# **Electronic Supporting Information**

## Deep eutectic solvent for an expeditious sono-synthesis of novel series of bisquinazolin-4-one derivatives as potential anticancer agents

#### Wael Abdelgayed Ahmed Arafa

Chemistry Department, College of Science, Jouf University, P.O. Box 2014, Sakaka, Aljouf, Kingdom of Saudi Arabia

Chemistry Department, Faculty of Science, Fayoum University P.O. Box 63514, Fayoum City, Egypt

E-mail: waa00@fayoum.edu.eg

#### Index

| No. | Content                                                                                                                                | Page No.   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|------------|
| 1.  | Experimental details for the synthesis of <b>1a-e</b>                                                                                  | <b>S</b> 1 |
| 2.  | Copies of <sup>1</sup> H NMR and <sup>13</sup> C NMR of the synthesized products                                                       | S2-S58     |
| 3.  | <b>Table 3.</b> The anti-proliferative activities of the newly prepared bis-quinazolinone derivatives against human cancer cell lines. | S59        |
| 4.  | Green metrics calculations                                                                                                             | S62        |
| 5.  | References                                                                                                                             | S62        |

### Synthesis of 1a-e

For the synthesis of derivatives **1a-e**, a mixture of anthranilic acid derivatives (1 mmol) and acetic anhydride ( $\approx 10$  mL, 10 mmol) was sonicated at 40 °C for 10 min. The excess of acetic anhydride was distilled off under vacuum and the residue was dissolved in DCM. The obtained crystals filtered, dried and used for the next steps.



<sup>1</sup>H NMR of **3a** 







<sup>1</sup>H NMR of **3b** 



<sup>13</sup>C NMR of **3b** 



<sup>1</sup>H NMR of **3c** 



<sup>13</sup>C NMR of **3c** 



<sup>1</sup>H NMR of **3d** 



<sup>19</sup>F NMR of **3d** 



<sup>12</sup>C NMR of **3d** 



<sup>1</sup>H NMR of **3e** 



<sup>13</sup>C NMR of **3e** 



<sup>1</sup>H NMR of **4a** 



<sup>13</sup>C NMR of **4a** 



<sup>1</sup>H NMR of **4b** 







<sup>1</sup>H NMR of 4c



 $^{13}$ C NMR of **4**c



 $^{1}$ H NMR of **4d** 



<sup>19</sup>F NMR of **4d** 



 $^{13}$ C NMR of **4d** 



<sup>1</sup>H NMR of **4e** 



<sup>13</sup>C NMR of **4e** 



<sup>1</sup>H NMR of **5a** 



<sup>13</sup>C NMR of **5a** 



<sup>1</sup>H NMR of **5b** 



<sup>13</sup>C NMR of **5b** 



<sup>1</sup>H NMR of **5**c



<sup>13</sup>C NMR of **5**c



<sup>1</sup>H NMR of **5d** 



<sup>19</sup>F NMR of **5d** 



<sup>13</sup>C NMR of **5d** 



<sup>1</sup>H NMR of **5e** 



<sup>13</sup>C NMR of **5e** 



<sup>1</sup>H NMR of **6a** 



<sup>13</sup>C NMR of **6a** 



<sup>1</sup>H NMR of **6b** 

![](_page_37_Figure_0.jpeg)

<sup>13</sup>C NMR of **6b** 

![](_page_38_Figure_0.jpeg)

<sup>1</sup>H NMR of **6c** 

![](_page_39_Figure_0.jpeg)

<sup>13</sup>C NMR of **6c** 

Г

![](_page_40_Figure_0.jpeg)

<sup>1</sup>H NMR of **6d** 

![](_page_41_Figure_0.jpeg)

<sup>13</sup>C NMR of **6d** 

![](_page_42_Figure_0.jpeg)

<sup>1</sup>H NMR of **6e** 

![](_page_43_Figure_0.jpeg)

<sup>13</sup>C NMR of **6e** 

![](_page_44_Figure_0.jpeg)

<sup>1</sup>H NMR of **7a** 

![](_page_45_Figure_0.jpeg)

<sup>13</sup>C NMR of **7a** 

![](_page_46_Figure_0.jpeg)

<sup>1</sup>H NMR of **7b** 

![](_page_47_Figure_0.jpeg)

<sup>13</sup>C NMR of **7b** 

![](_page_48_Figure_0.jpeg)

<sup>1</sup>H NMR of **7**c

![](_page_49_Figure_0.jpeg)

<sup>13</sup>C NMR of **7**c

![](_page_50_Figure_0.jpeg)

<sup>1</sup>H NMR of **7d** 

![](_page_51_Figure_0.jpeg)

<sup>13</sup>C NMR of **7d** 

![](_page_52_Figure_0.jpeg)

<sup>1</sup>H NMR of **7e** 

![](_page_53_Figure_0.jpeg)

<sup>13</sup>C NMR of **7e** 

![](_page_54_Figure_0.jpeg)

<sup>1</sup>H NMR of 8

![](_page_55_Figure_0.jpeg)

<sup>13</sup>C NMR of **8** 

![](_page_56_Figure_0.jpeg)

<sup>1</sup>H NMR of **11** 

![](_page_57_Figure_0.jpeg)

<sup>13</sup>C NMR of **11** 

Table 3. The anti-proliferative activities of the newly prepared bis-quinazolinone derivatives against human cancer cell lines.

![](_page_58_Figure_1.jpeg)

| Compd. | R <sub>1</sub>  | R <sub>2</sub>      | Conc.&IC <sub>50</sub> Cells viability (%) |              | iability (%)  |
|--------|-----------------|---------------------|--------------------------------------------|--------------|---------------|
|        |                 |                     |                                            | MCF-7 (μM)   | A549 (μM)     |
| За     | н               | unun                | 10 µM                                      | 51.00 ± 2.02 | 60.16 ± 1.56  |
|        |                 |                     | 30 µM                                      | 57.95 ± 1.45 | 97.20 ± 0.41  |
|        |                 |                     | IC <sub>50</sub> μM                        | 9.78         | 8.15          |
| 3b     | CH <sub>3</sub> |                     | 10 µM                                      | 31.52 ± 1.82 | 39.33 ± 2.76  |
|        |                 |                     | 30 µM                                      | 94.90 ± 0.46 | 90.12 ± 0.25  |
|        |                 |                     | IC <sub>50</sub> μM                        | 12.70        | 15.70         |
| 3c     | Cl              |                     | 10 µM                                      | 56.64 ± 2.23 | 61.12 ± 1.82  |
|        |                 |                     | 30 µM                                      | 86.85 ± 0.89 | 96.98 ± 0.40  |
|        |                 |                     | IC <sub>50</sub> μΜ                        | 9.05         | 8.14          |
| 3d     | F               |                     | 10 µM                                      | 69.73 ± 2.31 | 67.49 ± 0.27  |
|        |                 |                     | 30 µM                                      | 89.10 ± 1.93 | 89.95 ± 043   |
|        |                 |                     | IC <sub>50</sub> μM                        | 7.11         | 8.11          |
| Зе     | NO <sub>2</sub> |                     | 10 µM                                      | 83.12 ± 1.61 | 77.06 ± 1.78  |
|        |                 |                     | 30 µM                                      | 81.18 ± 0.55 | 82.85 ± 1.64  |
|        |                 |                     | IC <sub>50</sub> μΜ                        | 4.55         | 5.34          |
| 4a     | Н               | $H_2$               | 10 µM                                      | 79.06 ± 2.70 | 60.37 ± 3.31  |
|        |                 |                     | 30 µM                                      | 89.85 ± 1.02 | 62.90 ± 1.45  |
|        |                 | C<br>H <sub>2</sub> | IC <sub>50</sub> μΜ                        | 5.38         | 6.11          |
| 4b     | CH <sub>3</sub> | H <sub>2</sub>      | 10 µM                                      | 78.02 ± 2.63 | 75.98 ± 2.21  |
|        |                 |                     | 30 µM                                      | 96.50 ± 0.20 | 78.71 ± 1.76  |
|        |                 | C<br>H <sub>2</sub> | IC <sub>50</sub> μΜ                        | 6.73         | 6.79          |
| 4c     | Cl              | H <sub>2</sub>      | 10 µM                                      | 76.84 ± 1.24 | 79.50 ± 2.61  |
|        |                 |                     | 30 µM                                      | 81.08 ± 1.72 | 81.75 ± 0.87  |
|        |                 | C<br>H <sub>2</sub> | IC <sub>50</sub> μΜ                        | 4.65         | 6.07          |
| 4d     | F               | H <sub>2</sub>      | 10 µM                                      | 60.25 ± 3.31 | 94.29 ± 0.39  |
|        |                 |                     | 30 µM                                      | 61.92 ± 1.01 | 96.09 ± 0.244 |
|        |                 | C<br>H <sub>2</sub> | IC <sub>50</sub> μΜ                        | 6.19         | 5.55          |
| 4e     | NO <sub>2</sub> | H <sub>2</sub>      | 10 µM                                      | 95.58 ± 0.26 | 80.22 ± 2.10  |
|        |                 |                     | 30 µM                                      | 95.26 ± 0.90 | 87.03 ± 1.45  |
|        |                 | C<br>H <sub>2</sub> |                                            | I I          |               |

|    |                 |                                     | IC <sub>50</sub> μM   | 2.75         | 2.98                  |
|----|-----------------|-------------------------------------|-----------------------|--------------|-----------------------|
| 5a | н               | -CH <sub>2</sub> -CH <sub>2</sub> - | 10 µM                 | 51.03 ± 1.92 | 32.44 ± 2.91          |
|    |                 |                                     | 30 µM                 | 58.07 ± 1.55 | 88.68 ± 1.83          |
|    |                 |                                     | IC <sub>50</sub> μM   | 9.79         | 12.32                 |
| 5b | CH <sub>3</sub> | -CH <sub>2</sub> -CH <sub>2</sub> - | 10 µM                 | 27.07 ± 1.70 | 39.99 ± 2.11          |
|    |                 |                                     | 30 µM                 | 87.65 ± 1.24 | 89.67 ± 1.76          |
|    |                 |                                     | IC <sub>50</sub> μM   | 13.55        | 15.73                 |
| 5c | Cl              | -CH <sub>2</sub> -CH <sub>2</sub> - | 10 µM                 | 80.22 ± 2.10 | 61.87 ± 2.34          |
|    |                 |                                     | 30 µM                 | 87.03 ± 1.45 | 82.10 ± 1.93          |
|    |                 |                                     | IC <sub>50</sub> μΜ   | 6.12         | 7.98                  |
| 5d | F               | -CH <sub>2</sub> -CH <sub>2</sub> - | 10 µM                 | 76.84 ± 1.24 | 54.49 ± 0.27          |
|    |                 |                                     | 30 µM                 | 81.08 ± 1.72 | 89.95 ± 043           |
|    |                 |                                     | IC <sub>50</sub> μΜ   | 5.39         | 7.95                  |
| 5e | NO <sub>2</sub> | -CH <sub>2</sub> -CH <sub>2</sub> - | 10 µM                 | 91.11 ± 1.87 | 91.54 ± 0.56          |
|    |                 |                                     | 30 µM                 | 92.80 ± 2.52 | 97.83 ± 0.24          |
|    |                 |                                     | IC <sub>50</sub> μM   | 5.21         | 5.05                  |
| 6a | н               |                                     | 10 µM                 | 75.50 ± 2.17 | 54.49 ± 0.27          |
|    |                 |                                     | 30 µM                 | 79.02 ± 0.90 | 89.95 ± 043           |
|    |                 |                                     | IC <sub>50</sub> μM   | 6.98         | 8.41                  |
|    |                 | Í                                   |                       |              |                       |
| 6b | CH <sub>3</sub> |                                     | 10 µM                 | 61.13 ± 2.35 | 59.16 ± 1.53          |
|    |                 |                                     | 30 µM                 | 82.84 ± 0.92 | 95.12 ± 0.22          |
|    |                 |                                     | IC <sub>50</sub> μΜ   | 7.48         | 8.13                  |
|    |                 | l Ť                                 |                       |              |                       |
| 6c | Cl              |                                     | 10 µM                 | 94.78 ± 0.49 | 91.98 ± 0.49          |
|    |                 |                                     | 30 µM                 | 96.88 ± 0.21 | 98.02 ± 0.21          |
|    |                 |                                     | IC <sub>50</sub> μM   | 5.53         | 5.15                  |
|    |                 |                                     |                       |              |                       |
| 6d | F               |                                     | 10 μM                 | 54.22 ± 2.78 | 82.65 ± 1.67          |
|    |                 |                                     | 30 μM                 | 86.56 ± 1.54 | 81.78 ± 0.45          |
|    |                 |                                     | IC <sub>50</sub> μM   | 5.70         | 4.54                  |
|    |                 |                                     |                       |              |                       |
| 6e | NO <sub>2</sub> |                                     | 10 µM                 | 95.26 ± 0.45 | 95.40 ± 0.24          |
|    | _               |                                     | -<br>30 μM            | 95.87 ± 0.21 | 97.60 ± 0.21          |
|    |                 |                                     | IC <sub>50</sub> μM   | 2.73         | 3.43                  |
|    |                 |                                     |                       |              |                       |
| 72 | н               | 0                                   | 10 uM                 | 72 68 + 0 79 | 82 72 + 1 62          |
| 7a |                 | İ İ İ                               | 20 µM                 | 89.08 + 0.04 | 82 10 + 0 50          |
|    |                 |                                     |                       | 05.00 ± 0.94 | ο2.10 ± 0.30<br>Λ Ε ο |
|    |                 |                                     | ic <sub>50</sub> μινι | 4.24         | 4.38                  |

| 7b        | CH <sub>3</sub> |  | 10 µM               | 53.03 ± 2.29 | 53.13 ± 2.20 |
|-----------|-----------------|--|---------------------|--------------|--------------|
|           |                 |  | 30 µM               | 86.90 ± 1.24 | 86.84 ± 1.19 |
|           |                 |  | IC <sub>50</sub> μΜ | 5.78         | 5.77         |
| 7c        | Cl              |  | 10 µM               | 93.82 ± 0.49 | 72.34 ± 0.78 |
|           |                 |  | 30 µM               | 96.21 ± 0.34 | 88.43 ± 0.19 |
|           |                 |  | IC <sub>50</sub> μΜ | 3.91         | 4.21         |
| 7d        | F               |  | 10 µM               | 61.03 ± 2.82 | 96.46 ± 0.65 |
|           |                 |  | 30 µM               | 78.09 ± 1.79 | 96.68 ± 0.17 |
|           |                 |  | IC <sub>50</sub> μΜ | 1.46         | 3.45         |
| 7e        | NO <sub>2</sub> |  | 10 µM               | 81.08 ± 1.77 | 95.99 ± 0.14 |
|           |                 |  | 30 µM               | 86.97 ± 1.26 | 96.76 ± 0.87 |
|           |                 |  | IC <sub>50</sub> μΜ | 1.26         | 2.75         |
| 11        | н               |  | 10 µM               | 61.80 ± 1.11 | 79.8 ± 1.05  |
|           |                 |  | 30 µM               | 88.54 ± 1.09 | 83.20 ± 1.02 |
|           |                 |  | IC <sub>50</sub> μΜ | 5.42         | 5.94         |
|           |                 |  | 10 µM               | 69.85 ± 1.02 | 89.8 ± 1.14  |
| Sorafenib |                 |  | 30 µM               | 90.79 ± 1.43 | 91.21 ± 1.44 |
|           |                 |  | IC <sub>50</sub> μΜ | 4.03         | 5.20         |

**Green Metrics Calculations**<sup>1,2</sup>

% Atomic Efficiency (AE) = 
$$\frac{\text{Mol Wt. of desired product}}{\text{Mol Wt. of all reagents}} \times 100$$
  
% Carbon Efficiency (CE) =  $\frac{\text{Mass of carbon in product}}{\text{Totall mass of carbon in the reactants}} \times 100$   
Reaction Mass Efficiency (RME) =  $\frac{\text{Mass of the isolated product}}{\text{Total mass of reactants used in the reaction}} \times 100$   
% Yield Economy (YE) =  $\frac{\text{Reaction percent}}{\text{Time in min}} \times 100$   
E-Factor (EF) =  $\frac{\text{Mass of the total waste}}{\text{Mass of the crude product}}$ 

Mass of product

#### References

- 1. D. Curzons, D. J. C. Constable, D. N. Mortimer and V. L. Cunningham, *Green Chem.*, 2001, **3**, 1-6.
- 2. C. Jimenez-Gonzalez, D. J. C. Constable and C. S. Ponder, *Chem. Soc. Rev.*, 2012, **41**, 1485-1498.