
5144	A	7y55d	Caucasian	male	0 - 5	7.7
5342	С	22y355d	African American	male	12- 17	8.5
5176	A	22y199d	African American	male	18 - 23	6.8
5168	С	15y361d	Caucasian	female	6 - 11	3.9
5278	A	15y324d	Caucasian	female	12- 17	6.9
5334	С	12y249d	unknown	male	12- 17	2.4
4334	A	11y17d	unknown	male	24 - 29	7.1
5079	С	33y64d	Caucasian	male	12- 17	7.4
5297	A	33y83d	Caucasian	male	> 48	6.4
4848	С	16y271d	Caucasian	male	12- 17	
5302	A	16y119d	Caucasian	male	18 - 23	3.5
4669	С	16y125d	Caucasian	male	12- 17	
5403	A	16y266d	Caucasian	male	30 - 35	5.5
1029	C	29y300d	unknown	male	12- 17	
M3663M	A	27y109d	unknown	male	18 - 23	6.8
1413003141	Λ	27y1090	UIIKIIUWII	maie	10-23	0.0

 Table S3. Patient information for frozen postmortem human brain samples.

1612	С	19y0d	Caucasian	female	24 - 29	
5419	А	19y350d	Caucasian	female	18 - 23	8.4
1714	С	12y164d	African American	male	18 - 23	
5565	А	12y89d	African American	male	18 - 23	8.3
1347	С	19y76d	Caucasian	female	12- 17	
5561	А	19y218d	Caucasian	female	30 - 35	3.2
4599	С	23y320d	African American	male	18 - 23	
5574	А	23y252d	African American	male	12- 17	3.1
4670	С	4y237d	Caucasian	male	12 - 17	7.7
5308	А	4y182d	Caucasian	male	18 - 23	6
1578	С	53y112d	Caucasian	male	12-17	8.4
5340	А	53y177d	Caucasian	male	24 - 29	7.8