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1. Details on features for representation of DOS patterns

In our learning model, we proposed three features relevant to the compositions and
atomic structures to represent the DOS patterns. First, we introduced the d-orbital
electron occupation ratio (nd), defined by:
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where Ny 4 and N, p are the numbers of d-orbital electrons of the A and B elements in
the AxBi1x alloy, respectively. For example, in the Cu-Ni alloy system, the electronic
configuration of Cu is [Ar] 3d'%4s!, indicating that the number of d-orbital electrons of
Cu is 10. Similarly, because the electron configuration of Ni is [Ar] 3d34s?, the number of
the d-orbital electrons of Ni is 8. Accordingly, for the Cuo.sNio.s composition, nd,cu and
ndNi are 0.56 and 0.44, respectively.

To distinguish atomic structures, we introduced the coordination number (CN) feature, as
shown in Fig. S1. The CN value was obtained by dividing the number of all bonds
between the two atoms by the total number of atoms in the material system. Here, the
bonds were calculated using the covalent atomic radii. In general, the CN of a simple
cubic (sc) structure is 6, the CN of a body-centered cubic (bce) structure is 8, and the
CNs of a face-centered cubic (fcc) structure and a hexagonal-close packed (hcp) structure
are equal to 12.



Figure S1. Atom connectivity of various Cu crystal structures. a, bce. b, hep. ¢, fcc.
Bonds in each crystal structures are calculated with a covalent radius of Cu of 1.32 A.

As another feature to distinguish atomic structures, we introduced the mixing factor (Fmix),
which indicates the ratio of the number of different pair bonds (A-B bond) in the alloy
system to the number of all bonds (A-A, B-B, and A-B bonds). As the miscibility of two
elements in an alloy structure increases, Fmix approaches 1. Conversely, as the
immiscibility increases, Fmix approaches to 0. Additionally, Fmix of the pure metals is
defined as 0. Using Fmix, one can readily distinguish two atomic structures even though
they have the same CN value, as shown in Figure S2.
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Figure S2. Two different atomic structures of the A-B alloys but with the same CN
value. a, Immiscible structure with Fmix = 0.33. b, Randomly distributed structure with
Fmix = 0.52. Since the b structure is more miscible, it has a higher Fmix.



2. Atomic structures of training and test systems
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Figure S3. Atomic structures of training and test data considered in bulk structures
study. The asterisk (*) indicates test data. Otherwise, they are training data.
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Figure S4. Atomic structures of training and test data considered in high entropy
alloy (HEA) structures study. The asterisk (*) indicates test data. Otherwise, they

are training data.
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Figure S5. Atomic structures of training and test data considered in slab structures
study. The asterisk (*) indicates test data. Otherwise, they are training data.



3. Details on DOS prediction using a probability matrix

Assuming that the maximum DOS value is T, p,, (E,,) in the equation (4) can be
expressed as nT/N. For example, if there are three non-zero values (0.3 for the 6™ DOS
level, 0.2 for the 4" level, and -0.1 for the 2" level) at the given column vector in the
DOS image matrix I with a 100 x 100 grid, the non-zero probabilities for each DOS
levels are 0.6 (=0.3/(0.3+0.2)) for the 6™ level and 0.4 (=0.2/(0.3+0.2)) for the 4" level,
where others with the exception of the positive entries in the I are ignored. Then,
assuming that T = 3, the DOS value at the energy interval is obtained as 0.156, according
to the following calculation: 0.6 x (6x3/100) + 0.4 x (4x3/100).
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Figure S6. Scheme for transformations from a DOS image vector (x') to a DOS
image matrix (X') and from the DOS image matrix (I') to the DOS probability
matrix (X'). a, the DOS image vector (x'), b, the DOS image matrix (I'), and ¢, the DOS
probability matrix (X'). In b and ¢, M and N are the horizontal and vertical grid sizes in a
rectangular window, respectively. The black-filled entries indicate the nonzero values.



4. Additional details on estimation of the coefficients of principal component vectors
in binary systems

For fitting coefficients (a’,) of the principal component (PC) vectors for a test binary
alloy, we first need to calculate the feature (n4, CN, and Fmix) values of the training data
and test data. The values for the Cu-Fe systems considered in this work are summarized
in Table S1. The coefficients (a;) of the PC vectors for the training systems should also

be determined and can be automatically determined after the principal component
analysis (PCA). Then, we generate linear regression lines between the a;, of the training
data, in which we focus on the linear regression line between the two training data sets
near the test composition. Then, based on the features of the training and test systems, we

gl a’gN, a’zF,miX } for the test
system by using the linear regression line. For example, in the case of the Cu-Fe system
of this work, we considered five training systems: Cu, Cuo.2sFeo.75, Cuo.sFeo.s, Cuo.7sFeo.2s,
and Fe. As a test system, we considered the Cuo.375Feo.625 alloy. Based on the composition,

the two training systems most similar to the test system are Cuo.2sFeo.7s and Cuo.soFeo.s0.

estimate each a'; contributions of n¢, CN, and Fmix {«

Here, we note that the feature values for the training and test systems are summarized in

. mq
Table S1. To estimate @' ,21 ¢y, . cFeq aps°

between the two training systems. In Table S1, the nqre values of the training systems are
0.64 for Cuo.2sFeo.7s for and 0.38 for Cuo.sFeos, the values of which are the boundary

values of the pink line. A linear interpolation on the pink line with nd,re = 0.50 for the test

ng
p=1,Cup375Fepe2s

we consider the pink line (p = 1) in Fig. S7

Cuos75Feo.625 alloy provides the o' value. Using a similar approach, we

1Fmix

can estimate a' SN and « Then, a’ is
p=1,Cup375Fege2s p=1,Cug375Feq 625" » “ p=1,Cug375Feq625
calculated by dividing the sum of the three a’,-; values by 3. Other PC coefficients are

estimated in a similar manner.



Table S1. ng,cu, na,Ni, CN, and Fuix of training and test data in the Cu-Fe binary
system. The asterisk indicates a test data, and the others are for training data.

Nd,Ccu | Nd,Fe CN F mix
Cu 1 0 12 0
Cug.75Feo.25 0.83 | 0.17 12 0.38
Cug.s0Feq.50 0.62 | 0.38 12 0.51
Cug.25Feq.75 036 | 0.64 8 0.41
Fe 0 1 8 0
*Cllo,375Feo,625 0.50 0.50 12 0.45
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Figure S7. Linear regression lines for estimation of coefficients of PC vectors using
the feature values such as ng, CN, and Fpix in the Cu-Fe system. p indicates the index
of PC, where four PC components are considered. The coefficients of each PC for the test
alloy are determined by the cross-points between the regression lines and the dashed lines
corresponding to the feature values of the test alloy. The highlighted range is the
estimated region of the test alloys.
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Figure S8. DOS pattern of Cuo375Nio.625 as a test alloy. The energy range (E-Efermi) is
from E=-10¢eV to E =5 eV, and the DOS range is from 0.0 to 3.0 where the positive
region is for up-spin and the negative is for down-spin. Black corresponds to the DFT
method, and pink corresponds to the learning method using the three features (nd4, CN,
and Fmix).
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Figure S9. DOS pattern of (a) Cuo.625Nio.375 and (b) Cug.s25Feo.375 using our pattern
learning method. The energy range (E-Efermi) is from E=-10 eV to E =5 eV, and the
DOS range is from 0.0 to +3.0 where the positive region is for up-spin and the negative is
for down-spin. Black corresponds to the DFT method, and pink corresponds to the
learning method using the three features (nd, CN, and Fmix).
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Figure S10. DOS pattern of (a) Cuo.375Nio.25s and (b) Cuo.s75Feo.625 by a linear
interpolation of two nearest neighbors without PCA. The energy range (E-Efermi) is
from E=-10¢eV to E =5 eV, and the DOS range is from 0.0 to £3.0 where the positive
region is for up-spin and the negative is for down-spin. Black corresponds to the DFT

method, and pink corresponds to the linear interpolation of two nearest neighbors without
PCA.
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5. Estimation of the coefficients of PC vectors in a ternary system
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Figure S11. Schematic triangular diagram in a ternary system to represent a
distance between two compositions. In the A-B-C ternary system, X, Y, and Z are

training systems and N is the test system. dn-x, dx-v, and dn-z indicate the differences of

each feature between N-X, N-Y, and N-Z.
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Table S2. ng,cu, Na,Ni, N4,pts CN, and Fix of training and test data in the Cu-Ni-Pt
ternary alloy system. The asterisk indicates a test data and the others are for training
data.

Nd,Cu Nd,Ni Nd,pt CN Fmix

Cu 1.00 0.00 0.00 12 0.00
Cuy.75Nio.25 0.79 0.21 0.00 12 0.41
Cug.75Pto.25 0.77 0.00 0.23 12 0.50
Cuyg.50Nio.50 0.56 0.44 0.00 12 0.50
Cuy.50Nio.25Pto.25 0.54 0.22 0.24 12 0.65
Cug.s0Pto.s0 0.53 0.00 0.47 9 0.83
Cuyg25Nio.7s 0.29 0.71 0.00 12 0.35
Cuy.25Nig.50Pto.25 0.29 0.46 0.26 12 0.63
Cuy25Nig.25Pto.s0 0.28 0.22 0.50 12 0.68
Cug25Pto.75 0.27 0.00 0.73 12 0.38

Ni 0.00 1.00 0.00 12 0.00
Nig.75Pto.25 0.00 0.73 0.27 12 0.50
Nig.s0Pto.s0 0.00 0.47 0.53 12 0.56
Nig.25Pto.75 0.00 0.23 0.77 12 0.39

Pt 0.00 0.00 1.00 12 0.00
*Cuo.06Nig.06Pto.ss 0.07 0.06 0.88 12 0.10
*Cuo.31Nig34Pto.34 0.35 0.31 0.34 12 0.62
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Figure S12. DOS pattern of (a) Cuo.315Nio.315Pt0.25F€0.03Cro.00 and (b)
Cuo.315Nio.315Pto.25Feo.090Cro.03 as test compositions of high entropy alloys. The energy
range (E-Efermi) is from E =-10 eV to E =5 eV, and the DOS range is from 0.0 to +1.5
where the positive region is for up-spin and the negative is for down-spin. Black
corresponds to the DFT method, and pink corresponds to the learning method using the
three features (nd, CN, and Fumix).
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Figure S13. Scheme of the pattern learning method for predicting the DOS pattern
for a high-index surface of AxBix alloys. As a training system for the pattern learning
method, five compositions (A, Ao.75Bo.25, Ao.50Bo.s0, Ao.25Bo.75, and B) and three low index
surfaces ((001), (011), and (111)) for each composition were considered. The process
includes two steps. The first step is demonstrated in the upper and middle boxes shows
the prediction of the DOS patterns for the low-index surface of the AxBixalloy using the
nd, CN, and Fmix features. The second step is demonstrated in the middle and the bottom
boxes and shows prediction of the DOS pattern for the high-index surface (hkl) of the
AxBi1x alloy using the 1/h, 1/k, and 1/1 features.
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Figure S14. Performance tests of (a) training structure (Cuo.sNio.s) and (b) test
structure (Cug375Nio.¢25) for the number of PCs and grid size in a Cu-Ni binary alloy
system. Relationships between the grid size and the pattern similarity of the learning
model (upper side) and between the grid size and the calculation time (lower side). P
indicates the number of PC eigenvectors used during the prediction process.
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