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Supplementary Methods

Data processing

dSTORM datasets as exported by NIS Elements comprise lists of localizations and their cor-
responding properties. In order to allow for a quantitative analysis, these datasets have been
pre-treated using Matlab (scripts available on request). In brief, in this pre-treatment, the list
of localizations was imported into Matlab and fiducial marker-related as well as Z-rejected
localizations were removed from the imaging channel (a thorough correlation analysis was
performed to confirm that no difference in any photophysical parameters existed between
Z-rejected and accepted localizations). Subsequently, drift correction was performed using
the fiducial markers and all localizations acquired after reaching blinking equilibrium (set
at frame 10, 000 as determined by completion of a fast decay in number of localizations per
frame) were collected. In this dataset, individual beads were isolated using a density-based
clustering algorithm (selecting clusters of more than 2/5 localizations in a 80/225 nm range,
for monofunctional and multifunctional beads respectively). After excluding erroneous clus-
ters (based on the criteria size-radius between 125 and 180 nm - and number of localizations -
10/90/250/450 for L/M/H/VH densities), the localizations datasets were exported for further
distribution analysis in R.

Subsequently, the datasets are further processed in R before analysis. First, localizations
based on 300 or less photons and those that are based on more than 4000 photons were
removed. Based on this criterion 234 (SDB), 191(L), 630 (M), 2318(H) and 8234 (VH) local-
izations were removed. Second, we have removed various entire clusters (beads) that contain
an unrealistic number of localizations. The threshold values (the rounded 99% quantiles of
the data) were 45 (SDB), 150 (L), 550 (M) and. 2500 (H). For the VH dataset we used a
lower bound instead, the 1% quantile 1750. As a result, 27 out of 2233 (SDB), 7 out of 281
(L), 1 out of 380 (M), 2 out of 226 (H) and 6 out of 412 (VH) beads were removed. The
number of observations (n), the mean, the standard deviation (SD), median, 25% quantile
(Q25) and the 75% quantile (Q75) of the number of localizations and the number of Photons
are presented in Supplementary Table 1. In this work the data from the VH beads are solely
used for fitting the photon count distribution.

Variable Density n Mean SD Median Q25 Q75

Number of SD 2206 7.65 7.00 5.00 3.00 9.00
localizations L 274 36.0 25.0 27.0 19.0 49.0

M 379 228.5 89.2 219.5 153.5 284.5
H 224 1008.1 398.2 986.0 672.5 1264.0

VH 406 3622.1 862.1 3573.5 3086.0 4070.0
Photons SD 16865 821 596 613 464 910

L 10128 623 291 544 433 712
M 868337 646 282 574 460 748
H 229850 629 282 555 444 725

VH 1470557 740 371 638 494 871

Supplementary Table 1: Summary statistics

In the dSTORM procedure, low as well as high values of e.g., localization counts are
removed from the data, making it natural to work with conditional distributions. We do this
throughout our analysis.
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Statistical model & Data analysis

Random variables are written with a capital letter (e.g. X), and realizations of random vari-
ables with lower-case letters (e.g. x).

Emitters on single dye beads

First, a model for the photon emission dynamics of a dye on a bead containing solely this dye
is presented. The parameters are estimated based on the SD dataset without suffering from
overcounting. Next, the model is extended to a model for functionalized beads.

The behaviour of a single dye is modelled as a three-states Markov process. The three
states represent a dark state (D), an active state (A), and a bleached state(B). This model
has been used before to address the overcounting problem in PALM imaging, see [1]. During
super-resolution acquisition, photoswitchable dyes are susceptible to several types of photo-
physical transitions, leading to various dark (i.e., non-emissive) states. Generally, these can
be classified as either unintended, short-lived dark states (e.g., due to triplet transitions)
[2, 3],or specifically engineered, long-lived dark states (e.g., due to photoswitching reagents
or illumination) [4, 5]. These transitions are incorporated by extending the Markov model
with an unknown amount of dark states. We single out a switching agent-induced dark state
(D) whose time of visit is significantly longer than in the other dark states (D1,D2,...,Dn).
Instead of an active state an emitting state (E), in which photons are generated, is defined
such that A = E ∪{

⋃n
i=1 Di}. The state space and possible transitions of the Markov chain

for the model are presented in Supplementary Figure 1. A dye is ‘active’ when it is in the
emitting state or in one of the shorter dark states.

Supplementary Figure 1: Markov Chain model for blinking dynamics of a single dye

After being active, the dye will go back to state D or will be irreversibly photobleached
(B). The probability of bleaching when making a transition from the emitting state E equals
pbleach = kb

kb+kd
, where ka, kb, and kd are the transition rates. The bleached state is an

absorbing state which guarantees that the Markov Process reaches its limiting distribution
(all dyes bleached) eventually, see e.g. [24].
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The total number of blinks of a specific single dye equals one plus the total number of
successive visits to the dark state. The probability of returning to the dark state is con-
stant and equals 1 − pbleach. To improve readability pbleach is referred to as p̃. The total
number of blinks (B) is modelled with a geometric distribution with success probability p̃,
so B ∼ Geo(p̃). It is difficult in practice to distinguish between signals of beads with only
one dye attached and background noise. Therefore, only data from dyes that blinked at least
three times is used. Furthermore, the estimate is based on dyes that blink at most 25 times
for reasons of robustness. Here the appropriate model is a conditioned geometric distribution.
Let q be the observed number of blinks. Using the SD data a maximum likelihood estimation
(MLE) estimate of p̂bleach = 0.2084 is derived. In Supplementary Figure ?? the histogram
(binned per 2 blinks for clear visualization)of the observed (conditioned) blink data is shown.
The green curve equals the probability density of the conditioned geometric distribution with
success probability p̂bleach. In Supplementary Figure ?? the empirical cumulative distribu-
tion function (ECDF) of the data and the cumulative distribution function (CDF) of the
conditional geometric distribution are presented.

Supplementary Figure 2: Number of blinks distribution. a.) Histogram of observed number
of blinks and geometric probability mass function (solid green). b.) ECDF of the observed
number of blinks (solid black) and the geometric CDF (solid green).

Although the tail (number of dyes with large number of blinks) of the observed data
deviates from the conditional geometric model, this model seems to describe the blinks count
reasonably well for our modeling purpose.

The time that a dye spends in the active state consists of short periods when the dye is
emitting photons alternated by short periods, D1,D2,..., Dn, without emission although the
dye is still formally in an ‘active’ (i.e., not bound to switching agent) state. The lengths of the
periods Ti in which the dye is emitting are assumed to be exponentially, Exp(·), distributed.
The number N of the emission periods within an active period is unknown. As a result, the
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total emission time, defined as Ton, equals

Ton =

N∑
i=1

Ti. (1)

The number of photons released by an emitter can be assumed to be proportional to the time
in the emissive state [3]. More specifically, NPhotons = ν · Ton, where ν is a numeric constant.
This results in

NPhotons =

N∑
i=1

ν · Ti =

N∑
i=1

Yi, where Yi ∼ Exp(λ · ν−1). (2)

If we would assume N to be a deterministic value, then the continuous approximation of the
number of photons would be a gamma distribution with shape parameter N and scale param-
eter ν · λ−1, denoted by Gamma(N, ν · λ−1). To prove this the moment generating function
(MGF), which equals E[eX·t], is used. The MGF uniquely defines the probability distribution
and therefore equality in MGF implies equality in distribution, see e.g. [20, Chapter 5]. The
MGF of a Gamma(ω, k) distribution equals (1− tω)−k. The MGF of the sum of interest
equals

E[et
∑N
i=1 Yi ] = E[

N∏
i=1

etYi ],

=

N∏
i=1

E[etYi ],

= E[etY1 ]N ,

= (1− ν · t · λ−1)−N . (3)

When N is random this result is not true. However, if N has low variance the gamma
distribution would be a good candidate to approximate the behaviour of interest. Therefore
the fit of a gamma distribution with shape parameter k and scale parameter θ is investigated1,
where θ = ν · λ−1, to the data describing the number of photons emitted per blink. The
parameters are estimated via a numerical optimization procedure of the likelihood.

Using the PROC NLMIXED available in the statistical software SAS we numerically
optimize the conditional likelihood (300 ≤ nPhotons ≤ 4000) for the shape and the scale,
here ν · λ−1, parameters. The photon count data in all datasets (SD, L, M, H and VH) is
used. Remarkably, the fitting ÑPhotons = NPhotons − 300, with a gamma distribution seems
more appropriate than fitting the original data with the conditional distribution. Therefore,
NPhotons − 300 is modelled for which k̂ = 1.6168 and θ̂ = 0.00384 are found. The histogram
of the data (binned by 100 photons), the gamma probability density are plotted in Supple-
mentary Figure ??. Moreover, the ECDF and the gamma CDF are shown in Supplementary
Figure ??.

1We parametrize the gamma distribution as f(x; k; θ) = xk−1 exp(−x/ω)

ωkΓ(k)
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Supplementary Figure 3: Number of photons released per blink distribution. a.) Histogram
of the observed number of photons and the gamma probability density (solid green). b.)
ECDF of the observed number of photons (solid black) and the gamma CDF (solid green).

Functionalized beads

The null model for the spatial pattern of the dyes is a homogeneous Poisson point process
(PPP) on the surface of the nanoparticle which is a sphere, see Supplementary Note 2. Such
a homogeneity assumption is often made in the literature, see e.g. [7]. This homogeneity is a
crucial assumption that we aim to investigate. Furthermore, the different dyes are assumed
to operate independently of each other.

Number of localizations

Our goal is to estimate the number of dyes on a given bead. We observe the number of
localizations and since the number of blinks per dye is random, the number of dyes on the bead
is unknown. Therefore, it is difficult to estimate the parameter of the Poisson distribution
describing the number of dyes. However, an appropriate model for the number of localizations
per dye and data of the total number of localizations per bead are available. Since the L, M
and H densities of functionalization are expected to yield the most interesting results from a
multivalency point of view, these will be treated in further analysis.

Let Bi be the number of localizations originating from dye i. As a result of the data acqui-
sition process, we have that bL ≤ Bi with different bL which are presented in Supplementary
Table 2. The conditioned compound Poisson process is defined as

Qj =

Xj∑
i=1

Bi. (4)

Here Qj equals the total number of blinks of bead j and Xj equals the number of non-
bleached emitters at equilibrium-time on the bead. The term compound is used when sum-
ming a random number, here Xj , of random variables. The number of dyes that are not
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bleached when the equilibrium is reached is distributed as a binomial random variable,
Xj ∼ Bin(Xstart, 1 − pbleach). Here Xstart represents the total number of dyes on a bead
and pbleach is the probability that a dye is in the bleached state when the equilibrium is
reached. Since Xstart is given by a Poisson random variable, Xj also follows a Poisson distri-
bution, see Appendix . Here we focus on the point process when the process has reached the
equilibrium. The probability distribution of the conditional compound Poisson distribution,
stated in Supplementary Equation 4, is implemented in SAS. Next, the Poisson parameter
estimate Λ̂(S) that optimizes the likelihood for the different bead densities is computed. How-
ever, as shown in Supplementary Table 1, the variance in the localizations count data is much
larger than the expected value. Since for a Poisson random variable, the mean is equal to
the variance, the assumption of Poisson counts is not appropriate. The additional variation
that is not explained by the model is often referred to as ‘overdispersion’. In the case of
a Poisson random variable it is common to propose a Poisson mixture model, the Poisson
parameter itself is a random variable, for example a Poisson-Gamma mixture distribution.
This Poisson-Gamma mixture distribution is equivalent to a Negative Binomial, NB(r, p),
distribution. The conditional compound NB probability distribution is implemented in SAS
and a MLE estimate for all bead densities is derived. The MLE estimates for the Poisson
parameter, Λ̂(S), and the NB parameters, r̂ and p̂, are presented in Supplementary Table 2.
In addition, the graphical representations are presented as Supplementary Figures 4-6. Here,
the

Density bL Λ̂(S) r̂ p̂

L 10 7.78 1.71 0.17
M 90 46.82 6.54 0.12
H 250 202.28 6.17 0.03

Supplementary Table 2: MLE estimates of the parameters of the number of localizations
distribution for both the Poi(Λ̂(S)) and the NB(r̂, p̂) distributions.
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Supplementary Figure 4: Low-density beads number of localizations distribution. a).
Histogram of the observed number of localizations (binned by 20 counts) and probability
mass functions of the Poisson (solid red) and Negative Binomial distributions (solid green).
b). ECDF of the observed number of localizations per bead and the CDFs of the Poisson
(solid red) and Negative Binomial distributions (solid green).

Supplementary Figure 5: Medium-density beads number of localizations distribution. a).
Histogram of the observed number of localizations (binned by 20 counts) and probability
mass functions of the Poisson (solid red) and Negative Binomial distributions (solid green).
b). ECDF of the observed number of localizations per bead and the CDFs of the Poisson
(solid red) and Negative Binomial distributions (solid green).
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Supplementary Figure 6: High-density beads number of localizations distribution. a).
Histogram of the observed number of localizations (binned by 50 counts) and probability
mass functions of the Poisson (solid red) and Negative Binomial distributions (solid green).
b). ECDF of the observed number of localizations per bead and the CDFs of the Poisson
(solid red) and Negative Binomial distributions (solid green).

For medium- and high-density beads, the improved fit quality of the compound negative
binomial distribution can be clearly seen in the cumulative distribution functions, demon-
strating larger variability than expected by traditional count statistics. This overdispersion
may indicate dependence between the reactions of different fluorophore molecules on a par-
ticular bead or dispersity at the bead level, thus casting doubt on the assumption of fully
random functionalization that is almost universally adopted in the field.
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Spatial patterns of single localizations

The basic principles for obtaining position estimates of single dyes as implemented in the N-
STORM setup, which serve as a starting point for the procedures described in this subsection,
are publicly available [10, 11]. These publications have been supplemented and clarified in
personal communication with Nikon Instruments Europe B.V.

Entering the photobleached state (B) is an irreversible process i.e., the dye cannot leave
this state. If the dye enters the dark state (D) it will return to the active state (A) after an
exponential time. In this ON-state (A), an emitter is activated and starts emitting photons.
Based on these, the position of the dye is estimated.

The position of the jth localization, Lj = (x, y, z) is modelled as a realization of a mul-
tivariate normal distribution centered at the exact position of the emitter µj and with
diagonal covariance matrix. The elements on the diagonal are the theoretical variances

Lj ∼ N
(
µj ,i·σj

)
, where σ2

j =
(
σ2

x,j , σ
2
y,j , σ

2
z,j

)
and I the 3× 3 identity matrix.

Lateral coordinates of the localization

The photons emitted are captured by a camera and a two-dimensional diffraction limited
spot is observed. Next, the Nikon software fits a 2D-Gaussian distribution to this data using
the method of least squares. This procedure gives a Gaussian Mask Estimator (GME) for
the lateral coordinate, (x, y), of the dye and an estimate for the variance in both x- and
y-direction [22]. Let Nphotons equal the total number of photons captured during one active
state, and let irepresent a specific pixel. Then, the expected number of photon counts in pixel
iis given by

Ei(µx, µy, σ
2
x, σ

2
y) = Nphotons · pi,µx,µy,σ2

x,σ
2
y

+ b2, (5)

where pi,µx,µy,σ2
x,σ

2
y

equals the probability that a photon is observed in pixel i based on the

Gaussian distribution with the corresponding parameters and b2 the expected number of
photons from the background signal [22]. Let ni equal the realized photon count in pixel i.
Then the GME of the location and variability parameters minimizes

χ2(µx, µy, σ
2
x, σ

2
y) =

∑
i

(
ni − Ei(µx, µy, σ

2
x, σ

2
y)
)2
. (6)

Astigmatism to estimate axial coordinate of dye location

The axial location of an emitter is estimated with different techniques, see [8]. The dSTORM
software applies the astigmatism method, which is known to be the most cost-effective tech-
nique, see [9]. Astigmatism is introduced using a weak cylindrical lens, and can be used to
obtain resolution in the axial direction. wx and wy are defined as the widths, in the x- and
y-direction, of the diffraction limited spot and equal two times the standard deviation of the
assumed underlying Gaussian distribution. Due to the cylindrical lens, the focal planes for
the x and y directions are different (wx 6= wy). As a result the captured image is different for
emitters at different z positions, see [11]. A dye that is active in the average focal plane, where
z = 0, results in a round pattern, while an emitter with a higher z position results in a more
ellipsoidal image (long axis along x direction). The same effect on the image would occur
for a lower z position (this time the long axis along the y direction), see [13]. Huang et al.

10



[11] experimentally generate a calibration curve to determine the z position based on wx and
wy. In our experiments, a similar calibration curve was obtained by imaging a slide covered
with fiducial markers in high-density. The stage piezo is used to move the slide around the
focal plane in well-defined steps, and the shape of the diffraction-limited spots is captured as
a function of the axial position. The NIS Elements software [12] subsequently fits the widths
of the spots in x- and y-dimensions using the following algebraic functions

wx(z) = w0,x ·
√

1 +
(
z−gx

Zr,x

)2
+Ax ·

(
z−gx

Zr,x

)3
+Bx ·

(
z−gx

Zr,x

)4
, (7)

wy(z) = w0,y ·
√

1 +
(
z−gy

Zr,y

)2
+Ay ·

(
z−gy

Zr,y

)3
+By ·

(
z−gy

Zr,y

)4
. (8)

Here, w0 is the image width for a dye in the focal plane (PSF), g is the offset of the x or y
focal plane from the average focal plane (astigmatism), Zr,x and Zr,y are the focal depth of
the microscope in the x- and y-dimensions respectively. A and B are polynomial coefficients
to compensate for optical aberrations. The parameter values of the calibration curve used in
our analysis are presented in Supplementary Table 3.

parameter w0,x w0,y gx gy Zr,x Zr,y Ax Ay Bx By

value 289.92 268.35 212.0 294.06 510.44 490.06 1.2155 −0.248 −0.669 0.0169

Supplementary Table 3: Parameters calibration curve

To estimate the axial dye coordinate z, the widths in both lateral directions are estimated as

ŵx = 2
√
σ̂2

x = 2

√√√√ 1

Nphotons

Nphotons∑
i=1

(xx,i − µ̂x)2, (9)

ŵy = 2
√
σ̂2

y = 2

√√√√ 1

Nphotons

Nphotons∑
i=1

(xy,i − µ̂y)2. (10)

Next, the estimated widths (
√
ŵx,

√
ŵy) are projected on the parametric curve defined in

Supplementary Equation 7 and Supplementary Equation 8. This projection is referred to as
(a, b). If

√
(ŵx − a2)2 + (ŵy − b2)2 i.e., the absolute distance of the projection, is too large,

then the shape of the PSF is not correctly captured by the calibration curve. In this case,
NIS Elements assumes the localization to be of low quality and discards it (‘Z-rejection’). In
a broad data analysis, no correlation of Z-rejection to any measured photophysical property
could be found. Hence, this process is modelled to occur with a set (constant) probability for
any captured localization. For non-rejected localizations, µ̂z, the estimate for the height of
the dye, satisfies

µ̂z = w−1
x (z)(a2) = w−1

y (z)(b2). (11)

Since the point (a2, b2) lies on the calibration curve, the projection guarantees the equality in
Supplementary Equation 11.
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Estimation errors

Mortenson, Churchman, Spudich and Flyvbjerg [22] approximate the variance of the GMEs.
Using the notation introduced in Subsubsection , they show that, for θ̂ = µ̂x, µ̂y, σ̂

2
x, σ̂

2
y, and

with
∑

i the sum over all pixels as in the previous subsection,

var
(
θ̂
)

=

∑
i

(
pi,µ̂x,µ̂y,σ̂2

x,σ̂
2
y

+ b2

NPhotons

)(∂p
i,µ̂x,µ̂y,σ̂

2
x,σ̂

2
y

∂θ

)2

NPhotons

(∑
i

(
∂p
i,µ̂x,µ̂y,σ̂

2
x,σ̂

2
y

∂θ

)2
)2 . (12)

For sake of saving space let pi(xi, yi) ≡ pi,µ̂x,µ̂y,σ̂2
x,σ̂

2
y
. If p = 1

2π·σx·σy
exp

(
− (x−µx)2

2σ2
x
− (x−µy)2

2σ2
y

)
,

then the next identities hold:∫
p3(x− µx)4dxdy =

σ2
x

36π2 · σ2
y

, (13)∫
p3(x− µx)2dxdy =

1

36π2 · σ2
y

, (14)∫
p3dxdy =

1

12π2 · σ2
x · σ2

y

, (15)∫
p2(x− µx)4dxdy =

3σ3
x

16πσy
, (16)∫

p2(x− µx)2dxdy =
σx

8πσy
, (17)∫

p2dxdy =
1

4π · σx · σy
. (18)

The identities above also hold when µx is replaced by µy and σx by σy and vice versa.
We derive∑

i

(
∂pi
∂µx

)2
=
∑
i

∫
pixel i

a2p2 (x− µx)2

σ4
x

dxdy =
a2

σ4
x

∫
p2(x− µx)2dxdy =

a2

σ3
xσy

1

8π
, (19)

∑
i

pi

(
∂pi
∂µx

)2
=

a4

σ4
xσ

2
y

1

36π2
, (20)

∑
i

(
∂pi
∂σ2

x

)2
= a2

(
3

64πσyσ5
x

+
1

64π3σ3
yσ

7
x

− 1

32π2σ2
yσ

6
x

)
, (21)

∑
i

pi

(
∂pi
∂σ2

x

)2
= a4

(
1

144π2σ2
yσ

6
x

+
1

192π4σ4
yσ

8
x

− 1

144π3σ3
yσ

7
x

)
. (22)

By substituting these results in Supplementary Equation 12, the theoretical variances of the
GMEs are obtained as
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var(µ̂x) ≡ σ∗2µ̂x
(z,Nphotons) =

σ2
x(z)

Nphotons

(
16

9
+
b2σx(z)σy(z) · 8π

a2Nphotons

)
, (23)

var(µ̂y) ≡ σ∗2µ̂y
(z,Nphotons) =

σ2
y(z)

Nphotons

(
16

9
+
b2σy(z)σx(z) · 8π

a2Nphotons

)
, (24)

var(σ̂2
x) ≡ σ∗2σ̂2

x
(z,Nphotons) ≈

σ4
x(z)

Nphotons

(
256

81
+

64

3

σx(z)σy(z)b2

a2Nphotons

)
, (25)

var(σ̂2
y) ≡ σ∗2σ̂2

y
(z,Nphotons) ≈

σ4
y(z)

Nphotons

(
256

81
+

64

3

σx(z)σy(z)b2

a2Nphotons

)
, (26)

where the error in the later two expression is of the order σ−1
x σ−1

y . Since the width equals
two times the standard deviation, the theoretical variance is described by Supplementary
Equation 7.

13



Lateral uncertainty

It is generally assumed that the position of an observed photon follows a two-dimensional
Gaussian distribution with mean (µx, µy) and variance (σ2

x(z), σ2
y(z)), where z denotes the

height of the emitter. Thus, σ2
x(z) and σ2

y(z) describe the uncertainty in the (lateral) po-
sition of one single detected photon. Therefore σx(z) and σy(z) represent the so-called low
resolutions, that is, the variance of one photon signal.√
σ∗2µ̂x

and
√
σ∗2µ̂y

, see Supplementary Equations 23 and 24, are referred to as the super reso-

lution in the x- and y-direction.
Let us evaluate a dSTORM image of a single dye on a bead. Let y1,y2, ...,yk be the k

localizations observed and n1, n2, ..., nk the numbers of photons that each estimate is based
on. Recall the assumptions, for i ∈ {1, 2, ..., k}, that

Yx,i ∼ N
(
µx, σ

∗2
µ̂x

(z, ni)
)
, (27)

Yy,i ∼ N
(
µy, σ

∗2
µ̂y

(z, ni)
)
. (28)

To validate that the variation of the assumed normal distribution is appropriate, the theoret-
ical results are compared to the observed data (dSTORM images). Since every localization is
based on a different number of photon signals the localizations are not identically distributed.

By rescaling all the localizations by
√
ni, k normal random variables with means

√
niµx

and variances that differ by a 1
n2
i

term are obtained. Next, the real x-coordinate of the dye is

estimated as

µ̂x =
1∑k−1

i=1

√
ni

k∑
i=1

√
ni · yx,i. (29)

Since the observations are now independent and identically distributed with equal means, this
estimate is consistent by Kolmogorov’s strong law of large numbers, see e.g. [23, Theorem
2.3.10]. By subtracting this estimate from every realization,realizations from a asymptotic
normal distribution with zero mean and variance σ∗2µ̂x

(z, ni) are obtained. Therefore,

(Yx,i − µ̂x)2 d→ σ∗2µ̂x
(z, ni)χ

2
1, (30)

where χ2
1 is a Chi-squared distributed random variable with one degree of freedom.

With use of the µ̂z estimated from the single molecule data the quadratic distances based
on the Chi-square distribution are simulated and in turn compared to the observed data.
By doing so, we compare several statistical measures of the data with the expected value
based on the theoretical results. In Supplementary Table 4 the estimated first quantile (Q1),
median, mean, third quantile (Q3) and variance for the observed squared differences and the
simulated squared differences in both lateral directions are presented.

Q1 Median Mean Q3 Variance

data, x 20.18 94.72 268.50 309.20 207807.43
theory, x 13.30 65.11 195.40 223.50 121015.66

data, y 18.97 95.58 280.20 311.60 236373.84
theory, y 13.58 66.12 204.60 230.70 137461.80

Supplementary Table 4: Squared differences of lateral coordinates
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We conclude that the theoretical estimation errors underestimate the variability found
in the data. It is well known that drift plays a role in the imaging [10]. Whether due to
environmental fluctuations, a suboptimality in the microscope setup or other experimental
factors, drift on the nanometer scale is notoriously difficult to prevent. Therefore, super-
resolution measurements need to be corrected for this phenomenon. Importantly, the drift
correction is done after a two-dimensional Gaussian distribution is fitted to the photon cloud.
Since the drift within an active period is negligible, only the localization is corrected for drift
and not every single photon signal. This correction consists of subtracting an estimate for
the drift, at the moment t, at which the signals the localizations is based on are measured, of
the estimated position. This estimate is referred to as B(t). The misfit to the data is partly
explained by this drift. Therefore, a new model is defined as

Yx,i(t) ∼ N
(
µx, σ

∗2
µ̂x

(z, ni)
)

+Bx(t), (31)

Yy,i(t) ∼ N
(
µy, σ

∗2
µ̂y

(z, ni)
)

+By(t). (32)

The estimate of B(t) is based on a collection of bright particles that emit photons continuously
(fiducial marker). This estimate is modelled with a normal distribution N (B(t), σ2

drift), where
σ2

drift describes the error in measuring the position of the bright particle. Experimentally, every
image contains several (ideally 5-10) fiducial markers. In every frame, a location estimate for
each of these Bi(t) is obtained using a normal GME, and Bi(0) is subtracted to yield an
estimated displacement of marker i. The average displacement of all markers in an image
(N−1

∑N
i=1Bi(t)−Bi(0), for t ≥ 0) is the drift correction for that image. The standard error

of this drift correction is estimated as√√√√N−1
N

N∑
i=1

(
Bi(t)−Bi(0)−

(
N−1

N∑
i=1

Bi(t)−Bi(0)

))2

(33)

and provides a measure of the error in the fiducial marker localization, and hence the drift
correction. This measure corresponds to σ2

drift. As a result the model becomes

Yx,i(t) ∼ N
(
µx, σ

∗2
µ̂x

(z, ni) + σ2
drift

)
, (34)

Yy,i(t) ∼ N
(
µy, σ

∗2
µ̂y

(z, ni) + σ2
drift

)
. (35)

The additional experimental variance term due to drift correction σ2
drift, as estimated from

the variability of the fiducial marker localizations, amounts to σ̂2
drift = 5.52. The validation

procedure is repeated for this corrected model. The summary statistics of the new simulated
data are presented in Supplementary Table 5.

Q1 Median Mean Q3 Variance

data, x 20.18 94.72 268.50 309.20 207807.43
theory+drift, x 17.88 81.09 224.30 266.30 147744.78

data, y 18.97 95.58 280.20 311.60 236373.84
theory+drift, y 17.35 83.00 235.20 270.60 176373.95

Supplementary Table 5: Squared differences of lateral coordinates

We conclude that the combination of the derived estimation error with the drift is not
enough to explain all the variability observed in the data. Before this model is further
expanded in subsection the axial uncertainty is discussed in the next subsection.
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Axial uncertainty

In subsection the methods used to estimate the z-coordinate of a dye were explained. The
uncertainty in this estimate is a consequence of the uncertainty in estimating the x- and
y-widths. Via the projection in the square root space, see subsection , this uncertainty
propagates.

Uncertainty in width estimates

Let w1,w2, ...,wk be the k observed widths, where wi = (wx,i, wy,i) for i ∈ {1, 2, ..., k}. Here
we assume

(Wx,i/2)2 ∼ N
(
σ2

x(z), σ∗2σ̂2
x
(z, ni)

)
, (36)

(Wy,i/2)2 ∼ N
(
σ2

y(z), σ∗2σ̂2
y
(z, ni)

)
, (37)

based on the expression of the GME and central limit theorem arguments. The factors 1/2
appear since the width equals twice the standard deviation. The propagation of errors are
described using Taylor expansions by application of the Delta-method, see e.g. [25, Chapter
2], which results in

Wx,i ∼ N

(
2σx(z),

σ∗2σ̂2
x
(z, ni)

σ2
x(z)

)
, (38)

Wy,i ∼ N

(
2σy(z),

σ∗2σ̂2
y
(z, ni)

σ2
y(z)

)
. (39)

We validate the theoretical variance expression using the squared difference with respect to
the widths on the calibration curve. z = µz is estimated as

µ̂z =
1∑k−1

i=1

√
ni

k∑
i=1

√
ni · yz,i. (40)

Note that by the continuous mapping theorem, see e.g. [25, Chapter 2], 2σx(ẑ)
d→ 2σx(z).

Therefore,

(Wx,i − 2σx(ẑ))2 d→
σ∗2σ̂2

x
(z, ni)

σ2
x(z)

χ2
1. (41)

In Supplementary Table 6 the estimated statistical measures for the observed and simulated
squared differences of the width with the actual value on the calibration curve are shown.
We again conclude that the theoretical expressions do not match the variability found in the
data. Note that estimates of the width are not influenced by the drift since these do not
depend on the exact x- and y-position.

The expression for the axial coordinate estimate ẑ(wx(z), wy(z)) based on the relation
between z and wx and wy, respectively, presented as Supplementary Equations 7 and 8, is
difficult to handle; the projection is performed in the square root space and the projection
is performed on a parametric equation. Therefore, an analytical expression for this relation
is out of reach. However, given a specific coordinate w

′
x, w

′
y, it is simple to compute the

corresponding estimate for z. Therefore, we proceed by adding noise (steps of 0.1) to the

16



1st Qu. Median Mean 3rd Qu. variance

data width, x 123.70 556.50 1020.00 1500.00 1469533.38
theory width, x 30.46 145.50 454.70 503.10 718162.39

data width, y 99.63 452.60 897.80 1290.00 1281538.85
theory width, y 28.05 145.20 484.30 524.00 863028.66

Supplementary Table 6: Squared differences of the widths with calibration curve at ẑ

observed width belonging to z from −165 to 165 (steps of 0.5), and compute the ẑ. This
way the function values ẑ(wx(z), wy(z)) for a wide range of possible width combinations are
sampled. Next, ẑ(wx(z), wy(z)) is approximated with

z + wx(z) · (αx + z · βx) + wy(z) · (αy + z · βy). (42)

The method of least squares is used to find αx, αy, βx, βy that gives rise to the most appropriate
approximation. The estimated covariates are

ẑ ≈ z + (ŵx(z)− wx(z)) · (1.201− z · 0.001) + (ŵy(z)− wy(z)) · (−1.219− z · 0.013). (43)

Since ŵx(z)− wx(z) and ŵy(z)− wy(z) are uncorrelated we conclude that

var(µ̂z) = var(ŵx(z)) · (1.201− z · 0.001)2 + var(ŵy(z)) · (−1.219− z · 0.013)2. (44)

The variance of ŵx and ŷx have already been discussed in detail, see Supplementary Equation
38. Here the drift should be taken into account as well, since the different z estimates are
collected over time. Therefore,

yz,i(t) ∼ N
(
µz, var(µ̂z) + σ2

drift,z

)
. (45)

Based on the displacement of the fiducial marker, σ̂2
drift,z = 19.52. In Supplementary Table

7 the observed squared difference are compared to the simulated squared difference. We

1st Qu. Median Mean 3rd Qu. variance

data 182.20 843.60 1919.00 2507.00 8134350.10
theory 83.47 416.20 1295.00 1481.00 5381073.60

theory+drift 136.90 639.60 1657.00 1977.00 7368992.19

Supplementary Table 7: Squared differences of the z-location with the estimated real z
coordinate.

conclude that the drift partly explains the variation present in (the axial coordinates of) the
data. However, there seems to be a part of the variance that is not explained by the drift. It
is remarkable that this underestimation of the variance is smaller than for the variance of the
widths, see Supplementary Table 6.
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Mixed Normal distribution

In subsection , it was shown how the assumed normal distribution underestimates the variance
of the estimates in the lateral direction and the variance of the estimates of the widths. As a
result the variance for the axial coordinate estimate is also underestimated. Here the values
derived in subsection will be used.

A new model based on a mixed normal distribution is proposed, such that

Yx,j,i ∼ N (µx,j +Xµx,j , σ
2
x(zj) +Xσ2

x,j
), for i = 1, 2, ..., Nphotons,j , (46)

with Xµx,j and Xσ2
x,j

zero-mean random variables with variances Σ1,x and Σ2,x. Note that the
distribution of the X is not of interest here. The distributions of the localizations originating
from the same dye may differ e.g., as a result of changing dipole orientations or coupling of
the fluorophore excitation dipole to nearby interfaces [19]. By the law of total variation, see
e.g. [27, Exercise 4.1.7], for two random variables X and Y such that var(Y ) <∞,

var(Y ) = E [var (Y |X)] + var (E [Y |X]) . (47)

The law of total variation is applied to derive the variance of the location estimate of emitter
j. That var(µ̂x), which depends on (z,Nphotons) can be approximated as

var(µ̂x) =E
[
var(µ̂x|Xµx , Xσ2

x
)
]

+ var
(
E
[
µ̂x|Xµx , Xσ2

x

])
,

=E

σ2
x(z) + Σ2,x

Nphotons

16

9
+
b2
√

(σ2
x(z) + Σ2,x)(σ2

y(z) + Σ2,x) · 8π

a2Nphotons


+ var (E [µ̂x|Xµx ]) ,

≈E
[
σ2

x(z) + Σ2,x

Nphotons

(
16

9
+
b2σx(z)σy(z) · 8π

a2Nphotons

)]
+ var (E [µ̂x|Xµx ]) ,

=σ∗2µ̂x
(z,Nphotons) + var(µx +Xµx),

=σ∗2µ̂x
(z,Nphotons) + Σ1,x. (48)

Since Σ2,x will be small compared to σ2
x(z) an approximation is used. Similarly, the variance

of the estimate for σ2
x(zj) is derived as

var(σ̂2
x) = E

[
var(σ̂2

x(z)|Xµx , Xσ2
x
)
]

+ var
(
E
[
σ̂2

x(z)|Xµx , Xσ2
x

])
= E

(σ2
y(z) + Σ2,x)2

Nphotons

256

81
+

64

3

√
(σ2

x(z) + Σ2,x)(σ2
y(z) + Σ2,x)b2

a2Nphotons
)

+ var(σ2
x + Σ2,x)

≈ E

[
(σ4

x(z) + 2σ2
x · Σ2,x + Σ2

2,x)

Nphotons

(
256

81
+

64

3

σx(z)σy(z)b2

a2Nphotons

)]
+ var(σ2

x + Σ2,x)

= E

[
(σ4

x(z) + 2σ2
x · Σ2,x + Σ2

2,x)

Nphotons

(
256

81
+

64

3

σx(z)σy(z)b2

a2Nphotons

)]
+ var(Σ2,x)

= σ∗2σ̂2
x
(z,Nphotons) +

(
1 +

256

81Nphotons
+

64

3

σx(z)σy(z)b2

a2N2
photons

)
var(Σ2,x)

≈ σ∗2σ̂2
x
(z,Nphotons) + var(Σ2,x). (49)
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To estimate Σ1,x and Σ1,y, the sum of squares of the differences between the estimated squared
difference and var(µ̂x) (ẑ, Nphotons) is minimized. For Σ2,x and Σ2,y, respectively, to obtain
a robust estimate, the sum of absolute differences between the estimated squared difference
and var(σ̂2

x) (ẑ, Nphotons) is minimized. The global estimates of these quantities are given in
Supplementary Table 8 below.

Parameter Estimate

Σ1,x 7.822

Σ1,y 8.202

Σ2,x 17.462

Σ2,y 15.212

Supplementary Table 8: Mixture parameter estimates.

Based on these estimates the observed squared difference are compared to the simulated ones
based on the new variance expressions. The statistics are given in Supplementary Table 9.

1st Qu. Median Mean 3rd Qu. variance

data, x 20.18 94.72 268.50 309.20 207807.43
mixture+drift,x 23.07 105.30 265.10 318.90 185802.98

data, y 18.97 95.58 280.20 311.60 236373.84
mixture+drift,y 23.24 109.60 280.80 334.10 217346.83

data width,x 123.70 556.50 1020.00 1500.00 1469533.38
mixture,wx 69.54 315.70 755.90 933.20 1443789.45

data width, y 99.63 452.60 897.80 1290.00 1281538.85
mixture,wy 59.52 275.00 712.90 860.00 1453860.22

data,z 182.20 843.60 1919.00 2507.00 8134350.10
mixture+drift,z 240.90 1084.00 2472.00 3083.00 14132578.52

Supplementary Table 9: Squared differences; comparison data and simulations.

By comparing Supplementary Table 9 to Supplementary Tables 5 and 6, we conclude
that the variability in the lateral dimension is described satisfactorily, while the variability in
the widths is underestimated. However, this model introduces more variability in the axial
dimension than is observed in the data. The median of the axial absolute differences equal
25.3nm for the model with drift, 29.0nm for the data and 32.9nm for the mixture model. The
observed absolute differences and the expected values based on the different theoretical models
are presented in Supplementary Figures 7, 8 and 9. Despite the small residual inaccuracies,
the model presented in Supplementary Equation 46 succeeds in capturing the experimentally
observed measurement uncertainties in great detail. The analysis using the mixture model
will be conservative since the estimated variability used in the axial dimension will be slightly
higher than in reality.
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Supplementary Figure 7: Observed absolute differences between localization locations and
the estimated source location averaged over 75nm× 75nm photons bins (black). The
expected values based on the theoretical- (red), drift extension- (blue) and mixed normal-
(green) models for the lateral standard deviation.

Supplementary Figure 8: Observed absolute differences between localization locations and
the estimated source location averaged over 75nm× 75nm photons bins (black). The
expected values based on the theoretical- (red), drift extension- (blue) and mixed normal-
(green) models for the axial standard deviation.
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Supplementary Figure 9: Observed absolute differences between localization widths and the
widths based on the estimated z-coordinate and observed number of photons averaged over
75nm× 75nm photons bins (black). The expected values based on the theoretical- (red) and
mixed normal- (green) models for the standard deviation of the widths in both lateral
dimensions.
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Estimators for the number of dyes

In this subsection two possible estimators for the number of dyes on a bead, given the number
of observed localizations Q, are compared. Based on 1000 simulated beads the mean squared
error (MSE), the average of the squared estimation error, for the three different bead densities,
for both methods is computed.

Division by average. An intuitive and simple estimate for the number of dyes is

DBA(Q) =
Q

E(B)
= Q · p̂bleach. (50)

Compound negative binomial distribution. The second method is based on the fit
of the negative binomial distribution for the number of localizations data. This allows us
to obtain a probability distribution for the number of emitters (at equilibrium time) on
a bead, given the observed blinks. The probability generating function of B is given by
GB(z) = zp

1−z(1−p) and GNdark
(z) = p

1−z(1−p) , where p = pbleach. The probability generating

function of X, where X ∼ NB(p, r) is given by Gx(z) =
(

1−p
1−zp

)r
. In other words a sum

of k independent Ndark random variables is distributed as negative binomial distributed,∑k
i=0Ndark ∼ NB(1− pbleach, k). Recall also that B = Ndark + 1. These facts give us

P

Xj = k

∣∣∣∣∣∣
Xj∑
i=1

Bi = qj

 = P

Xj = k

∣∣∣∣∣∣
Xj∑
i=1

Ndark,i = qj −Xj


=

P
(
X = k,

∑X
i=1Ndark,i = qj −X

)
P
(∑X

i=1Ndark,i = qj −X
)

=
P(X = k) · P

(∑k
i=1Ndark,i = qj − k

)
P
(∑X

i=1Ndark,i = qj −X
)

=
P(X = k) · P

(∑k
i=1Qi = qj − k

)
∑qj

l=0 P
(∑l

m=1Bm = qj − l
)
· P(X = l)

. (51)

Using this expression, the number of dyes is estimated. CNB(Q) equals the MLE estimate
for X given Q, i.e.

CNB(Q) = argmax
1≤k≤Q

P

(
X = k

∣∣∣∣∣
X∑
i=1

Bi = Q

)
. (52)

Results. The square roots of the computed MSE and the expected number of dyes based on
the NB(r, p) distribution, see Supplementary Table 2, are presented in Supplementary Table
10. We conclude that the estimator based on the compound negative binomial distribution
is in expectation more precise than the other estimator, but the difference is very small. Still
we recommend to use the estimator based on compound negative binomial distributions.
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Bead density DBA CNB E[X]

L 2.62 2.41 9.94
M 5.76 5.59 52.84
H 12.70 12.48 215.34

Supplementary Table 10: Square root of MSE estimates
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Estimate for the real position of the dyes

In subsection an estimator for the number of emitters for a specific image has been deter-
mined. Next, the assignment of the localizations to these emitters is described. Since the
positions of the emitters are not known, these need to be estimated at the same time. This
analysis is often referred to as ‘clustering’, see for example [14, Chapter 10] and [15, Paragraph
14.3].

Mathematical theory

For a detailed treatment of the material of this subsection, we refer the reader to [14]. We
will assume that the following holds:

(A1) The localizations originate from a known number N of emitters.

(A2) The localization labels Hj are unknown.

(A3) The positions for the N emitters (parameter vectors), θ = (µ1, ...,µN ), are unknown.

(A4) The prior probabilities, P(Hj = i) for each emitter i are known.

(A5) The form for the class-conditional probability densities fY|Hj ,θ(yj) is known.

In (A2) Hj = i means that localization joriginates from emitter i. Let us focus on the
prior probability of localization jcoming from emitter i, j = 1, ..., n, i = 1, ..., N . Emitters
are identical and independent from one another. Since the positions of the different emitters
are unknown, every emitter is equally probable to be the source of a certain localization.
Therefore, the prior probability is uniform over all emitters, that is P(Hj = i) = 1/N for all
i.

The probability density function of the position of a localization given the positions of the
emitters is

fYj |θ(yj) =
N∑
k=1

fYj |Hj(yj)=k,θ(yj) · P(Hj = k). (53)

The likelihood of the trivariate (x-,y- and z- coordinate) normal distribution given the n
localizations is

L(θ|y1,y2, ...,yn) =
n∏
j=1

fYj |θ(yj)

=

n∏
j=1

N∑
k=1

fYj |Hj(yj)=k,µk(yj) · P(Hj = k). (54)

The maximum-likelihood estimate θ̂ is the maximizer of Supplementary Equation 54. It is
convenient to define the log-likelihood as

l(θ|y1,y2, ...,yn) = lnL(θ|y1,y2, ...,yn) (55)

=

n∑
j=1

ln fYj |θ(Yj), (56)
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so that θ̂ maximizes Supplementary Equation 55. The derivatives with respect to each com-
ponent of θ equal zero for the estimate of θ̂ that maximizes Supplementary Equation 55. The
derivative equals

∂

∂µi
l(θ|y1,y2, ...,yn) =

n∑
j=1

1

fYj |θ(yj)
· d

dµi
fYj |θ(yj)

=

n∑
j=1

1

fYj |θ(yj)
· d

dµi

N∑
k=1

fYj |Hj=k,µi(yj) · P(Hj = k). (57)

The probability for a certain localization to come from a specific emitter given the location
of this emitter is computed as

P(Hj = i|θ) =
fYj |Hj ,θ(yj) · P(Hj = i)∑N
i=1 fYj |Hj ,θ(yj) · P(Hj = i)

=
fYj |Hj ,θ(yj) · P(Hj = i)

fYj |θ(yj)
. (58)

The derivative with respect to µi is evaluated in Supplementary Equation 57. The densities
that are not functions of µi do not contribute so that,

d

dµi
l(θ|y1,y2, ...,yn,) =

n∑
j=1

1

fYj |θ(yj)
· d

dµi
fYj |Hj ,µi(yj) · P(Hj = i)

=
n∑
j=1

P(Hj = i)

fYj |θ(yj)
· d

dµi
fYj |Hj ,µi(yj). (59)

Now Supplementary Equation 58 gives

d

dµi
l(θ|y1,y2, ...,yn) =

n∑
j=1

P(Hj = i|θ)

fYj |Hj ,θ(yj)
· d

dµi
fYj |Hj ,µi(yj)

=

n∑
j=1

P(Hj = i|θ)
d

dµi
ln fYj |Hj ,µi(yj). (60)

In other words the maximum-likelihood estimate for µi must satisfy

n∑
j=1

P(Hj = i|θ)
d

dµi
ln fYj |Hj ,µi(yj) = 0. (61)

The position of a localization, θ = (µ1,µ2, ...,µN ), where µi ∈ R3, given the position of the
emitter, follows a trivariate normal distribution. Let Σj = I · σj as introduced in subsec-
tion . Now the class-conditional probability density, likelihood of observations given labels
localizations and position emitters, fYj |Hj ,θ(yj) equals

fYj |Hj ,θ(Yj) = (2π)−
3
2 |Σj |−

1
2 exp

(
−1

2
(Yj − µHj )

′
Σj
−1(Yj − µHj )

)
. (62)
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Therefore,

ln fYj |Hj=i,θ(yj) = −3

2
ln 2π − 1

2
ln |Σj | −

1

2
· (Yj − µi)

′
Σj
−1(Yj − µi), (63)

and
d

dµi
ln fYj |Hj=i,θ(yj) = Σj

−1(Yj − µi). (64)

In reality all the emitters should lay on the sphere, in other words (µi −m)T · (µi −m) = r2

where m equals the midpoint of the bead of interest and r equals the radius. Let m = (0, 0, 0).
A Lagrange multiplier λi is introduced in Supplementary Equation 55. This gives N extra
constraints of the form µTi µi − r2 = 0. As a consequence the likelihood equals

l(θ, λ|y1,y2, ...,yn) =
n∑
j=1

ln fYj |θ(yj)−
N∑
i=1

λi(µ
T
i µi − r2). (65)

The system of equations to be solved is{ ∑n
j=1 P(Hj = i|θ̂)Σj

−1(Yj − µ̂i)− 2λiµ̂i = 0

µ̂Ti µ̂i − r2 = 0,
(66)

or, equivalently, 

∑n
j=1 P(Hj = i|θ̂)(yx,j − µ̂x,i)/σx,ij − 2λiµ̂x,i = 0,∑n
j=1 P(Hj = i|θ̂)(yy,j − µ̂y,i)/σy,ij − 2λiµ̂y,i = 0,∑n
j=1 P(Hj = i|θ̂)(yz,j − µ̂z,i)/σij,z − 2λiµ̂z,i = 0,

µ̂2
x,i + µ̂2

y,i + µ̂2
z,i − r2 = 0.

(67)

µx,i, µy,i and µz,i are expressed as a function of λ

µ̂x,i =
∑n

j=1

(
P(Hj=i|θ̂)/σx,ij∑n

k=1 P(Hk=i|θ̂)/σx,ik+2λi

)
yx,k,

µ̂y,i =
∑n

j=1

(
P(Hj=i|θ̂)/σy,ij∑n

k=1 P(Hk=i|θ̂)/σy,ik+2λi

)
yy,k,

µ̂z,i =
∑n

j=1

(
P(Hj=i|θ̂)/σz,ij∑n

k=1 P(Hk=i|θ̂)/σz,ik+2λi

)
yz,k,

µ2
x,i + µ2

y,i + µ2
z,i − r2 = 0.

(68)

The first three equations are substituted in the last one to find

(
∑n

j=1 P(Hj = i|θ̂)
yx,j

σx,ij
)2

(
∑n

j=1 P(Hj = i|θ̂) 1
σx,ij

+ 2λi)2
+

(
∑n

j=1 P(Hj = i|θ̂)
yy,j

σy,ij
)2

(
∑n

j=1 P(Hj = i|θ̂) 1
σy,ij

+ 2λi)2
+

(
∑n

j=1 P(Hj = i|θ̂)
yz,j

σz,ij
)2

(
∑n

j=1 P(Hj = i|θ̂) 1
σz,ij

+ 2λi)2
− r2 = 0. (69)

Let us summarize Supplementary Equations 65-69. First the probability to originate from
a specific source is assigned to all localizations, based on the assumed emitter locations.
Thereafter, estimates of the source locations are updated as a weighted average, taking into
account the labelling probability and the uncertainty of the localizations.

For every emitter this process of labelling and updating of the source location is continued
until the difference in likelihood for that specific emitter between two subsequent estimation
cycles is less than a pre-assigned tolerance, which we take to be 0.1.
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Initial positions emitters

The above cycle is very sensitive to the initial estimates of the source locations. A k-means
(KM) algorithm is used to provide this initial estimate, see e.g. [14],[15]. According to the
KM algorithm, N points are placed randomly in the space of the observations of interest.
Next the Euclidean distance for each observation to each of the N points is calculated and an
observation is assigned to its closest point. From this, N clusters are obtained and within each
cluster one computes the mean of the coordinates of the members of that cluster. The result
is a set of N new points and starting from these points the procedure is repeated. The process
terminates when the displacement of the new set of points is less than the desired precision.
The output of the algorithm is used as the initial estimate for the dye locations. The k-means
algorithm makes use of the positions of each localization, but not of the uncertainty (number
of photons collected) of the localizations. Since the k-means algorithm starts with a random
set of sources, repeating the algorithm on a unique dataset gives different results. Therefore,
we run the k-means algorithm 20 (L), 20 (M) and 5 (H) times, respectively, and start with the
most likely (highest likelihood) configuration of points as an initial set of emitter positions.

Performance algorithm

It is hard to present an MSE variant for this problem even if the number of emitters would
be known. In the latter case the positions of the emitters should be compared one by one.
This is a matching problem on a weighted complete bipartite graph. The vertices consist of
two equal disjoint sets R and E. Here R represents the real locations of the dyes and E is the
set with estimated locations. A weight is assigned to the edge between r and e, r ∈ R and
e ∈ E, equal to the Euclidean distance between these two points. After this, the Hungarian
algorithm, see [26, Paragraph 3.5], is used to find a least weighted (perfect) matching for this
weighted graph. This perfect matching gives rise to a matching of real and estimated emitter
positions. Exploiting this pairing, the distances in the axial and lateral directions between the
estimate and the real value are computed. Note that the emitter positions of the real beads
are at the core of the problem, they are unknown. However, for the simulated beads these
positions are known and hence we compute the distances between estimated and real positions
of dyes. In Supplementary Table 11 the average absolute differences between estimates and
the real positions in all directions for all bead densities are presented. Furthermore, the
resolutions obtained with solely the k-means algorithm is shown. Here it is important to note
that we validated the convergence of these quantities based on 1000 simulated beads, see e.g.
Supplementary Figures 10-12, from which we conclude that enough simulations were used.

Density x KM (x) y KM (y) z KM(z)

L 17.57 27.43 17.18 27.05 22.08 30.94
M 20.88 23.79 20.47 23.65 22.86 24.97
H 14.72 14.63 14.03 14.63 14.67 15.31

Supplementary Table 11: Average absolute distances in nm for simulated data.
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Supplementary Figure 10: Low-density beads convergence plots. a). Lateral resolution
obtained with the k-means algorithm in x- (solid pine), respectively y-direction (dashed
dark red) and with the proposed algorithm in x- (solid cyan), respectively y-direction
(dashed red). b). Axial resolution obtained with the k-means algorithm (dashed gold) and
obtained with the proposed algorithm (dashed yellow).

Supplementary Figure 11: Medium-density beads convergence plots. a). Lateral resolution
obtained with the k-means algorithm in x- (solid pine), respectively y-direction (dashed
dark red) and with the proposed algorithm in x- (solid cyan), respectively y-direction
(dashed red). b). Axial resolution obtained with the k-means algorithm (dashed gold) and
obtained with the proposed algorithm (dashed yellow).
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Supplementary Figure 12: High-density beads convergence plots. a). Lateral resolution
obtained with the k-means algorithm in x- (solid pine), respectively y-direction (dashed
dark red) and with the proposed algorithm in x- (solid cyan), respectively y-direction
(dashed red). b). Axial resolution obtained with the k-means algorithm (dashed gold) and
obtained with the proposed algorithm (dashed yellow).
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Distribution analysis

In subsections and an algorithm that processes dSTORM images to obtain estimates of
the number of dyes and of the spatial locations of these dyes has been developed. Next, the
assumption that the dyes on a bead behave as a homogeneous negative binomial point process
is investigated. To validate this homogeneity assumption the so-called nearest-neighbour
distance (NND) is used. The NND equals the arc length of the smallest arc between a
dye (estimate) of interest and an arbitrary other dye (estimate) on the same bead. Let
ei, i = 1, 2, ..., X be a dye on a bead with in total X dyes. Notice that all dyes are located
on the sphere. The arc-length between two dye locations equals the radius of the bead times
the angle between the vectors to the two locations starting at the origin. With the use of the
inner product and the inverse cosine, this angle is computed. If • denotes the inner product,
then the NND of ei equals

NND(ei) = min
j∈[1,X]∩N\{i}

{
cos−1

(
ei • ej
|ei| · |ej |

)
1
π · 165π

}
. (70)

Bead-specific clustering quantification

The degree of clustering of a specific bead is a non-trivial concept. dSTORM provides insight
into the particle-to-particle variability of functional group distributions. The fluctuation in
the degree of clustering that is caused purely by stochasticity is visualized. First the empirical
NND distribution based on all NNDs of all real beads of the medium-density is determined.
Next, for every NND estimate, a c value is computed that is defined as a percentile with
respect to the empirical distribution. Therefore, a high c value indicates that this emitter is
closer to a neighbor than an average emitter.

Figure 13 presents two nanoparticles from our dataset, with equal estimated numbers
of fluorophores, displaying very different functionalization patterns. The estimated positions
are color-coded according to the empirical distribution of NNDs, displaying strongly clustered
functional groups on particles in dark red, and weakly clustered particles in yellow and lighter
tones.

The main question to be answered is whether the clustering observed in the dataset is likely
when assuming ‘fully random’ functionalization in which functional groups are homogeneously
distributed over the beads.

Goodness of fit test

To test whether the (homogeneous) model correctly represents the dye density, the average
NND of the estimated dyes on real beads is computed. The test statistic becomes

D1 =
1

X
·
X∑
i=1

NND(ei) (71)

Note that the NND terms depend both on the location of the emitters with respect to each
other as well as on the total number of dyes on the bead. This is in agreement with our
notion of clustering, that is the total number of functionalized side groups in a certain neigh-
bourhood. The distribution of D1 based on the homogeneity assumption is approximated by
simulating 1000 beads, estimating the number and position of the dyes, and computing the
NND of every simulated bead. It is important to mention that the distribution of D1, and the
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Supplementary Figure 13: Two example (medium-density) nanoparticles analysed using the
EM-algorithm, fluorophore location estimates are given as solid points. NND for each
fluorophore estimate is graphically depicted as a circle, color-coded according to a p-value
(empirical distribution) of that NND in the entire bead population, as indicated in the color
bar. For both particles the estimated number of dyes n̂dyes = 57.

distribution of the NND for the simulated emitters, are based on only those simulated beads
that satisfy the acquisition constraint presented in Supplementary Table 2 for the different
densities. The number of simulated beads used for the empirical distribution nsim is presented
in Supplementary Table 12.

Next the hypothesis H0 that the dyes are uniformly distributed over the bead, is tested
for a specific bead. To do so, D1 is computed for a real bead and the number S of simulated
values that are smaller or equal to this D1 is computed. The outcome of the test D2 is defined
as:

D2 = 1{S≤0.025·nsim} + 1{S≥0.975·nsim} (72)

This statistical testing procedure was originally proposed by Dwass in 1957, see [16]. Per-
forming this step for n real beads, see Supplementary Table 1,

T =
n∑
i=1

D2,i (73)

is computed. Note that if the model appropriately describes the spatial distribution of the
dyes, then T is Bin(n, 0.05) distributed. To test the hypothesis the p-value P(Bin(n, 0.05) >
T ) is computed. The null hypothesis will be rejected if this probability is less than or equal
to 0.05. The critical value, the value of the test statistic and the corresponding p-value for
all three densities are shown in Supplementary Table 12.

Bead density n nsim Critical value Test statistic p-value

L 274 995 20 30 0.000
M 379 937 26 82 0.000
H 224 769 17 19 0.009

Supplementary Table 12: Homogeneity test results
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Based on this test we conclude, for all functionalization-densities taken into account, that
the homogeneity assumption is rejected. In addition, qualitative (and practically relevant)
arguments in support of the conclusion are presented. In Supplementary Figures 14, 15 and
16 the NND (of all computed NNDs) histograms and CDFs for the estimated locations of
the emitters of the real beads and the estimated and real locations of the emitters of the
simulated bead are presented.

Supplementary Figure 14: NND distribution (histogram left, CDF right) based on estimates
for emitter locations of real low-density beads (red) and simulated low-density beads (blue),
respectively. In addition, the NND distribution based on the simulated emitter locations is
presented (green).
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Supplementary Figure 15: NND distribution (histogram left, CDF right) based on estimates
for emitter locations of real medium-density beads (red) and simulated medium-density
beads (blue), respectively. In addition, the NND distribution based on the simulated emitter
locations is presented (green).

Supplementary Figure 16: NND distribution (histogram left, CDF right) based on estimates
for emitter locations of real high-density beads (red) and simulated high-density beads
(blue), respectively. In addition, the NND distribution based on the simulated emitter
locations is presented (green).

First, for the simulated dyes, we note that the NNDs based on the estimated locations are
small in comparison to the NNDs based on the simulated emitter locations. This is explained
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Supplementary Figure 17: Example (5,50)-Cluster midpoints (yellow) based on estimated
dyes (grey) of the strongly clustered medium-density bead from Supplementary Figure 13.

by the (reduced) overcounting effect. However, the NND distribution of the dye locations are
well described by evaluating the distribution of the estimated positions.

Furthermore, the distribution of the estimated NND from the experimental dataset is
compared to the estimated distribution based on the simulations. We conclude that the
distribution of the emitters over real beads is not homogeneous. Rather, functional groups
on real beads appear to be more clustered than under the homogeneity assumption.

Practical application of the clustering quantification

Based on the estimated number and locations of dyes, insight was gained on various issues
connected to clustering. As an example, let us focus on the total number of patches on
the surface of the bead that contain at least n emitters with nearest-neighbour distances
smaller than k for each emitter in the patch. In this example n = 5 and k = 2 · 50 nm.
In Supplementary Figure 17 an example of an arbitrary (real) medium-density bead that
contains 5 such clusters is presented. The empirical distribution of the number of these
clusters for the real beads is presented. In addition, the distribution for the simulated beads
with emitters distributed homogeneously are evaluated, both based on the real and estimated
locations of emitters. Due to the (n, k) choice the low-density beads barely contain clusters.
In Supplementary Figures 18 and 19 the histogram and the CDF for both the medium and
high-density beads are presented. Hence, we see that inhomogeneity of the functional groups
can have large consequences in terms of effect, but the influence of (in)homogeneity depends
sensitively on the functionalization density of the beads.
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Supplementary Figure 18: (5,50)-cluster distributions (histogram left, CDF right) based on
estimates for emitter locations of real medium-density beads (red) and simulated
median-density beads (blue), respectively. In addition, the (5,50)-cluster distribution based
on the simulated emitter locations is presented (green).

Supplementary Figure 19: (5,50)-cluster distributions (histogram left, CDF right) based on
estimates for emitter locations of real high-density beads (red) and simulated high-density
beads (blue), respectively. In addition, the (5,50)-cluster distribution based on the
simulated emitter locations is presented (green).

35



Supplementary Note 1

The basic properties of the the probability distributions used in this research are presented
in Supplementary Table 13 below.

Distribution Parameters f(x) E[X] var(X)

N µ, Σ det(2πΣ)−
1
2 exp

(
−1

2(x− µ)
′
Σ−1(x− µ)

)
µ Σ 2

Exp λ λ exp(−λ · x) λ−1 λ−2

Geo p (1− p)x−1p 1
p

1−p
p2

Gamma k, θ xk−1 exp(−x/ω)
ωkΓ(k)

kθ kθ2

Poi λ λx exp(−λ)
x! λ λ2

NB r, p
(
x+r−1
x

)
(1− p)rpx pr

1−p
pr

(1−p)2

Supplementary Table 13: Probability distributions used, see e.g. [20]

In this research we mainly used conditional distributions. Let X be a random variable with
probability density function (pdf) or probability mass function (pmf), respectively, f(x) then
X restricted to a a ≤ X ≤ b, a subset of the outcome space, has pdf/pmf

f̃(x) =


0 if b ≤ x,

f(x)
F (b)−F (a) if a ≤ x ≤ b
0 else

, (74)

where F represents the cumulative distribution function.

Supplementary Note 2

Poisson point process

N = (NA), A ⊆ R3, is a Poisson Point Process (PPP) if

1.
P(N(A) = 0) = e−

∫
A Λ(x)dx, (75)

where
∫
A Λ(x)dx = Λ(A) = E[N(A)] , with intensity Λ.

2. B,C ⊆ A and B ∩ C = ∅ ⇒ N(B) ⊥ N(C) ⇔ P(N(B) = 0, N(C) = 0) = P(N(B) =
0)P(N(C) = 0).

As a result the probability distribution of a PPP equals:

P(N(A) = k) =
Λ(A)k

k!
e−Λ(A), (76)

see [17].
Let us briefly summarize several crucial properties of the PPP. First of all, the number of

points in A, N(A), is a random variable that follows a Poisson distribution with parameter

2Σ equals the covariance matrix of the multivariate normal distribution.
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Λ(A). The points are distributed over A proportionally to the measures of the subsets of A.
If the intensity is equal for all subsets of A with the same volume, then the PPP on A is
referred to as a homogeneous PPP. For this reason the points that are the realizations of the
homogeneous PPP are randomly distributed over A. This means that the distribution of the
locations of the points conditioned on the number of points is uniformly distributed over A.
PPPs possess important properties, for example, if all the points of a PPP are displaced with
an displacement from a known distribution, then the resulting process is again a PPP whose
intensity equals the convolution of the intensity of the original PPP with the probability
distribution of the displacement, see [18, Example 3.3]. When N(A) is a PPP an important
‘thinning’ property can be derived. Indeed, let N

′
(A) ∼ Bin(N(A), p) then N

′
(A) is again a

PPP with intensity pΛ(A), see [20, Example 5.1.27].

Markov processes

A Markov process is also referred to as a continuous-time Markov chain. The chain takes
values in a finite countable state space for which the time spend in each state is exponentially
distributed, see [21, Chapter 6]. The Markov property states that the future behavior of the
chain only depends on the current state of the chain. The rate matrix Q is defined as

Qi,j =

{
λi,j if i 6= j,

−
∑

j,j 6=i λi,j if i = j,
(77)

with transition rates λi,j . P (t) is the matrix whose ith row represents the probability to be
in state jat time t if the process starts in state i. The Kolmogorov forward equation state

P ′(t) =
d

dt
P (t) = P (t)Q, (78)

while the backward equation results in

P ′(t) = QP (t), (79)

see [20, Paragraph 6.9]. If Q is an n× n matrix with n eigenvectors and Q = UDU−1 where
U is the matrix of eigenvectors of Q and D the diagonal matrix of eigenvalues. The matrix
differential equations are now both solved by

P = UetDU−1. (80)

Note that etD equals a diagonal matrix of etµi , where µi is the ith eigenvalue of Q, for
i ∈ {1, ..., n}.
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