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SUMMARY

The compendium of RNA-binding proteins (RBPs)
has been greatly expanded by the development
of RNA-interactome capture (RIC). However, it re-
mained unknown if the complement of RBPs
changes in response to environmental perturbations
and whether these rearrangements are important. To
answer these questions, we developed ‘‘compara-
tive RIC’’ and applied it to cells challenged with an
RNA virus called sindbis (SINV). Over 200 RBPs
display differential interaction with RNA upon SINV
infection. These alterations are mainly driven by the
loss of cellular mRNAs and the emergence of viral
RNA. RBPs stimulated by the infection redistribute
to viral replication factories and regulate the capacity
of the virus to infect. For example, ablation of XRN1
causes cells to be refractory to SINV, while GEMIN5
moonlights as a regulator of SINV gene expression.
In summary, RNA availability controls RBP localiza-
tion and function in SINV-infected cells.

INTRODUCTION

RNA-binding proteins (RBPs) assemble with RNA forming ribo-

nucleoproteins (RNPs) that dictate RNA fate (Glisovic et al.,

2008). Historically, most of the known RBPs were characterized

by the presence of well-established RNA-binding domains
196 Molecular Cell 74, 196–211, April 4, 2019 ª 2019 The Authors. P
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(RBDs), which include the RNA recognition motif, K-homology

domain, and others (Lunde et al., 2007). However, stepwise iden-

tification of unconventional RBPs evoked the existence of a

broader universe of protein-RNA interactions than previously

anticipated (Castello et al., 2015). Recently, a system-wide

approach termed RNA-interactome capture (RIC) has greatly

expanded the compendium of RBPs (RBPome) (Hentze et al.,

2018). RIC employs UV crosslinking, oligo(dT) capture under

denaturing conditions, and quantitative proteomics to identify

the complement of proteins interacting with polyadenylated

(poly(A)) RNA in living cells (Baltz et al., 2012; Castello et al.,

2012). RIC uncovered hundreds of unconventional RBPs,

several of which are now known to play crucial roles in cell

biology (Hentze et al., 2018). Recent work has suggested that

cells can adapt to physiological cues through discrete alterations

in the RBPome (Perez-Perri et al., 2018; Sysoev et al., 2016).

However, it remains unknown to what extent the RBPome can

be remodeled, how RBP responses are triggered, and what

are the biological consequences of this plasticity. For example,

RIC reported changes in the composition of the RBPome during

fruit fly embryo development that could be explained by match-

ing alterations in protein abundance (Sysoev et al., 2016).

However, several RBPs did not follow this trend, displaying pro-

tein-level independent changes in RNA binding and raising the

question of whether physiological perturbations can induce

such responsive behavior more widely. To address this possibil-

ity, we developed a ‘‘comparative RIC’’ (cRIC) approach to pro-

file with high accuracy RBP dynamics in cells infected with

sindbis virus (SINV) (Figures 1A and 1B).

Viruses have been fundamental for the discovery and charac-

terization of important steps of cellular RNA metabolism such as
ublished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Application of RIC to HEK293 Cells Infected with SINV

(A) Schematic representation of cRIC.

(B) Schematic representation of SINV and chimeric SINV-mCherry genomes.

(C) Analysis of the proteins synthesized in uninfected and SINV-infected HEK293 cells by [35S]-Met/Cys incorporation for 1 h followed by autoradiography.

(D) Analysis of total and phosphorylated eIF2a by western blotting.

(legend continued on next page)
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RNA splicing, nuclear export, and translation initiation. This is

due to their ability to hijack key cellular pathways by interfering

with the activity of master regulatory proteins (Akusjarvi, 2008;

Carrasco et al., 2018; Castelló et al., 2011; Garcia-Moreno

et al., 2018; Lloyd, 2015). Furthermore, specialized RBPs are

at the frontline of cellular antiviral defenses, detecting path-

ogen-associated molecular patterns (PAMPs) such as double-

stranded RNA (dsRNA) or RNAs with 50 triphosphate ends

(Barbalat et al., 2011; Vladimer et al., 2014). Hence, virus infected

cells represent an optimal scenario to assess the RBPome

rearrangements.

Our data show that the complement of active cellular RBPs

strongly changes in response to SINV infection, mainly due to

deep variations in RNA availability. Importantly, ‘‘altered’’ RBPs

are critical, as their perturbation affects viral fitness or/and the

ability of the cell to counteract the infection. We envision that

these RBPs represent novel targets for host-based antiviral

therapies.

RESULTS AND DISCUSSION

Applying RIC to Cells Infected with SINV
To study the dynamics of cellular RBPs in response to physiolog-

ical cues, we challenged cells with a cytoplasmic RNA virus and

applied RIC. We chose SINV and HEK293 cells as viral and

cellular models, respectively. SINV is a highly tractable virus

that is transmitted from mosquito to vertebrates, causing high

fever, arthralgia, malaise, and rash in humans. SINV replicates

in the cytoplasm of the infected cell and produces three viral

RNAs (Figures 1B and S1A): genomic RNA (gRNA), subgenomic

RNA (sgRNA), and negative-stranded RNA. gRNA is packaged

into the viral capsid and is translated to produce the nonstructural

proteins (NSPs) that form the replication complex. The sgRNA is

synthesized froman internal promoter andencodes the structural

proteins (SPs), which are required to generate the viral particles.

The negative strand serves as a template for replication. Both

gRNA and sgRNA have cap and poly(A) tail.

HEK293 cells are an excellent cellular model to study SINV, as

its infection exhibits all the expected molecular signatures,

including (1) active viral replication (Figures 1C, S1B, and S1C),

(2) host protein synthesis shutoff while viral proteins are

massively produced (Figures 1C and S1B), (3) phosphorylation

of the eukaryotic initiation factor 2 subunit alpha (EIF2a) (Fig-

ure 1D), and (4) formation of cytoplasmic foci enriched in viral

RNA and proteins, commonly known as viral replication factories

(Figures S1C and S1D). SINV infection causes a strong induction

of the antiviral program, including b-interferon (b-IFN), which

reflects the existence of active antiviral sensors and effectors

(Figure S1E). Importantly, SINV achieves infection in a high

proportion of cells (�85%) with relatively low number of viral par-

ticles (MOI) (Figure S1F), reducing cell-to-cell variability and bio-

logical noise.
(E) Silver staining analysis of the ‘‘inputs’’ (i.e., total proteome, left) and eluates (i

(F) qRT-PCR analysis of the eluates of a representative RIC experiment using sp

Error bars represent SE.

hpi, hours post-infection; MW, molecular weight.

See also Figure S1.
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Pilot RIC experiments in uninfected and SINV-infected cells

revealed the isolation of a protein pool matching that previously

observed for human RBPs (Castello et al., 2012), which strongly

differed from the total proteome (Figure 1E). No proteins were

detected in nonirradiated samples, demonstrating the UV de-

pendency of RIC. Infection did not induce major alterations in

the protein pattern observed by silver staining, which corre-

spond to the most abundant housekeeping RBPs (Figure 1E).

However, other less predominant bands displayed substantial

differences, calling for in-depth proteomic analysis. Oligo(dT)

capture led to the isolation of both host and SINV RNAs in in-

fected cells (Figure 1F), which is expected as gRNA and sgRNA

are polyadenylated.

SINV Infection Alters the Activity of Hundreds of RBPs
To allow accurate quantification of RBPs associated with poly(A)

RNA under different physiological conditions, we developed a

cRIC approach by combining the original protocol (Castello

et al., 2013) with stable isotope labeling by amino acids in cell

culture (SILAC) (Figure 1A). In brief, cells were grown in presence

of light, medium, or heavy amino acids with incorporation

efficiency >98%. Labeled cells were infected with SINV and irra-

diated with UV light at 4 and 18 h post-infection (hpi), using un-

infected cells as a control (Figure 1A). These times correlate

with key states in the SINV biological cycle; i.e., at 4 hpi, viral

gene expression coexists with host protein synthesis, while the

proteins synthesized at 18 hpi are almost exclusively viral (Fig-

ure 1C). SILAC labels were permutated among uninfected,

4 hpi, and 18 hpi in the three biological replicates to correct for

possible isotope-dependent effects. After lysis, aliquots were

stored for parallel transcriptomic and whole-proteome analyses.

We combined equal amounts of the lysates from the three con-

ditions prior to the oligo(dT) capture, and eluates were analyzed

by quantitative proteomics (Figure 1A). Protein intensity ratios

between condition pairs were computed, and the significance

of each protein intensity change was estimated using a moder-

ated t test (Figures 2A–2D, S2A, and S2B). We used a semiquan-

titative method for the cases in which an intensity value was

missing (‘‘zero’’) in one of the two conditions leading to ‘‘infinite’’

or zero ratios (Sysoev et al., 2016).

We identified a total of 794 proteins, 91% of which were

already annotated by the Gene Ontology term ‘‘RNA-binding’’

or/and previously reported to be RBPs in eukaryotic cells by

RIC (Hentze et al., 2018). Hence, the protein composition of

our dataset largely resembles that of previously established

RBPomes. Only 17 proteins displayed differential interaction

with RNA at 4 hpi (Figures 2A, 2B, and S2A; Table S1). Fifteen

of these were detected exclusively by the semiquantitative

method due to the lack of intensity value in one condition, reflect-

ing possible ‘‘on-off’’ and ‘‘off-on’’ states (Table S1). By contrast,

236 RBPs displayed altered RNA-binding activities at 18 hpi (Fig-

ures 2C, 2D, and S2B; Table S1). A total of 247 RBPs displayed
.e., RBPome, right) of a representative RIC experiment in SINV-infected cells.

ecific primers against SINV RNAs, actb and gapdh (for normalization) mRNAs.
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Figure 2. Analysis of the RNA-Bound Proteome in SINV-Infected HEK293 Cells by cRIC

(A) Scatterplot showing the intensity ratio between 4 hpi and uninfected conditions of each protein (dots) in the eluates of two biological replicates of cRIC.

(B) Volcano plot showing the log2 fold change and the significance (p value) of each protein between 4 hpi and uninfected conditions using data from three

biological replicates.

(C) As in (A) but for 18 hpi.

(D) As in (B) but for 18 hpi.

(E) Western blotting analysis with specific antibodies of the eluates of a representative RIC experiment in SINV-infected HEK293 cells.

(F) Molecular function (top) and cellular component (bottom) Gene Ontology (GO) term enrichment analysis of the stimulated (salmon) against inhibited (blue)

RBPs (18 hpi).

(G) Representative scatterplot comparing the raw intensity of each protein in the eluates of two cRIC replicates at 18 hpi.

FDR, false discovery rate; n.s., non-significant.

See also Figure S2 and Table S1.
differential binding in infected cells (4 and 18 hpi) and are referred

to here as ‘‘altered RBPs.’’ Interestingly, 181 of these lack clas-

sical RBDs, highlighting the importance of unconventional RBPs

in virus infection.
To validate these results, we applied RIC to cells infected with

SINV but, in this case, the eluateswere analyzed bywestern blot-

ting. We selected nine altered RBPs falling into three statistical

categories; i.e., four with 1% false discovery rate (FDR), four
Molecular Cell 74, 196–211, April 4, 2019 199



with 10% FDR, and one with nonsignificant changes. We

included a positive control (the viral RBP SINV capsid [C]), two

‘‘non-altered’’ RBPs (MOV10 and EPRS), and a negative control

(b-actin [ACTB]). Strikingly, the RNA-binding behavior of each

protein fully matched the proteomic outcome, including those

classified with 10% FDR (Figure 2E). Changes in RNA binding

increased progressively throughout the infection. The proteomic

data assigned a nonsignificant downregulation to HNRNPR

(Table S1); however, the reduced activity of this protein was

apparent by western blotting (Figure 2E), suggesting that our da-

taset may contain false negatives. Nonetheless, the excellent

agreement between the proteomic and western blotting data

supports the high quality of our results.

Determination of the RBP Networks Altered by SINV
Infection
Among the 247 altered RBPs, 133 presented reduced and 114

increased association with RNA, and they are here referred to

as ‘‘inhibited’’ and ‘‘stimulated’’ RBPs, respectively. Most of

the inhibited RBPs were linked to nuclear processes such as

RNA processing and export (Figures 2F and S2C). While cyto-

plasmic viruses are known to hamper nuclear RNA metabolism,

the mechanisms by which this occurs remain poorly understood

(Castelló et al., 2011; Gorchakov et al., 2005; Lloyd, 2015).

Whether the inhibition of nuclear RBPs contributes to this phe-

nomenon should be further investigated. Conversely, a large

proportion of the stimulated RBPs are cytoplasmic and are

linked to protein synthesis, 50 to 30 RNA degradation, RNA trans-

port, protein metabolism, and antiviral response (Figures 2F

and S2D).

Interestingly, several RBPs involved in translation were stimu-

lated at 18 hpi despite the shutoff of host protein synthesis (Fig-

ure 1C), including 9 eukaryotic initiation factors, 3 elongation

factors, and 12 ribosomal proteins. This enhancement is likely

due to the high translational activity of SINV RNAs (Figure 1C)

(Frolov and Schlesinger, 1996). The core components of the

cap-binding complex EIF4A1 and EIF4E were not stimulated

by the infection despite the activation of their protein partner,

EIF4G1 (Table S1). In agreement, EIF4A1 and EIF4E do not

participate in SINV sgRNA translation (Carrasco et al., 2018).

A recent report showed that EIF3D is a cap-binding protein

that controls the translation of specific mRNA pools (Lee et al.,

2016). EIF3D is stimulated by SINV, and thus its potential contri-

bution to SINV RNA translation deserves further consideration.

Importantly, 88 altered RBPs associate with ribosomes in mouse

cells (Table S2) (Simsek et al., 2017). The existence of ‘‘special-

ized ribosomes’’ has been proposed; however, experimental ev-

idence is sparse (Au and Jan, 2014). Our results indicate that the

composition of ribosomes and the scope of proteins associated

with them may strongly differ between infected and uninfected

cells, possibly resulting in differential translational properties.

cRIC uncovered 16 altered RNA helicases (Table S2), 13 of

which were inhibited upon infection. RNA helicases are funda-

mental at virtually every stage of RNA metabolism (Chen and

Shyu, 2014), and their inhibition is expected to have important

consequences in RNA metabolism. Only 3 helicases were stim-

ulated by SINV (DDX1, DHX57, and DHX29) (Figure 2E; Table

S2). DHX29 enhances 48S complex formation on SINV sgRNA
200 Molecular Cell 74, 196–211, April 4, 2019
in reconstituted in vitro systems (Skabkin et al., 2010), and its

stimulation supports its regulatory role in infected cells.

Notably, a defined subset of antiviral RBPs is stimulated upon

SINV infection, including IFI16, IFIT5, TRIM25, TRIM56, and

ZC3HAV1 (ZAP) (Table S1). IFI16 was previously described to

bind dsDNA in cells infected with DNA viruses (Ni et al., 2016).

Our data reveal that IFI16 also binds RNA, and it is activated early

after SINV infection (4 hpi). This agrees with the recently

described ability of IFI16 to restrict RNA virus infection (Thomp-

son et al., 2014). These findings highlight the capacity of cRIC to

identify antiviral factors responding virus infection.

Interestingly, cRIC also identified viral RBPs associated with

poly(A) RNA, including the known viral RBPs (i.e., RNA helicase

NSP2, the RNA polymerase NSP4, and capsid) and, unexpect-

edly, also NSP3 and E2 (Figures 2G and S2E). NSP3 was only

quantified in two replicates (Figure S2E), and thus its interaction

with RNA requires experimental confirmation. The identification

of E2 in cRIC eluates was unexpected. In the viral particle of

the related VEEV, E2 interacts with the capsid protein nearby

cavities that communicate with the inner part of the virion where

the gRNA density resides (Zhang et al., 2011), potentially

enabling transitory or stochastic interactions with viral RNA.

RBP Responses to SINV Are Not Caused by Changes in
Protein Abundance
Changes detected by cRIC can be a consequence of matching

alterations in protein abundance (Sysoev et al., 2016). To assess

this possibility globally, we analyzed the total proteome by quan-

titative proteomics (cRIC inputs; Figure 1A). Importantly, SINV

infection did not cause noticeable changes in host RBP levels,

including 129 RBPs with altered RNA-binding activity (Figures

3A–3C and S3A–S3C; Table S3). In agreement, silver and Coo-

massie staining did not show noticeable protein fluctuations

except for the viral capsid (Figure 1E and 3D). The lack of

changes in protein levels, even for altered RBPs, was confirmed

by western blotting (Figure 3E; Table S3). It is not wholly unex-

pected that RBPs are unaffected in spite of the shutoff of cellular

protein synthesis. Analogous to siRNA experiments, detectable

decreases in protein abundance may require hours or even

days after translational suppression, especially for relatively sta-

ble proteins.

The Transcriptome Undergoes Pervasive Changes in
SINV-Infected Cells
Mechanistically, the activity of host RBPs can also be dictated by

changes in the availability of their target RNAs. To test this pos-

sibility, we analyzed by RNA sequencing (RNA-seq) the total

RNA isolated from cRIC input samples (Figure 1A). 4 h of SINV

infection had a relatively minor impact on the host transcriptome

(Figure 3F). By contrast, deep changes were observed at 18 hpi,

with 12,372 differentially expressed RNAs (p < 0.1; Figures 3G

and S3E–S3G). Only 1,448 RNAs were upregulated, and these

were enriched in the Gene Ontology (GO) term ‘‘antiviral

response.’’ By contrast, 10,924 RNAs were downregulated,

including many housekeeping genes (Table S4).

To validate these results by an orthogonal approach, we

used qRT-PCR focusing on 20 mRNAs randomly chosen

across the whole variation range. Importantly, data obtained
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Figure 3. Proteomic and Transcriptomic Analyses of Whole SINV-Infected Cell Lysates

(A) Scatterplot comparing the intensity ratio between 4 hpi and uninfected conditions of each protein (dots) in the inputs (total proteome) of two biological

replicates of cRIC. Black dots represent proteins significantly enriched in either 4 hpi or uninfected conditions in Figure 2A.

(B) As in (A) but for 18 hpi.

(C) Scatterplot comparing the intensity of each protein in the inputs of two cRIC replicates at 18 hpi.

(D) Representative Coomassie blue staining of cells infected with SINV.

(E) Western blotting analysis of lysates of cells infected with SINV (see Table S3 for quantification).

(F) MA plot comparing the read coverage and the log2 fold change between 4 hpi and uninfected cells of each gene detected in the RNA sequencing (RNA-seq)

experiment. Red dots represent RNAs enriched with p < 0.1.

(G) As in (F) but for 18 hpi.

(H) Correlation of the RNA-seq and RT-qPCR data by plotting the log2 fold change for randomly selected transcripts by the twomethods. Error bars represent SE

of three independent experiments.

See also Figure S3 and Tables S3 and S4.
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Figure 4. Host RBP Localization in SINV-Infected Cells

(A) RNA-seq read coverage of the positive and negative RNA strand of SINV. Note that the y axes in both plots have different scales.

(B) Localization analysis of SINV RNA and capsid protein in infected HeLa cells at 18 hpi by combined in situ hybridization and immunofluorescence.

(legend continued on next page)
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with both techniques strongly correlated (R2 = 0.82) (Figure 3H),

confirming the RNA-seq results. The decreased availability of

cellular RNA could explain why 133 RBPs display reduced

association with poly(A) RNA in infected cells (Table S1).

In addition, inhibited RBPs could exchange poly(A) mRNA

for non-poly(A) RNAs, which are not captured by the

oligo(dT) beads.

Stimulated RBPs Are Relocated to the Viral Replication
Factories
SINV produces two overlapping mRNAs, gRNA and sgRNA (Fig-

ures 1B and S1A), and, consequently, the read coverage was

substantially higher in the last third of the gRNA, where both tran-

scripts overlap (Figure 4A). Both sgRNA and gRNA have poly(A)

and thus should contribute to the cRIC results (Figures 4A and

S4A). Conversely, the negative strand has low abundance and

lacks a poly(A) tail. Importantly, SINV RNAs become the most

abundant RNA species, after rRNA, at 18 hpi (Figures 3G and

S3G). The emergence of such abundant RNA substrates likely in-

duces cellular RBPs to exchange the ‘‘declining’’ cellular mRNAs

for ‘‘emerging’’ viral RNAs, driving the remodeling of the

RBPome. Alternatively, ‘‘dormant’’ RBPs could be ‘‘awakened’’

by the recognition of signatures within the viral RNA, analogous

to known antiviral RBPs (Vladimer et al., 2014). We thus hypoth-

esized that RBPs displaying enhanced binding should co-

localize with viral RNA.

SINV RNA and capsid accumulate in cytoplasmic foci that

correspond to the viral factories (Figures S1D, 4B, and S4A).

To test whether stimulated RBPs relocate to these foci, we

generated 26 tetracycline-inducible cell lines expressing host

RBPs fused to EGFP. These included 16 lines expressing stimu-

lated RBPs and 8 expressing inhibited RBPs. The non-altered

RBP, MOV10, and unfused EGFP were used as controls. Strik-

ingly, 9 out of the 16 stimulated RBPs (56%) accumulated at viral

factories demarcated by SINV C (Figures 4C, 4D, and S4B). Five

additional stimulated RBPs (29%) showed diffuse localization in

cytoplasm but were also present at the capsid-containing

foci (Figure S4B). In situ hybridization analysis confirmed that

SINV RNA co-localized with a representative stimulated RBP,

GEMIN5, supporting the potential interplay between stimulated

RBPs and viral RNA (Figure S4C). Among the stimulated RBPs,

only NGDN, HNRNPA1 and themitochondrial translation elonga-

tion factor TUFM (3 out of 16; 17%) were absent in the viral fac-

tories, which suggests that their function is restricted to host

RNAs. HNRNPA1 was shown to bind SINV RNA (LaPointe

et al., 2018; Lin et al., 2009), while in our analysis, it strictly dis-

plays nuclear localization (Figure S4B). We cannot rule out that

a small pool of HNRNPA1 is present in the viral factories at unde-

tectable levels or, alternatively, that the EGFP tag is affecting

HNRNPA1 localization.

In contrast to stimulated RBPs, only one (out of 8; 12.5%) in-

hibited RBP was enriched in the viral factories (Figures 4D and
(C) Localization by immunofluorescence of the EGFP-fused RBPs and SINV C. G

(white line) are plotted in (B) and (C).

(D) Summary of the observed localization of the 26 proteins tested in (C) and Fig

Scale bars represent 10 mm. AFU, arbitrary fluorescence units.

See also Figure S4.
S4B). This protein, called UPF1, is a helicase involved in the

nonsense-mediated decay pathway and is known to inhibit

infection of alphaviruses (Balistreri et al., 2014). Conversely, 5

out of 8 (62.5%) virus-inhibited RBPs are nuclear and remained

nuclear after infection (Figures 4C, 4D, and S4B). These results

indicate that, with exceptions, inhibited RBPs do not redistribute

to the viral factories.

The Exonuclease XRN1 Is Essential for SINV Infection
The loss of cellular mRNAs is likely contributing to the remod-

eling of the RBPome by diminishing substrate availability. How-

ever, it is unclear how this phenomenon is triggered and

whether it benefits or hampers viral infection. Changes in

RNA levels can globally be a consequence of reduced tran-

scription and/or increased RNA degradation. To explore which

of these pathways contribute the most to RNA loss in SINV-in-

fected cells, we compared the fold change of each mRNA in

our dataset to the rate of synthesis, processing, and degrada-

tion of each individual transcript (Mukherjee et al., 2017). Tran-

scription could explain most of the differences at 4 hpi,

whereas RNA degradation accounted for more than 50% of

the explained variance at 18 hpi (Figures 5A and S5A). We

reasoned that this phenomenon can be a combined effect of

the activation of the 50 to 30 RNA degradation machinery, as

the exonuclease XRN1 and its interactor, PATL1, are stimulated

at 18 hpi (Table S1), and a reduced transcriptional activity

(Gorchakov et al., 2005).

XRN1 is broadly considered as an antiviral factor that erases

viral RNA (Molleston and Cherry, 2017). RNA pseudoknots pre-

sent in several viral RNAs are able to stall XRN1, leading to the

production of sgRNAs (Chapman et al., 2014; Pijlman et al.,

2008). In dengue virus (DENV), XRN1-derived sgRNAs can

benefit infection by interfering with the antiviral response (Mano-

karan et al., 2015).

In SINV-infected cells, XRN1 and MOV10 foci (corresponding

to P-bodies) are juxtaposed to the viral replication factories, sug-

gesting that the exonuclease could attack viral RNA (Figures 4C,

S4C, and 5B). To our surprise, XRN1 knockout (KO) cells were

refractory to SINV infection, while partial KO led to an intermedi-

ate phenotype (Figure 5C). These results suggest that XRN1 ac-

tivity is instead essential for SINV infection. XRN1 KO cells did

not exhibit any defect in cell morphology, proliferation rate, or

viability, and they supported efficiently the replication of HIV-1

(Figures 5D and S5C–S5F). These results indicate that XRN1

KO lines are not metabolically deficient or subjected to a heavy

stress incompatible with virus infection.

To determine if XRN1 activity involves the generation of

RNA degradation products, we analyzed our RNA-seq data.

However, we did not found any increase in read coverage

compatible with XRN1-derived degradation products, suggest-

ing that XRN1 role in SINV infection differs from that described

for DENV.
reen and red fluorescence intensity profiles in a representative 5-mm section

ure S4B.
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Figure 5. The Exonuclease XRN1 in Cells Infected with SINV

(A) Contribution of transcription, processing, and degradation to the transcriptomic changes induced by SINV. We compared our RNA-seq data to available data

estimating these parameters (Mukherjee et al., 2017). ANOVA was used to predict the contribution of each RNA biological process to the variance in RNA levels.

(B) Immunolocalization of XRN1 and SINV C. Green and red fluorescence profiles for regions of interest (ROI) are displayed.

(C) Top: mCherry fluorescence in XRN1 KO and control cells infected with SINV-mCherry measured every 15 min in a plate reader with atmospheric control

(5% CO2 and 37�C). RFU, relative fluorescence units. Western blot of XRN1 and SINV C (bottom).

(D) Infection fitness of HIV-1Nef-mCherry and HIV-1Gag-mCherry pseudotyped viruses in XRN1 KO cells. mCherry expression was measured as in (C).

mCherry fluorescence is represented as mean ± SD of three independent infections in each of the three biological replicates (n = 9). ***p < 0.001; **p < 0.01;

*p < 0.05.

See also Figure S5.
RBPome Responses Are Biologically Important
To determine to a broader extent whether RBP responses are

functionally important, we sought to study the impact of altered

RBPs on virus infection. The ligase RTCB, together with DDX1,

FAM98A, and other RBPs, forms the tRNA ligase complex

(TRLC) (Popow et al., 2011). RTCB and DDX1 were stimulated

by SINV (Table S1), and these and FAM98A accumulated in

the viral factories (Figures 4C and S4B). TRLC mediates the un-
204 Molecular Cell 74, 196–211, April 4, 2019
usual ligation of 30-phosphate or 20,30-cyclic phosphate to a

50-hydroxyl and these molecule ends are generated by a limited

repertoire of cellular endonucleases, which include the endo-

plasmic reticulum resident protein IRE1a (Popow et al., 2011).

SINV has been proposed to cause unfolded protein response

(Rathore et al., 2013), which is compatible with the activation

of IRE1a and TRLC in infected cells (Jurkin et al., 2014). Notably,

inhibition of IRE1awith 4m8C strongly reduced viral fitness in low,



non-cytotoxic concentrations (Figures 6A and S6A), suggesting

that IRE1a and TRLC are positively contributing to SINV

infection.

PPIA (also cyclophilin A) has also been classified as an RBP by

RIC studies (Hentze et al., 2018). It switches proline conforma-

tion-modulating protein activity, which plays a crucial role in hep-

atitis C virus infection (Rupp and Bartenschlager, 2014). PPIA is

also important for the infection of other viruses, such as HIV-1

(Li et al., 2007). PPIA RNA-binding activity is stimulated by

SINV infection and is recruited to the viral factories (Figures 2E

and S4B). Interestingly, SINV-mCherry infection is delayed by

PPIA loss of function (KO and inhibition; Figures 6B, S6A, and

S6B). Overexpression had no effect in SINV-mCherry fitness

(Figure 6B, bottom).

The heat shock chaperone HSP90AB1 is stimulated by SINV

(Table S1). HSP90AB1 has been classified as an RBP by RIC

(Hentze et al., 2018), and its RBD has been located in a discrete

region at its C-terminal domain (Figure S6C) (Castello et al.,

2016). Chaperones from the HSP90 family are important in the

remodeling of RNPs and are linked to virus infection (Geller

et al., 2012; Iwasaki et al., 2010). Notably, SINV-mCherry infec-

tion was significantly delayed in HSP90AB1 KO cells, even

though four homologs of this protein exist (Figures 6C and

S6B). Moreover, the pro-viral activity of HSP90AB1 was

confirmed by treatment with specific inhibitors (Figures 6C and

S6A). Again, overexpression had no effect in SINV-mCherry

fitness (Figure 6C). The implication of PPIA and HSP90 in the

biological cycle of a variety of unrelated viruses highlights these

proteins as master regulators of infection (Garcia-Moreno

et al., 2018).

PA2G4 RNA-binding activity was also enhanced by SINV

(Table S1). It associates with ribosomes (Table S2) (Simsek

et al., 2017) and regulates the cap-independent translation

of foot-and-mouth disease virus (FMDV) RNA (Monie et al.,

2007). Treatment with its specific inhibitor WS6 hampered

SINV-mCherry fitness (Figures 6D and S6A), suggesting that

this protein promotes SINV infection. Overexpression did not

cause any effect, as with previous examples (Figure 6D).

The possibility that PA2G4 contributes to the non-canonical,

cap-dependent translation of SINV RNAs should be further

investigated.

SRPK1 is a kinase that phosphorylates the RS repeats pre-

sent in SR proteins, which are involved in alternative splicing

regulation, RNA export, and stability (Howard and Sanford,

2015). SINV infection stimulates SRPK1 RNA-binding activity

(Table S1) and causes its relocation to viral replication factories

(Figure 4C). Inhibition of SRPK1 hampers SINV and HIV-1

infection (Fukuhara et al., 2006), and we show here that

overexpression of SRPK1 enhances SINV fitness (Figure 6E).

This suggests that SRPK1 positively contributes to SINV

infection. Future work should determine if SRPK1 kinase

activity is involved in infection, and if so, which proteins it

phosphorylates.

We tested the effects of overexpression of nine additional

stimulated or inhibited RBPs fused to EGFP (Figures S6D and

S6E). Phenotypes in viral fitness ranged from nonexistent

(ALDOA, XRCC6, RPS10, MOV10, NGDN, and CSTF2) to mild

(RPS27, NONO, and DKC1). The lack of phenotypic effects in
overexpression experiments does not rule out that the protein

actually participates in SINV infection (see above). Nevertheless,

RBPs whose overexpression affects infection fitness have po-

tential as regulatory proteins.

The family of tripartite-motif-containing (TRIM) proteins

comprises more than 75 members endowed with E3 ubiquitin

ligase activity, and few of them have been classified as RBPs

by RIC (Hentze et al., 2018). Notably, SINV infection enhanced

TRIM25 and TRIM56 interaction with RNA (Table S1), corre-

lating with their redistribution to viral replication factories (Fig-

ure 4C). TRIM25 was proposed to interact with DENV RNA

(Manokaran et al., 2015); however, this analysis employed

native immunoprecipitation (IP) that cannot distinguish be-

tween direct and indirect protein-RNA interactions. To test if

TRIM25 interacts directly with SINV RNA, we immunoprecipi-

tated under stringent conditions TRIM25-EGFP from SINV-

infected cells irradiated with UV light. Co-precipitated RNA

was analyzed by RT-PCR using specific primers against

SINV RNA. A band with the expected size was detected in

TRIM25-EGFP IPs, but not in the negative controls (Figure 7A),

confirming that TRIM25 interacts with SINV RNA directly.

TRIM25 interaction with RNA enhances its E3 ubiquitin ligase

activity (Choudhury et al., 2017). TRIM25-EGFP overexpres-

sion inhibited SINV-mCherry infection (Figure 7B), which

agrees with its ability to activate the key antiviral factors

RIG-I and ZC3HAV1 through ubiquitination (Gack et al.,

2007; Li et al., 2017). It is known that TRIM56 binds double-

stranded DNA. However, it enhances the antiviral response

in cells infected with both DNA and RNA viruses (Seo et al.,

2018; Tsuchida et al., 2010). cRIC thus complements these

results, revealing that TRIM56 interacts directly with RNA

(Table S1). As with TRIM25, overexpression of TRIM56-

EGFP reduced SINV fitness (Figure 7B), confirming its capac-

ity to restrict the infection of the RNA virus, SINV.

Importantly, 160 out of the 247 altered RBPs lack previous

connections to virus infection (Garcia-Moreno et al., 2018).

Hence, our dataset likely contains numerous pro- and antiviral

RBPs yet to be uncovered.

GEMIN5 Binds to the 50 UTR of SINV RNAs and Regulates
Viral Protein Expression
GEMIN5 is a member of the survival motor neuron (SMN) com-

plex, which mediates the assembly of the small nuclear RNPs

(snRNPs) (Gubitz et al., 2002). It is strongly stimulated by SINV

infection and redistributed to the viral factories co-localizing

with SINV RNA (Figures 2E, 4C, and S4C). To our surprise,

none of the known molecular partners of GEMIN5 (i.e., GEMIN

and SMN proteins) were stimulated by SINV (Table S1), implying

a GEMIN5-specific response that agrees with the existence of a

free pool of GEMIN5 (Battle et al., 2007). In SINV-infected cells,

overexpression of GEMIN5-EGFP caused amoderate but signif-

icant delay of mCherry production and strongly inhibited capsid

synthesis (Figure 7B). These results align well with the described

role of GEMIN5 in translational control (Francisco-Velilla et al.,

2018; Piñeiro et al., 2015).

Protein-protein interaction analysis of GEMIN5-EGFP re-

vealed that, in our experimental settings, it interacts with the

ribosome, especially with the 60S subunit (Figure 7C, pink
Molecular Cell 74, 196–211, April 4, 2019 205
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Figure 6. Impact of Stimulated RBPs in SINV Infection

(A) Expression of mCherry in HEK293 cells infected with SINV-mCherry and treated or not with the IRE1a inhibitor 4m8C. Red fluorescence was measured as in

Figure 5C.

(B) As in (A) but with PPIA KO cells (top), the PPIA inhibitor cyclosporine A (CysA) (middle), and cells overexpressing PPIA-EGFP (bottom). KO and overexpression

of PPIA and SINV C accumulation (18 hpi) were assessed by western blotting.

(C) mCherry fluorescence in HSP90AB1 KO cells (top), cells treated with ganetespib or geldamycin (middle panels), or cells overexpressing HSP90AB1-EGFP

(bottom) and infected with SINV-mCherry. KO and overexpression of HSP90AB1 and SINV C accumulation (18 hpi) were assessed by western blotting.

(D) As in (A) but using the PA2G4 inhibitor WS6 (top) and cells overexpressing PA2G4-eGFP (midde). Right: western blots against SINV C at 18 hpi.

(E) As in (A) but with cells overexpressing SRPK1 (top). Overexpression of SRPK1 was assessed by western blotting. Bottom: western blots of SINV C in these

cells at 18 hpi.

mCherry fluorescence is shown as the mean ± SD of three independent infections in each of the three biological replicates (n = 9). ***p < 0.001; **p < 0.01;

*p < 0.05. SINV-mChe, SINV-mCherry; n.s., non-significant.

See also Figure S6.
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dots, left; Figures S7C and S7D; Table S5). This interaction is

sustained in SINV-infected cells (Figure 7C, pink dots, middle

and right). These results are in agreement with previous studies

showing that GEMIN5 impacts protein synthesis at the transla-

tion elongation step through its direct interaction with the 60S ri-

bosomal subunit and, in particular, with RPL3 and RPL4, which

are also enriched in our IPs (Table S5) (Francisco-Velilla et al.,

2016). We noticed that GEMIN5 is by far the most enriched

protein in our IPs and that its Intensity Based Absolute Quantifi-

cation (iBAQ) score is significantly higher than that of EGFP, sug-

gesting that GEMIN5-EGFP interacts with the endogenous

GEMIN5, likely forming oligomers, as previously described (Xu

et al., 2016). Moreover, our data showed that GEMIN5 interacts

with various viral proteins, chiefly with NSP1, NSP2, NSP3 and

SINV C (Figure 7C, middle). The implications of these interac-

tions in the modulation of GEMIN5 function deserve future

considerations.

GEMIN5 is cleaved by the L protease of FMDV, and resulting

C-terminal moiety enhances internal ribosome entry site (IRES)-

driven translation (Piñeiro et al., 2013). However, GEMIN5 is not

cleaved in SINV-infected cells (Figure 3E), and SINV RNAs lack

an IRES and are capped (Carrasco et al., 2018). To test

whether GEMIN5 binds SINV RNA, we performed an IP and

RT-PCR analysis as outlined above. A PCR product was ampli-

fied in GEMIN5-EGFP eluates (Figure 7A), which agrees with

the striking co-localization of SINV RNA and GEMIN5 (Fig-

ure S4C). To get insights into how GEMIN5 recognizes SINV

RNAs, we employed single-nucleotide-resolution crosslinking

and immunoprecipitation followed by sequencing (iCLIP) (König

et al., 2010). Interestingly, the footprints with highest coverage

mapped to the 50 ends of the gRNA and sgRNA (Figures 7D and

S7E–S7G). These reads often presented an additional guano-

sine at the 50 end (Figure S7H), likely reflecting binding to the

cap structure. These results support previous data showing

that GEMIN5 is captured in cap-Sepharose beads (Bradrick

and Gromeier, 2009). Additional peaks overlap with the down-

stream loop (DLP), which is a hairpin structure that stimulates

the translation of the sgRNA (Frolov and Schlesinger, 1996).

Interaction with the cap, 50 UTR, and DLP of viral RNAs aligns

well with the proposed role as translational regulator and the

observed inhibition of capsid expression. Our data support

the model in which GEMIN5 recognizes the 50 end of the
Figure 7. Effects of RBPs with Antiviral Potential in SINV Infection
(A) UV crosslinking and immunoprecipitation of TRIM25-EGFP, GEMIN5-EGFP, X

presence of SINV RNA in eluates and inputs was detected by RT-PCR using spe

(B) Relative mCherry fluorescence produced in cells overexpressing TRIM25-EGF

with SINV-mCherry (measured as in Figure 5C). mCherry expression is represe

biological replicates (n = 9). Overexpression was assessed by western blotting. Bo

of C relative to control cells. ***p < 0.001; **p < 0.01.

(C) Volcano plots comparing the intensity of proteins in GEMIN5-EGFP versus u

resents a protein. Dark green dots are proteins enriched with p < 0.01, blue dots a

Pink dots represent ribosomal proteins. Right: a volcano plot comparing the inte

(D) iCLIP analysis of GEMIN5-binding sites on SINV RNA. Top: coverage pileup of

sliding mean of five replicates after GFP background subtraction. Each positio

annotation. Bottom: the top track shows iCLIP coverage but as a heatmap represe

into five groups according to strength of binding. The bottom heatmap shows the

independently for each replicate.

See also Figure S7 and Table S5.
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gRNA and sgRNA and prevents their translation by interfering

with ribosomal function.

Outlook
We show here that SINV infection induces changes in the active

RBPome that affects both well-established and unconventional

RBPs. Mechanistically, the RBPome rearrangement can be ex-

plained by the loss of cellular RNA and the emergence of the

highly abundant viral RNA. Supporting this conclusion, we

observed that most of the RBPs with enhanced activity

accumulate in the viral factories together with the viral RNA.

However, this RNA-driven remodeling of the RBPome is

not incompatible with complementary ‘‘fine-tuning’’ regulatory

mechanisms affecting RBPs on an individual basis. For example,

it is known that virus infection triggers signaling pathways

involving kinases (Figure 1D), E3 ubiquitin ligases, prolyl cis/trans

isomerases, and chaperones (Carrasco et al., 2018; Gack et al.,

2007; Li et al., 2017). Here, we show that these protein families

are represented among the stimulated RBPs, including SRPK1,

TRIM25, TRIM56, PPIA, and HSP90AB1. Hence, it is plausible

that post-translational control also contributes to RBP regulation

in SINV-infected cells. Moreover, interactions with viral proteins

can regulate RBP function (Fros et al., 2012). We show that

GEMIN5 interacts with several viral proteins, suggesting that

this regulatory mechanism may apply to altered RBPs more

broadly (Figure 7C).

Importantly, changes in the RBPome are biologically impor-

tant, as perturbation of the altered RBPs strongly affects

SINV infection. Therefore, every protein reported here to

respond to SINV infection has potential as anti- or pro-viral fac-

tor, highlighting cellular RBPs as promising targets for antiviral

therapies.

Some of the outstanding questions derived from this work

include whether the distinct composition of ribosomes in in-

fected cells affects their translational properties, why the lack

of the exonuclease XRN1 makes the cells refractory to SINV,

what triggers the degradation of host RNA, and why the

transcripts induced by the antiviral response are resistant to

degradation. Moreover, GEMIN5 emerges as a highly respon-

sive RBP that impairs SINV infection. The exact mechanisms

underpinning GEMIN5 effects in translation require further

investigation.
RCC6-EGFP, or unfused EGFP in cells infected or not with SINV for 18 h. The

cific primers against SINV RNAs.

P (top left), TRIM56-eGFP (top middle), GEMIN5-eGFP (top right), and infected

nted as the mean ± SD of three independent infections in each of the three

ttom: western blots of SINV C at 18 hpi, indicating below the average inhibition

nfused EGFP IPs in uninfected (left) and infected cells (middle); every dot rep-

re those enriched with p < 0.1, and gray dots represent nonenriched proteins.

nsity of proteins in GEMIN5 IPs in infected versus uninfected cells.

50 first base of unique molecules mapping to the SINV genome, shown as 20-nt

n is given relative to total SINV count (RPM). Middle: key features of SINV

ntation. The middle heatmap shows GEMIN5 binding sites along SINV divided

number of replicates supporting each binding site when binding sites are called



Finally, cRIC has been applied here to cells infected with SINV.

However, it can now be extended to other viruses or physiolog-

ical cues to improve our understanding of RBP regulation and its

biological importance.
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alphavirus Venezuelan equine encephalitis virus. EMBO J. 30, 3854–3863.
Molecular Cell 74, 196–211, April 4, 2019 211

http://refhub.elsevier.com/S1097-2765(19)30037-1/sref54
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref54
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref54
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref54
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref54
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref54
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref55
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref55
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref55
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref56
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref56
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref56
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref56
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref57
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref57
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref58
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref58
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref58
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref58
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref59
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref59
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref59
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref60
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref60
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref60
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref61
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref61
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref61
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref61
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref61
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref62
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref62
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref62
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref63
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref63
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref64
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref64
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref64
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref65
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref65
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref65
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref66
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref66
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref66
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref66
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref67
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref67
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref67
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref68
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref68
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref68
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref69
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref69
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref69
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref70
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref70
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref70
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref70
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref71
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref71
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref71
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref71
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref72
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref72
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref72
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref72
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref72
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref73
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref73
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref73
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref74
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref74
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref74
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref75
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref75
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref76
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref76
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref77
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref77
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref77
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref77
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref78
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref78
http://refhub.elsevier.com/S1097-2765(19)30037-1/sref78


STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-SINV C (304 and 306) Laboratory of L. Carrasco N/A

b-ACTIN Sigma Cat# A1978; RRID: AB_476692

ALDOA Cusabio Cat# PA00015A0Rb

DDX1 Bethyl Cat# A300-521Q; RRID: AB_451046;

Cat# A300-520; RRID: AB_451045

DDX50 Cusabio Cat# PA861080LA01HU

EIF2a Santa Cruz Biotechnology Cat# sc-11386; RRID: AB_640075

Phospho-EIF2a (serine 51) Cell Signaling Technology Cat# 9721; RRID: AB_330951

EIF3G Cusabio Cat# PA03099A0Rb

EIF4G1 Nt - 981 Laboratory of L. Carrasco N/A

EIF4G1 Ct - 987 Laboratory of L. Carrasco N/A

ENO1 Cusabio Cat# PA02395A0Rb

EPRS Abcam Cat# ab31531; RRID: AB_880047

GEMIN5 Abcam Cat# ab201691

GFP ChromoTek GmbH Cat# 3h9-100; RRID: AB_10773374

HNRNP A1 Cusabio Cat# PA010600HA01HU

HNRNP Q/R Cell Signaling Cat# 8588; RRID: AB_10897511

HSP90AB1 Cusabio Cat# PA00109A0Rb

IFIT5 Cusabio Cat# PA011023LA01HU

IRE1 Abcam Cat# ab37073; RRID: AB_775780

MOV10 Cusabio Cat# PA862068LA01HU

NGDN Cambridge Bioscience Cat# 16524-1-AP; RRID: AB_2152270

PA2G4 Cusabio Cat# PA891987LA01HU

PPIA Cusabio Cat# PA07814A0Rb

PTBP1 Sigma Cat# WH0005725M1; RRID: AB_1843067

RTCB Cusabio Cat# PA897546LA01HU

RPS10 Cusabio Cat# PA02565A0Rb

RPS27 Sigma Aldrich Cat# SAB4300952

SRPK1 Sino Biological Inc Cat# 12249-MM03

TRIM25 Abcam Cat# ab167154; RRID: AB_2721902

TRIM56 Abcam Cat# ab154862

XRCC5 Cusabio Cat# PA026233LA01HU

XRCC6 Cusabio Cat# PA01617A0Rb

XRN1 Santa Cruz Cat# sc-165985; RRID: AB_2304774

Donkey anti-Mouse IgG (H+L) Highly Cross-Adsorbed

Secondary Antibody, Alexa Fluor 488

ThermoFisher Scientific Cat# A-21202; RRID: AB_141607

Donkey anti-Rabbit IgG (H+L) Highly Cross-Adsorbed

Secondary Antibody, Alexa Fluor 488

ThermoFisher Scientific Cat# A-21206; RRID: AB_141708

Donkey anti-Rabbit IgG (H+L) Highly Cross-Adsorbed

Secondary Antibody, Alexa Fluor 594

ThermoFisher Scientific Cat# A-21207; RRID: AB_141637

Bacterial and Virus Strains

pT7-SVmCherry This paper N/A

pT7-SVwt Laboratory of L. Carrasco

(Sanz and Carrasco, 2001)

N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pNL4-3.R-E- Nef-mCherry This paper N/A

pNL4-3.R-E- Gag-mCherry This paper N/A

Chemicals, Peptides, and Recombinant Proteins

L-Arginine HCL 13C, 15N SILANTES GmbH Cat# 201604102

L-Arginine HCL 13C SILANTES GmbH Cat# 201204102

L-Lysine HCL 13C, 15N SILANTES GmbH Cat# 211604102

4.4.5.5-D4-L-Lysine SILANTES GmbH Cat# 211104113

Cyclosporin A (CAS N� 59865-13-3) Insight Biotechnology Ltd Cat# sc-3503

Ganetespib (CAS N� 888216-25-9) Cambridge Bioscience Ltd Cat# 19432

Geldanamycin (CAS N� 30562-34-6) Cambridge Bioscience Ltd Cat# SM55-2

IRE1 Inhibitor III, 4m8C (CAS N� 14003-96-4) Merck Chemicals Ltd Cat# 412512

WS6 (CAS N� 1421227-53-3) Cambridge Bioscience Ltd Cat# 17672

Critical Commercial Assays

CellTiter 96 AQueous One Solution Cell Proliferation

Assay (MTS)

Promega Cat# G3580

Deposited Data

Proteome Xchange via PRIDE Deutsch et al., 2017 PXD009789

RNA-seq via GEO GEO: GSE125182

iCLIP via GEO GEO: GSE125182

Experimental Models: Cell Lines

HEK293 ECACC Cat# 85120602 RRID:CVCL_0045

HeLa Kyoto ATCC Cat# CCL-2 RRID:CVCL_1922

Flp-In-T-Rex-293 Thermo Fisher Scientific Cat#R78007 RRID:CVCL_U427

Flp-In-T-Rex-HeLa Laboratory of M. Gromeier N/A

BHK-21 ECACC Cat# 85011433 RRID:CVCL_1915

Oligonucleotides

CRISPR guide RNA targeting XRN1: AAUGCGAAACA

ACACCUCCGUUUUAGAGCUAUGCUGUUUUG

Sigma-Aldrich Co Ltd HS0000076809

TRIM25 left sgRNA: CCACGTTGCACAGCACCGTGTTC This paper N/A

TRIM25 right sgRNA: CTGCGGTCGCGCCTGGTAGACGG This paper N/A

Primers for cloning, see Table S6 This paper N/A

Primers for RT-PCR, see Table S6 This paper N/A

Recombinant DNA

CRISPR/CAS9 plasmid: PX459 HSP90AB1_out_of_

frame_67

This paper N/A

guide sequence: CTCACACCTTGACTGCCAAG

CRISPR/CAS9 plasmid: PX459 PPIA_out_of_frame_57 This paper N/A

guide sequence: GCCCGACCTCAAAGGAGACG

pOG44 ThermoFisher Scientific Cat# V600520

pcDNA5/FRT/TO ThermoFisher Scientific Cat# V652020

pNL4-3.Luc.R-E- NIBSC – Centre for AIDS

Reagents

Cat# 2128

pNL4-3 NIBSC – Centre for AIDS

Reagents

Cat# 2006

pHEF-VSVG NIH AIDS Reagent Program Cat# 4693

Software and Algorithms

REST Pfaffl, 2001

STRING Szklarczyk et al., 2017 https://string-db.org/

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

STAR Dobin et al., 2013 https://github.com/alexdobin/STAR

Subread FeatureCount Liao et al., 2013 http://bioinf.wehi.edu.au/subread-package/

SAMtools Li et al., 2009 http://samtools.sourceforge.net/

RBDmap Castello et al., 2016 https://www-huber.embl.de/users/

befische/RBDmap/

DSseq2 Love et al., 2014 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

Pheatmap Kolde, 2015 https://cran.r-project.org/web/

packages/pheatmap/index.html

iCount https://github.com/tomazc/iCount

biomaRt Durinck et al., 2009 https://bioconductor.org/packages/

release/bioc/html/biomaRt.html

ggplot2 Wickham, 2009 https://cran.r-project.org/web/

packages/ggplot2/index.html

MaxQuant (version 1.5.0.35) Cox and Mann, 2008 https://www.maxquant.org/

Perseus Tyanova et al., 2016 http://maxquant.net/perseus/

hom.Hs.inp.db Carlson and Pages, 2015 http://bioconductor.org/packages/

release/data/annotation/html/

hom.Hs.inp.db.html

mRNAinteractomeHeLa Castello et al., 2012 http://www.hentze.embl.de/

public/RBDmap/

Semiquantitative test for protein differential analysis This paper N/A

limma (for moderated t test) Smyth, 2004 https://bioconductor.org/packages/

release/bioc/html/limma.html

ANOVA https://www.itl.nist.gov/div898/

handbook/eda/section3/eda355.htm
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Alfredo

Castello (alfredo.castellopalomares@bioch.ox.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture
We used here human embryo kidney 293 cells (HEK293, ECACC #85120602), HeLa (ATCC cat. no. CCL-2) and baby hamster kidney

cells (BHK-21, clone 13, ECACC #85011433); HEK293 Flp-In TREx are commercially available (Thermo Fisher Scientific, #R78007),

while HeLa Flp-In TREx are a generous gift from Dr. Matthias Gromeier (Duke University Medical Center, Durham, NC, USA). All cells

were cultured in DMEM with 10% FBS and 1x penicillin/streptomycin (Sigma Aldrich, #P4458) at 37�C with 5% CO2. The media of

Flp-In TREx (Tet-on) cells was supplemented with 15 mg/ml Blasticidin S and 100 mg/ml Zeocin. To generate RBP-eGFP-expressing

cell lines, cells were transfected with pOG44 and the corresponding pcDNA5-FTR-TO plasmid (Table S6) using X-tremeGENE 9 DNA

transfection reagent following manufacturer’s recommendations (Sigma-Aldrich, #6365787001). For the selection of inducible cell

lines, Zeocin was replaced by 150 mg/ml Hygromycin B as indicated in the manufacturer’s manual (Thermo Fisher Scientific). Protein

induction was achieved by supplementation of the medium with 1 mg/ml doxycycline. To generate KO cells, we transfected HEK293

using TRANSIT-CRISPR (Sigma-Aldrich) with SygRNAs assembled with Cas9 (Sigma-Aldrich, #CAS9PROT-50UG) and tracrRNA

(Sigma-Aldrich, #TRACRRNA05N-5NMOL), followed by cell serial dilution and selection of KO cell clones. Alternatively, we gener-

ated px459 derived plasmids including sequences targeting the genes of interest (pX459 was a gift from Feng Zhang; Addgene

plasmid #62988). These plasmids were transiently transfected into HEK293 cells using X-tremeGENE 9. Cells expressing the

construct were selected with 1 mg/ml puromycine for 96 h, followed by cell serial dilution to obtain individual clones. To generate

TRIM25 KO cells, HEK293 were transfected with 200 ng GeneArt CRISPR nucleasemRNA (Thermo Fisher Scientific, #A29378) along

with 50 ng of two distinct, in vitro transcribed sgRNAs targeting sequences in exon 1 of the TRIM25 gene. Single cells were seeded,

grown and checked for KO by western blotting.
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Cell culture in SILAC media
Cells were grown in SILAC DMEM media (Thermo Scientific, #10107883) containing 10% dialysed FBS (Silantes GmbH,

#281000900) and isotopic labeled arginine and lysine (Silantes GmbH amino acids: L-Arginine 13C,15N labeled #201604102; L-Argi-

nine 13C labeled #201204102; L-Lysine 13C,15N labeled #211604102; 4.4.5.5.-D4-L-Lysine #211104113). Prior to experiments, we

confirmed bymass spectrometry that the incorporation of isotopic labeled amino acids was superior to 98%using whole cell lysates.

Viruses
We used the SINV clone pT7-SVwt (Sanz and Carrasco, 2001) to generate the SINV suspension. The plasmid pT7-SVmCherry was

generated by inserting mCherry after the duplicated subgenomic promoter in pT7-SVwt. To obtain SINV and SINV-mCherry viruses,

pT7-SVwt and pT7-SVmCherry plasmids were first linearized with XhoI and used as a template for in vitro RNA transcription with

HiScribe T7 ARCA mRNA kit (New England Biolabs, #E2065S). Transcribed genomic RNA was transfected into BHK-21 using Lip-

ofectamine 2000 reagent (Invitrogen, #11668027). Viruses were collected from the supernatant 24 h later and cleared by centrifuga-

tion at 2000 rpm for 3 min followed by filtration with 0.45mm PVDF syringe filter units (Merck, #SLHV033RS). Cleared supernatants

were titrated by plaque assay using BHK-21 cells.

Pseudotyped HIV-1Nef-mCherry and HIV-1Gag-mCherry were produced as follows. For HIV-1Nef-mCherry, a sequence encoding the end

of env followed by a linker, mCherry, T2A self-cleaving peptide and the beginning of Nef protein was synthesized using the GeneArt

Gene synthesis service (Thermo Fisher Scientific), and cloned between the BamHI and XhoI restriction sites of pNL4-3.Luc.R-E-

plasmid (NIBSC – Centre for AIDS Reagents, #2128), which is defective for Vpr and Env. For HIV-1Gag-mCherry, a PSPXI restriction

site flanked by flexible linker was introduced into gag of the pNL4-3 plasmid (NIBSC – Centre for AIDS Reagents, #2006) by over-

lapping PCR (primers in Table S6) as in (M€uller et al., 2004). mCherry sequence was amplified by PCR flanked by PspXI restriction

sites and cloned into pNL4-3 using the newly generated PspXI site. Finally, the fragment between SpeI and BamHI was replaced by

that of pNL4-3.Luc.R-E-. Pseudotyped viral particles were produced by co-transfecting HEK293T cells (kindly provided by Prof. Jan

Rehwinkel, University of Oxford, UK) with pNL4-3.R-E-Nef-mCherry or pNL4-3.R-E-Gag-mCherry plus pHEF-VSVG (NIH AIDS Reagent

Program, #4693), which encodes for the glycoprotein of vesicular stomatitis virus (VSV).

METHOD DETAILS

RNA interactome capture
Comparative RNA interactome capture (cRIC) was performed based on the previously described protocol (Castello et al., 2012; Cas-

tello et al., 2013) with the following alterations: HEK293 cells, previously grown in media with isotopic labeled amino acids, were

seeded in three sets of 3x15 cm dishes at 80% confluence, each set with a different SILAC label. One set of dishes remained unin-

fected and two sets were infected with SINV at a multiplicity of infection (MOI) of 10. One of these infected cell sets was incubated for

4 h and the other for 18 h. To correct for isotope-dependent effects, we permutated the SILAC labels between the three conditions in

the three biological replicates. After incubation, cells were irradiated with 150 mJ/cm2 of UV light at 254 nm, and lysed with 3 mL of

lysis buffer (20mMTris-HCl pH 7.5, 500mMLiCl, 0.5%LiDSwt/vol, 1mMEDTA, 0.1% IGEPAL (NP-40) and 5mMDTT). Lysateswere

homogenized by passing the lysate at high speed through a 5 mL syringe with a 27G needle, repeating this process until the lysate

was fully homogeneous. 400 ml of lysate were taken for total proteome and transcriptome analysis (Figure 3; Tables S3 and S4). Pro-

tein content was measured using a kit compatible with ionic detergents (Thermo Fisher, Pierce 660nm Protein Assay Kit #22662 with

IDC reagent #22663) and equal amounts of each of the three lysates weremixed. The final volumewas adjusted to 9mL and 1.5mL of

pre-equilibrated oligo(dT)25 magnetic beads (New England Biolabs, #S1419S) were added and incubated for 1 h at 4�C with gentle

rotation. Beads were collected in the magnet and the lysate was transferred to a new tube and stored at 4�C. Beads were washed

once with 10 mL of lysis buffer, incubating for 5 min at 4�C with gentle rotation, followed by two washes with 10 mL of buffer 1

(20 mM Tris-HCl pH 7.5, 500 mM LiCl, 0.1% LiDS wt/vol, 1 mM EDTA, 0.1% IGEPAL and 5 mM DTT) for 5 min at 4�C with gentle

rotation and two washes with buffer 2 (20 mM Tris-HCl pH 7.5, 500 mM LiCl, 1 mM EDTA, 0.01% IGEPAL and 5 mM DTT). Beads

were then washed twice with 10 mL of buffer 3 (20 mM Tris-HCl pH 7.5, 200 mM LiCl, 1 mM EDTA and 5 mM DTT) at room temper-

ature. Beads were resuspended in 900 ml of elution buffer and incubated for 3 min at 55�C with agitation. Eluates were stored

at �80�C and beads were recycled as indicated in the manufacturer’s manual, and re-used for two additional capture rounds. For

RIC experiments followed by western blot analysis, we used the small scale RIC settings described in (Castello et al., 2013).

Conventional protein analyses
Samples were resolved on SDS-PAGE and analyzed by i) western blotting using specific antibodies, the Li-Cor Odyssey system for

visualization and the Image Studio Lite software (Li-Cor) for quantification, ii) Coomassie blue staining with the InstantBlue Protein

Stain reagent (Expedeon, #ISB1L) or iii) silver staining using SilverQuest kit (Invitrogen, #LC6070). Data shown in the manuscript

are representative gels from at least three independent replicates. Details on antibodies can be found in the key resource table.

Radioactive labeling of newly synthesized proteins was performed by replacing the growth media for 1 h with DMEM lacking methi-

onine and cysteine and supplemented with Easytag EXPRESS35S Protein Labeling Mix [35S]Met-Cys (Perkin Elmer,

#NEG772002MC). Samples were then analyzed by SDS-polyacrylamide gels (15%) followed by autoradiography.
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Reverse-transcription and quantitative PCR
Total RNAwas isolated using TRIzol (Invitrogen, #15596026). Reverse transcription was performed using Superscript III reverse tran-

scriptase (Invitrogen, #18080044) with random hexamers priming (Invitrogen, #N8080127), following manufacturer’s instructions.

RT-qPCR analysis was performed with 2x qPCR SyGreen Mix Lo-ROX (PCRBiosystems, #PB20.11-01) and gene specific primers

(Table S6) in a BioRad CFX96 Real-Time system, and analyzed with REST software (Pfaffl, 2001).

Plasmids and recombinant DNA procedures
Plasmids for generation of inducible cell lines were created by conventional cloning methods. Inserts were generally amplified from

HEK293 cDNA or template plasmids using specific primers (Table S6). Inserts were cloned into the pcDNA5/FRT/TO with eGFP pre-

ceded or followed by a flexible linker encoding for GGSGGSGG (glycine and serine repeats) to facilitate the folding of the RBP of

interest independently from the eGFP. For CRISPR/Cas9 expression plasmids, annealed oligos were inserted into the BbsI site

of px459.

mCherry-based viral fitness assay
5x104 cells were seeded on each well of a 96-well microplate with flat mClear bottom (Greiner Bio-One, #655986) in DMEM lacking

phenol-red and supplemented with 5% FBS and 1 mM sodium pyruvate. Cells (control, knock-out and Tet-on) were infected with

SINV-mCherry at 0.1 MOI in complete DMEM (lacking phenol-red) with 2.5% FBS. Cells were incubated at 37�C and 5% CO2 in a

CLARIOstar fluorescence plate reader (BMG Labtech) for 24 h; eGFP and/or mCherry signal was monitored by measuring fluores-

cence (eGFP: excitation 470 nm, emission 515 nm; mCherry: excitation 570 nm, emission 620 nm) every 15 min. To monitor the shut

off of protein synthesis with this method (Figure S1B), Tet-on HEK293 eGFP-control cells were induced with 1 mg/ml doxycycline for

4 h and then infected as indicated above. In experiments with HIV-1 mCherry replicons, 5x104 cells were seeded on each well of

a 96-well plate in clear DMEM supplemented with 2.5% FBS and 1 mM sodium pyruvate, and infected with pseudotyped

HIV-1Nef-mCherry or HIV-1Gag-mCherry. mCherry signal wasmonitored for 72 h in a fluorescence plate reader as indicated above. In over-

expression experiments, Tet-on HEK293 cells expressing RBP-eGFP fusion proteins were either induced with 1 mg/ml doxycycline

for 16 h or mock-induced and then infected with SINV-mCherry. In inhibitor assays, HEK293 cells were infected with SINV-mCherry

as above and inhibitors or vehicle (DMSO) were added at 1 hpi at the concentrations indicated in the figures. Statistical significance of

the difference in mCherry expression at 18 and 24 hpi was determined by t test (n = 9).

Drugs and cell viability assay
The following chemical inhibitors were used in this work: cyclosporin A (Insight Biotechnology Ltd, #sc-3503), Ganetespib (Cam-

bridge Bioscience Ltd, #19432), Geldanamycin (Cambridge Bioscience Ltd, #SM55-2), 4m8C (Merck Chemicals, #412512) and

WS6 (Cambridge Bioscience Ltd, #17672). To test cell viability at the concentrations used, 5x104 HEK293 cells were seeded on

each well of a 96-well microplate with flat, transparent bottom and incubated with DMEM (no phenol red) supplemented with 5%

FBS and 1 mM sodium pyruvate. 24 h later cells were treated with the compounds and incubated for another 24 h at 37�C and

5%CO2. Cell viability was estimated by adding CellTiter 96 Aqueous One Solution (Promega, #G3580) andmeasuring 490 nm absor-

bance following themanufacturer’s recommendations. To evaluate cell viability and proliferation in knockout cells, 2.5x104 cells were

seeded per well of a 96-well plate and incubated in DMEM (no phenol red, 5%FBS, 1mM sodium pyruvate) at 37�C and 5%CO2. Cell

viability was measured at the indicated times using CellTiter 96 Aqueous One Solution as described above. In parallel, the number of

cells was counted using the Countess II FL Automated Cell Counter (Thermo Fisher Scientific).

Protein-protein interactions analysis
4.2x106 HEK293 Tet-on cells expressing eGFP or GEMIN5-eGFP proteins were seeded on a 10 cm dish and incubated with DMEM

supplemented with 10% FBS and 1 mg/ml doxycycline. After 24 h, cells were infected with 10 MOI of SINV in DMEM lacking FBS and

incubated for 1 h, followed by media exchange (DMEM with 1% FBS). Cells were harvested at 18 hpi and lysed in 1 mL of Triton-X-

lysis buffer (10 mM Tris HCl pH 7.5, 150 mM NaCl, 1% Triton X-100, 5 mM MgCl2, 5 mM DTT and 0.1 mM AEBSF serine protease

inhibitor). For immunoprecipitation (IP), 40 ml GFP-Trap_A beads slurry (ChromoTek GmbH, #gta-20) were equilibrated in Triton-X-

lysis buffer and then added to 500 ml of whole-cell lysate. Mixture was diluted with 4.5 mL of Triton-X-lysis buffer, and mixed with

gentle rotation for 16 h at 4�C. GFP-Trap beads were washed once with Triton-X-lysis buffer, collecting the beads by gentle centri-

fugation after each wash (1000 g for 5min at 4�C). In the secondwash, the Triton-X-lysis buffer was supplemented with 1 ml/ml RNase

A (Sigma Aldrich, #4642) and beads were incubated for 5 min at 37�Cwith gentle rotation. Beads were washed three additional times

with Triton-X-lysis buffer. Proteins were released from the GFP-Trap beads via pH elution by resuspension in 50 ml 0.2 M glycine pH

2.5 for 30 s followed by collection of the beads through a quick spin. The supernatant was transferred to a new tube and neutralised

with 5 ml of 1 M Tris base pH 10.4.

RBP-RNA interaction analysis: CLIP/RT-PCR
6.5x105 cells were seeded on each well of a 6-well plate and incubated in DMEMwithout phenol red and supplemented with 5% FBS

and 1 mg/ml doxycycline. After 24 h, cells were either mock-infected or infected with SINV at aMOI of 10. At 18 hpi, culture media was

removed and cells were irradiated with 150 mJ/cm2 of UV light at 254 nm. Cells were lysed in 400 ml of lysis buffer (100 mM KCl,
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5 mM MgCl2, 10 mM Tris pH 7.5, 1% IGEPAL, 1 mM DTT, 100 U/ml Ribolock RNase inhibitor [ThermoFisher Scientific, #EO0381],

0.1 mM AEBSF, 200 mM ribonucleoside vanydil complex). Lysates were diluted with 5x high-salt buffer (1.25 M NaCl,

100 mM Tris pH 7.5, 0.1% SDS) and H2O to reach 500 ml of 1x high-salt buffer. Lysates were then cleared by centrifugation

(5000 rpm for 3 min at 4�C). Supernatants were transferred to a new tube and snap frozen in dry ice. An aliquot (50 ml) was taken

as ‘input’. Lysates were pre-cleared with 15 ml of pre-equilibrated control agarose beads (Pierce Control Agarose resin, Thermo

Fisher Scientific, #26150) by incubation under gentle rotation for 30 min at 4�C followed by centrifugation at 1000 g for 2 min at

4�C. Supernatants were transferred to a new tube. 15 ml GFP-Trap_A bead slurry were equilibrated with 1x dilution buffer

(500 mM NaCl, 1 mM MgCl2, 0.05% SDS, 0.05% IGEPAL, 50 mM Tris pH 7.5, 100 U/ml Ribolock RNase inhibitor, 0.1 mM AEBSF),

incubated with 1mg/ml E. coli tRNA for 15min and, after two washes with dilution buffer, they were added to the lysates. Themixture

was incubated for 2 h at 4�C with gentle rotation and beads were recovered by centrifugation at 1000 g for 2 min at 4�C. Beads were

washed twice with 100 ml of ice-cold high-salt buffer (500 mM NaCl, 20 mM Tris pH 7.5, 1 mM MgCl2, 0.05% IGEPAL, 0.1% SDS,

100 U/ml Ribolock RNase inhibitor, 0.1 mM AEBSF), three times with 100 ml ice-cold low-salt wash buffer (150 mM NaCl,

20 mM Tris pH 7.5, 1 mMMgCl2, 0.01% IGEPAL, 50 U/ml Ribolock RNase inhibitor) and resuspended in 50 ml of proteinase K buffer

(100 mM NaCl, 10 mM Tris pH 7.5, 1 mM EDTA, 0.5% SDS). Protein digestion was carried out by incubation with 200 mg/ml of pro-

teinase K (Invitrogen, #AM2546) for 30min at 37�Cwith agitation (1100 rpm) and then raising temperature to 50�C for 1 h. After centri-

fugation at 1000 g and 4�C for 2min, the supernatant containing the RNAwas transferred to a low binding tube. RNAwas then purified

using RNeasy mini kit (QIAGEN, #74104) in parallel to the total RNA present in inputs. cDNA library was prepared with Superscript III

reverse transcriptase and oligo(dT)20 primer (Thermo Fisher Scientific, #18418020) following the manufacturer’s recommendations.

Finally, the presence of SINV sequences in cDNA libraries was detected by PCR using Phusion polymerase (New England Biolabs,

#M0530S) and SINV C specific primers (Table S6).

Analysis of GEMIN5 binding sites by iCLIP
In order to identify GEMIN5 binding sites on SINV RNA at a high resolution, we employed iCLIP-seq (König et al., 2010). 10x106

HEK293 Tet-on GEMIN5-eGFP cells were seeded in 5 sets of 3x15 cm dishes and induced for 24 h with doxycycline. Each cell

set was then infected with 10 MOI of SINV. Similar procedure was carried out for 1 set 3x15 cm dishes of control HEK293 Tet-on

eGFP cells with 8 h doxycycline induction. At 18 hpi, cells were washed with PBS 1x and UV irradiated with 150 mJ/cm2 at

254 nm. Cells were then lysed with 1 mL of lysis buffer (NaCl 100 mM, MgCl2 5 mM, Tris pH 7.5 10 mM, IGEPAL 0.5%, SDS

0.1%, Na deoxycholate 0.5%, DTT 1 mM, 0.1 mM AEBSF) and the three plates of each condition set were pooled (3 mL of final vol-

ume). Lysates were then passed through a 27G needle three times and sonicated with three cycles of 10 s, with 15 s pause between

pulses, using a Digenonde bioruptor at level M at 4�C. The homogenate was centrifuged 17900 g at 4�C for 10 min, and topped up to

3 mL with lysis buffer. To obtain RNA fragments of suitable length and to degrade DNA, 3 mL (replicates 1-2, control) or 1 mL (rep-

licates 3-5) of thawed lysate was incubatedwith 20 URNase I (Life Technologies, #AM2295) and 4 U Turbo DNase (Life Technologies,

#AM2238) per ml of lysate for 3 min at 37�C, with 1100 rpm agitation. Subsequently, lysates were placed on ice and supplemented

with 440 U RiboLock RNase Inhibitor. 40 mL of control agarose bead slurry per ml of lysate was pre-equilibrated in lysis buffer and

resuspended in 50 ml of lysis buffer. Beads were added to the lysate and incubated for 30 min at 4�C with gentle rotation. The super-

natants were then collected by centrifugation for 2 min at 4�C and 2500 g, and then incubated with 40 mL of pre-equilibrated

GFP_trap_A beads per ml of lysate for 2 h at 4�C with gentle rotation. Next, the beads were collected by centrifugation (2 min,

4�C, 2500 g) and washed twice with 1 mL of high salt buffer (NaCl 500 mM, Tris HCl pH 7.5 20 mM, MgCl2 1 mM, IGEPAL 0.05%,

SDS 0.1%, 0.1 mM AEBSF, 1 mM DTT), twice with 1 mL of medium salt buffer (NaCl 250 mM, Tris HCl pH 7.5 20 mM, MgCl2
1 mM, IGEPAL 0.05%, 0.1 mM AEBSF, 1 mM DTT), and twice with 1 mL of PNK wash buffer (20 mM Tris-HCl pH 7.4,

10 mM MgCl2, 0.2% Tween-20) (replicates 1-2, GFP control) or low salt buffer (NaCl 150 mM, Tris HCl pH 7.5 20 mM, MgCl2
1 mM, IGEPAL 0.01%, 0.1 mM AEBSF, 1 mM DTT) (replicates 3-5). Beads were resuspended in 20 mL PNK mix [15 mL H2O, 4 mL

5x PNK buffer pH6.5 (350 mM Tris-HCl pH 6.5, 50 mMMgCl2, 25 mM DTT), 5 U of PNK enzyme (NEB, #M0201S), 20 U of Ribolock]

and incubated for 20 min, at 37�C at 1100 rpm. Beads were then washed once with low salt buffer, once with high salt buffer, and

twice with low salt or PNK wash buffer. Beads were then resuspended in 20 mL ligation mix [ligation buffer (50 mM Tris-HCl,

10 mMMgCl2, 10 mM DTT), 10 U of RNA ligase (NEB, M0204S), 20 U of Ribolock, 1.5 mM pre-adenylated linker L3 (TriLink Biotech-

nologies, # T1-BGV01A), 4 mL PEG400 (Sigma-Aldrich, #202398-250G)] and incubated O/N at 16�C shaking at 1100 rpm. Subse-

quently, beads were washed with 500 mL of cold low salt or PNK wash buffer and three times with 1 mL of high salt buffer. Beads

were transferred to a low binding tube during the third wash. The beads were further washed twice with 1 mL ice-cold low salt or

PNK wash buffer and resuspended in 20 mL low salt or PNK wash buffer, 1x NuPAGE loading buffer (Invitrogen, #NP0007) and

100 mM DTT and denatured at 70�C (1200 rpm, 10 min). The supernatant was collected by centrifugation (1 min at 4�C and

2500 g), loaded on a 4%–12% Bis-Tris NuPage gel (Invitrogen, #NP0321) and run 90 min at 150 V in 1x MOPS running buffer (Life

Technologies, #NP0001). Protein-RNA complexes were transferred to a membrane of nitrocellulose (30 V for 1 h). Region matching

190-280 kDa was then cut out, transferred to a fresh microfuge tube, topped up with 200 mL of proteinase K mix (80 mM Tris-Cl pH

7.4; 40 mMNaCl; 8 mM EDTA and 800 mg of proteinase K), and incubated for 20 min at 37�C and 1100 rpm. Subsequently, 200 mL of

PKurea buffer (100 mM Tris-Cl pH 7.4; 50 mMNaCl; 10 mM EDTA; 7 M urea) was added and the sample then incubated for 20 min at

37�C at 1100 rpm. RNA was then phenol/chloroform extracted as in (Huppertz et al., 2014; König et al., 2010). Pellets were

resuspended in 5 mL of nuclease free H2O and stored at �20�C. Reverse transcription was carried out using Superscript III
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(Life Technologies, #18080-044) and unique Rclip primers as in (Huppertz et al., 2014; König et al., 2010). The reaction was then

transferred to a low DNA binding tube and precipitated with ethanol as in (König et al., 2010). The pellets were resuspended in

12 mL of 1x TBE-urea loading buffer, heated for 3 min at 80�C and separated on a 6% TBE-urea precast gel (Life Technologies,

#EC6865BOX) for 40 min at 180 V. For replicates 1-2 and the control, the region of the gel corresponding to 85-200 nucleotides

was cut off the gel and placed in a 0.5 mL microtube pierced with a needle inside a 1.5 mL microtube. Samples were spun at

16000 g for 1 min, and the flow-through topped up with 400 ml of diffusion buffer (0.5 M ammonium acetate, 10 mM magnesium ac-

etate, 1mMEDTA, 0.1%SDS) and incubated at 50�C for 30min. For replicates 3-5, two regions of the gel containing cDNA fragments

of 120-200 nucleotides and 85-120 nucleotides were cut off from the gel and crushed into small pieces using a pestle in 400 mL TE

buffer. The samples were then incubated for 1 h at 37�Cand 1100 rpm, placed on dry ice for 2min, and incubated again for 1 h at 37�C
and 1100 rpm. In all cases, the disrupted gel was then filtered by spinning through a Costar SpinX column (Sigma, #CLS8160-96EA)

by centrifugation at 16000 g. The cDNA was then extracted using phenol/chloroform as in (König et al., 2010). Pellets were resus-

pended in 8 mL ligation mix [1x CircLigase Buffer II; 2.5 mM MnCl2; 30 U of CircLigase II (Epicenter, #CL9025K)] and incubated for

1 h at 60�C. We next added 30 mL of oligo annealing mix [25 mL H2O; 4 mL NEBuffer 4 (NEB, #B7004S); 0.3 mM cut_oligo (Sigma-Al-

drich)] and the sample was heated for 1 min at 95�C followed by a temperature decrease of 1�C every 40 s until reaching 25�C. The
samples were then digested with 2 mL of BamHI (Thermo Fisher, #FD0054) and incubated for 30min at 37�C. After incubation at 80�C
for 5 min, cDNA was ethanol precipitated (König et al., 2010). Pellets were resuspended in 20 mL H2O and mixed with 1 mL of 10 mM

primer mix P5/P3 Solexa and 20 mL Accuprime Supermix 1 (Life Technologies, #12342-010). The libraries were then amplified for 18

cycles (replicate 1), 23 cycles (replicate 2), 25 cycles (replicates 3-5) or 30 cycles (control GFP) and the products were then analyzed

on a 6%TBE precast gel (Life Technologies, #EC6265BOX) in TBE buffer for 60min at 140 V. The gel was stained with 1x TBE plus 1x

SybrGold for 20 min (Life Technologies, #S11494) and bands of appropriate size cut out under blue light trans-illuminator. The gel

slices were dissolved with a pestle in 100 mL diffusion buffer (0.5 M ammonium acetate; 10 mM magnesium acetate; 1 mM

EDTA pH 8.0; 0.1% SDS), incubated for 30 min at 50�C at 1100 rpm and filtered in a Costar SpinX column as above. The library

was purified using QIAquick Gel Extraction Kit (QIAGEN, #28704) and quantified on a Bioanalyser using a DNA high-sensitivity

chip. Libraries were pooled for sequencing and processed using single-end sequencing mode with a NextSeq 500/550 High Output

v2 kit (75 cycles, Illumina, #FC-404-2005).

Immunofluorescence and RNA FISH assays
High Precision Coverslips (Marienfeld, #0107052) were washed once in 1 M HCl for 30 min on a rocking machine, twice in double

distilled water for 10 min and once in ethanol 70% for 10 min. 150,000 cells were seeded on the dried coverslips and incubated

in DMEM with 10% FBS. In the case of the Tet-on cells, protein induction was performed with 1 mg/ml doxycycline. 16 h later cells

were either mock-infected or infected for 1 h at 37�C with 10 MOI of SINV in DMEMwithout FBS, followed by the replacement of the

mediumwith DMEM supplemented with 1% FBS. At the corresponding times post-infection, cells were rinsed once in PBS and fixed

in 4%methanol-free formaldehyde for 10 min. After three 5 min washes in PBS, cells were permeabilised for 5 min with 1x PBS sup-

plemented with 0.1% Triton X-100 (PBST). Next, cells were rinsed twice in PBST and once in PBST supplemented with 2%BSA, and

blocked for 1 h with PBST supplemented with 2% BSA. Cells were later incubated for 1 h with primary antibodies (a-SINV C at 1:200

dilution or a-XRN1 at 1:50 dilution) in PBST + 2% BSA. Cells were subsequently rinsed in PBST + 2% BSA and washed three times

with PBST + 2% BSA for 10 min. Cells were then incubated for 1 h in darkness with the secondary antibodies (a-rabbit Alexa488,

a-rabbit Alexa594 or/and a-mouse Alexa488; Thermo Fisher Scientific, #A-21206, #A-21207, #A-21202 respectively) and/or GFP-

Booster_Atto488 (ChromoTek GmbH, #gba488-100) at 1:500 dilution in PBST supplemented with 2% BSA. Cells were washed

once with PBST supplemented with 2% BSA and three additional times with PBST supplemented with 2% BSA for 10 min. Cells

were incubated with 2 mg/ml of DAPI in PBS for 5 min. Finally, cells were washed twice in PBST, once in PBS for 5 min, once in

milliQ H2O and mounted on glass slides using Vectashield Antifade mounting medium (Vector Laboratories, #H-1000).

For combined immunofluorescence and RNA FISH, cells were seeded in coverslips and fixed and permeabilised as described

above. Then, cells were rinsed three times in PBST and incubated for 1 h with primary antibody (a-SINV C at 1:200 dilution) in

PBST + 0.5 U/ml RiboLock RNase inhibitor. Next, cells were washed once in PBST and three additional times with PBST for

10 min. Cells were then incubated with secondary antibody (a-rabbit Alexa488 at 1:500 dilution) in PBST supplemented with

0.5 U/ml RiboLock RNase inhibitor for 1 h in darkness. Cells were washed once with PBST, and two additional times with PBST

for 10 min, once in PBS for 10 min and fixed again in 4% methanol-free formaldehyde for 10 min. Cells were washed twice in

PBS for 5 min, once in 1x PBS / 1x SSC for 5 min, once with 2x SSC for 5 min and twice with pre-hybridization buffer (2x SSC

and 10% deionized formamide in DEPC water) at 37�C for 10 min. Next, cells were incubated with RNA probes [2 pmol/ml oligo(dT)25
or oligo(dA)25 coupled to Alexa 594 (Life technologies Ltd), or 125 nM SINV RNAs-specific Stellaris probes (LGC Biosearch Technol-

ogies)] in hybridization buffer (2x SSC, 10% deionized formamide and 10% dextran sulfate in DEPC water) for 16 h at 37�C in a wet

chamber. In the case of Tet-on cells expressing GEMIN5-eGFP or MOV10-YFP proteins, GFP-Booster_Atto488 (1:500 dilution) was

included at this step. Cells were subsequently washed twice with pre-hybridization buffer for 10 min at 37�C and incubated for 5 min

at 37�Cwith 2 mg/ml DAPI in pre-hybridization buffer. Finally, cells were washed twice with 2x SSC for 5 min, twice with 1x PBS, once

for 5 min with 1x PBS and once in milliQ H2O. The coverslip was mounted immediately after on glass slides using Vectashield.

In both cases, images were acquired on an API DeltaVision Elite widefield fluorescence microscope using a 100X oil UPlanSApo

objective (1.4 NA) and deconvolved with SoftWoRx v6.5.2 (GE Healthcare). Fluorescence intensity profiles were obtained using the
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script ‘‘Multichannel Plot Profile’’ in the BAR collection for ImageJ (https://imagej.net/BAR). In Figures 4 and S4, RBPswere classified

as ‘enriched’ when accumulating in viral factories co-localizing with SINV C; ‘absent’ when undetectable in viral factories; and

‘diffused’ RBPs when distributed across the cytoplasm and thus present but not enriched in viral factories.

Determining the percentage of infected cells
9x105 HEK293 cells were seeded on washed coverslips and incubated in DMEM minus phenol red + 5% FBS + 1 mM sodium py-

ruvate for 24 h. Cells were infected with different MOI of SINV-mCherry in complete DMEM (lacking phenol-red) with 2.5% FBS. At

18 hpi, cells were fixed and processed for immunofluorescence as indicated above using a-SINV C antibody and DAPI. Images were

acquired on an API DeltaVision Elite widefield fluorescence microscope using a 60X oil PlanApo objective (1.42 NA). The percentage

of infected cells was calculated by counting C-expressing cells and the total number of DAPI-stained cells using the ‘‘Cell Counter’’

plugin in ImageJ. To define the MOI of SINV used in cRIC experiments and fitness assays, different concentration of viruses were

tested. We selected 10 MOI for cRIC experiments because it is the minimal dose promoting high percentage of infected cells in a

reproducible manner. We selected 0.1 MOI for fitness experiments as it allows optimal measurement of the mCherry fluorescence

in the CLARIOstar plate reader.

Mass spectrometry
cRIC inputs (whole cell lysates) and eluates were processed following the filter aided sample preparation (FASP) as in (Castello et al.,

2013). GEMIN5-eGFP and eGFP IPs were processed with a single-pot solid-phase-enhanced sample preparation (SP3) protocol us-

ing 70% acetonitrile for protein binding (Sielaff et al., 2017). All samples were acidified with 5% formic acid prior to mass spectro-

metric analysis.

Peptides from the cRIC inputs, and GEMIN5-eGFP and eGFP IPs were analyzed on an Ultimate 3000 ultra-HPLC system (Thermo

Fisher Scientific) and electrosprayed directly into a QExactive mass spectrometer (Thermo Fisher Scientific). They were initially trap-

ped on a C18 PepMap100 pre-column (300 mm inner diameter x 5 mm, 100Å, Thermo Fisher Scientific) in solvent A (0.1% [vol/vol]

formic acid in water). The peptides were then separated on an in-house packed analytical column (75 mm inner diameter x 50cm

packed with ReproSil-Pur 120 C18-AQ, 1.9 mm, 120 Å, Dr. Maisch GmbH) using a linear 15%–35% [vol/vol] acetonitrile gradient

(2 h for whole cell lysates and 1 h for protein-protein interaction samples) and a flow rate of 200 nl/min. Full-scan mass spectra

were acquired in the Orbitrap (scan range 350-1500 m/z, resolution 70000, AGC target 3 3 106, maximum injection time 50 ms) in

a data-dependent mode. After the mass spectrum scans, the 20 (for whole cell lysates) or 10 (GEMIN5 IPs) most intense peaks

were selected for higher-energy collisional dissociation fragmentation at 30% of normalized collision energy. Higher-energy colli-

sional dissociation fragmentation spectra were also acquired in the Orbitrap (resolution 17500, AGC target 53 104, maximum injec-

tion time 120 ms) with first fixed mass at 180 m/z.

For cRIC eluates, liquid chromatography (LC) was performed using an EASY-nano-LC 1000 system (Thermo Fisher Scientific) in

which peptides were initially trapped on a 75 mm internal diameter guard column packed with Reprosil-Gold 120 C18, 3 mm, 120 Å

pores (Dr. Maisch GmbH, #r13.9g) in solvent A using a constant pressure of 500 bar. Peptides were then separated on a 45�C heated

EASY-Spray column (50 cm x 75 mm ID, PepMap RSLC C18, 2 mm, Thermo Fisher Scientific #164540) using a 3 h linear 8%–30%

[vol/vol] acetonitrile gradient and constant 200 nl/min flow rate. Peptides were introduced via an EASY-Spray nano-electrospray

ion source into an Orbitrap Elite mass spectrometer (Thermo Fisher Scientific). Spectra were acquired with resolution 30000, m/z

range 350-1500, AGC target 1x106, maximum injection time 250 ms. The 20 most abundant peaks were fragmented using CID

(AGC target 5x103, maximum injection time 100 ms, normalized collision energy 35%) in a data dependent decision tree method.

Peptide identification and quantitation of all proteomics experiments was then performed using MaxQuant (v1.5.0.35) (Cox and

Mann, 2008). Data were searched against the Human Uniprot database (version, January 2016) alongside a custom database

including all the known SINV polypeptides and a list of common contaminants provided by the software. eGFP protein sequence

was included in the analysis of GEMIN5-eGFP and eGFP IPs (Uniprot ID C5MKY7). The search parameters for the Andromeda search

engine were: full tryptic specificity, allowing two missed cleavage sites, fixed modification was set to carbamidomethyl (C) and the

variable modification to acetylation (protein N terminus), oxidation (M). Match between runs was applied. All other settings were set

to default, leading to a 1% FDR for protein identification. Raw and processed proteomic data have been deposited to the

ProteomeXchange Consortium (Deutsch et al., 2017) via the PRIDE partner repository with the dataset identifier PXD009789.

RNA sequencing
RNA from the ‘inputs’ (whole cell lysate) of cRIC experiments was extracted using TRIzol. Strand-specific RNA-seq was performed

with 100 ng of total RNA. Libraries were prepared using NEBNext Ultra Directional RNA library Prep Kit for Illumina (New England

Biolabs, #E7420S) according to manufacturer instructions. In brief, RNA was fragmented for 15 min at 94�C and then reverse tran-

scribed. cDNA and double-stranded cDNA was purified with AMPure XP beads (Beckman Coulter, #A63881). After end repair,

NEBNext Adaptors for Illumina (New England Biolabs, #E7335S) were ligated onto the cDNA according to the kit manual. Libraries

were amplified by 15 cycles of PCR. We used the following combination of barcodes for sample multiplexing: S1_Mock ATCACG,

S1_SV4h CGATGT, S1_SV18h TTAGGC, S2_Mock ACAGTG, S2_SV4h CAGATC, S2_SV18h ACTTGA, S3_Mock GATCAG,

S3_SV4h TAGCTT and S3_SV18h GGCTAC. Libraries with an average length of 320 nt were pooled and sequenced with an Illumina
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NextSeq instrument, using 78 nt paired-end sequencing mode with a NextSeq 500/550 High Output v2 kit (150 cycles, Illumina #FC-

404-2002). Raw and processed RNA-seq are available at GEO: GSE125182.

QUANTIFICATION AND STATISTICAL ANALYSES

Proteomic quantitative analysis
To compare the cRIC inputs and eluates under different conditions, peptide intensity ratios between two samples were computed

and summarized. The log2-intensity ratio of each protein was tested to be different from zero in the three biological replicates using

moderated t test, which is implemented in the R/Bioconductor package limma (Smyth, 2004). p values were corrected for multiple

testing by controlling the false discovery rate with themethod of Benjamini-Hochberg. For proteins for which the protein intensity was

‘zero’ in one of the two conditions, we applied a semiquantitative approach that assumes that proteins without quantitative informa-

tion are below the detection limit (Sysoev et al., 2016). The approach compiles the number of replicates in each condition in which a

given protein has an intensity value. When comparing 2 conditions and three biological replicates, this leads to a matrix with 16

different groups (detected 0, 1, 2 or 3 times in condition 1 versus detected 0, 1, 2 or 3 times in condition 2). A protein is classified

as ‘altered RBP’ by the semiquantitative method if an intensity value is assigned to it in 3 or 2 of the replicates in one of the two con-

ditions, while only 1 or 0 intensity values are detected in the other condition.

The fraction of RNA-bound RBPs was determined by computing the ratio between the protein intensity of each individual RBP in

the cRIC eluates and that in the whole cell lysate (Figure S3D). Hence, this calculation reflects amount of protein crosslinked to RNA

(cRIC eluates) divided by the total amount of protein (cRIC inputs).

Results were visualized using the R package ggplot2 (Wickham, 2009). To assess the scope of previously known RBPs within

the RBPome of uninfected and SINV-infected HEK293 cells, proteins identified by cRIC here were compared to those

compressing the superset of human RBPs reported in (Hentze et al., 2018). GO annotations were obtained from the R package

mRNAinteractomeHeLa (http://www.hentze.embl.de/public/RBDmap/) (Castello et al., 2012) (Key Resources Table), and gene set

enrichment analysis was performed by applying Fisher’s exact test to categories of GO annotations with at least three annotated

proteins.

We compared the repertoire of RBPs with differential RNA-binding activity at 18 hpi (Table S1) with the mouse ribo-interactome

(Table S2) (Simsek et al., 2017). Specifically, we considered proteins in the Table S3 of (Simsek et al., 2017) with negative predictive

values (NPV)R 0.99 in puromycin and RNase samples as ‘ribosome-associated proteins’, as described in that study. To find mouse

orthologs for RBPs responding to SINV infection, we used the R package biomaRt to identify ENSEMBL peptide IDs for our RBPome

dataset and hom.Hs.inp.db (Carlson and Pages, 2015) to provide mapping between human and mouse proteins using these IDs

(Key Resources Table). If a mouse ortholog of an altered RBP identified at 18 hpi was found in the ‘ribo-interactome’

(Simsek et al., 2017) or if the gene symbols between human and mouse matched directly, the human RBP was considered as ‘ribo-

some-associated’. Results of this analysis are provided in Table S2.

For GEMIN5 protein-protein interaction analysis, protein quantificationwas performed by label free quantification usingMaxQuant.

Ratios were compiled and normalized to eGFP protein intensity in each sample, which is expected to be the same across samples.

Significance of the fold changes was estimated by t test using the software Perseus (Tyanova et al., 2016). We performed three main

comparisonswith the data from the IPs: i) GEMIN5-eGFP versus eGFPboth in uninfected cells; ii) GEMIN5-eGFP versus eGFP both in

SINV-infected cells; and iii) GEMIN5-eGFP in uninfected cells versus GEMIN5-eGFP in SINV-infected cells (Figure 7C, left, middle

and right, respectively). Resulting data are summarized in Table S5. Raw and processed proteomic data from GEMIN5-eGFP IPs

have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD009789.

The R package ggplot2 was utilized to visualize GEMIN5-eGFP proteomics data in volcano plots (Figures 7C). Only proteins that

were identified as high-confidence interactors of GEMIN5-eGFP (i.e., p value < 0.01 and positive log2 fold change) in the left panel of

Figure 7C were displayed in the comparison between infected and uninfected cells in the right panel. Proteins with names starting

with ‘RPS’ or ‘RPL’, were classified as ‘ribosomal’ and displayed in the volcano plots as pink dots.

STRING (Szklarczyk et al., 2017) was used to display the connectivity between altered RBPs in SINV-infected cells (Figures S2C

and S2D) and between the proteins comprising the GEMIN5 interactome (Figure S7D). Protein networks were generated using the

following parameters: display – confidence; Interaction sources – experiments and databases; interaction score – high-confidence

(0.700). Disconnected nodes were hidden from display and nodes colored based on functional enrichment within the network as

determined by STRING. GEMIN5 protein interactome (Figure S7D) was defined as proteins enriched in GEMIN5-eGFP IPs over

eGFP IPs with p value < 0.01. STRING-based GO enrichment for GEMIN5 protein interactome is provided in Table S5.

RNA sequencing data analysis
Wecombined the human genome (version hg38) with SINV sequence as our reference genome. RNA-seq readswere thenmapped to

this reference genome using STAR (Dobin et al., 2013). Reads mapping to each transcript were counted with featureCounts in Sub-

read software package (Liao et al., 2013). Only uniquely mapped reads are considered for counting. SINV infection is known to shut

off transcription globally (Gorchakov et al., 2005), which may bias (underestimate) differential expression results if normalization is

carried out assuming that overall RNA abundance remains unchanged. Therefore, we decided to normalize reach counts in each

condition to the corresponding rRNA expression by dividing a factor proportional to the total rRNA read counts in 3 conditions
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(0.899, 1 and 0.473 for Mock, 4 hpi and 18 hpi respectively). We confirmed by RT-qPCR that rRNA does not change in abundance in

course of infection. The R package DESeq2 (Love et al., 2014) was used for differential gene expression analysis based on rRNA

normalized read counts. As DESeq2 requires the reads counts to be un-normalized and in the form of integer values, rRNA normal-

ized read counts were rounded to the closest integer to make the ‘‘DESeqDataSet’’ to start the differential analysis. We estimated the

size factor of each sample separately in DESeq2, instead of pooling all the samples prior to estimating this parameter.

Differential RNA expression between infected (4 and 18 hpi) and uninfected cells was visualized in MA plots (Figures 3F and 3G)

using DESeq2. To visualize the overall effect of experimental covariates and potential batch effects, a principal component plot of the

samples was generated using the plotPCA function in DESeq2, based on the principal component analysis (PCA) of the variance sta-

bilized expression of the top 500 genes with the highest expression variance among samples. As shown in Figure S3F, the variance

explained by the first and second PC (on X and Y-axes) combined accounts for a high percentage (96%) of the total variance, and

samples within the same condition clustered better between them than with the other two conditions. It is interesting to note that the

first PC along accounts for 94%of the total variance, and it distinctly separates 18 hpi to the other samples (i.e., uninfected and 4 hpi),

indicating that the cellular transcriptome is dramatically altered at 18 hpi.

Genes related to GO terms ‘Response to virus’ (GO:0009615) and ‘Defense response to virus’ (GO:0051607) were extracted from

‘‘hsapiens_gene_ensembl’’ dataset (GRCh37) from Bioconductor package biomaRt (Durinck et al., 2009) and plotted as a heatmap

using the R package pheatmap (Kolde, 2015) (Figure S1E). This package was also used to make a heatmap for differentially ex-

pressed cellular RNAs, including those transcripts passing the following thresholds: i) log2 fold change > 3 or < �3 and ii) adjusted

p value < 0.01 (Figure S3E).

Reads mapping to positive and negative strands of viral RNAs were separated using SAMtools view utility (Li et al., 2009). In Illu-

mina reverse paired end sequencing, paired reads came fromopposite strands. Therefore, readswith the second pair mapping to the

positive strand, or with the first pair mapping to the negative strand, were both counted as mapping to the positive strand and vice

versa. The total read counts mapping to each strand were compiled and counted using SAMtools merge and SAMtools depth,

respectively.

Analysis of RNA synthesis, processing, and degradation
We used analysis of variance (ANOVA) to evaluate in what extent the changes in transcript levels are explained by the rate of RNA

synthesis, processing and degradation. Themeasurement of the rate of these RNA processes for each individual RNAwere obtained

from (Mukherjee et al., 2017). We built a multiple linear regression using the rate of the above-mentioned RNA processes as ‘predic-

tors’ or ‘factors’, and the transcriptome changes in SINV infected cells as the ‘response variable’.

Ti=A0i+A1iDi+A2iPi+A3iSi+Ei

i indicates all the individual RNAmolecules; Ti is the expression change for themolecule between the two conditions compared; A0i is

the regression intercept; Di, Pi and Si are the rate of degradation, processing and synthesis, respectively; Ei is the ‘error term’ in the

multiple linear regression.

After fitting the model, the total variance explained, or R-squared, is defined as the sum of squares (SS) contributed to the total SS

by different factors, i.e., the three predictor variables and the error term, as indicated in the equation below:

SStotal=SSDegration+SSProcessing+SSSynthesis+SSerror

Therefore, the contribution of the three predictors to the alterations in the transcriptome can be measured by their proportion of SS.

The partial SS for each predictor is obtained using the ‘‘sequential sum of squares’’ method implemented in ANOVA function in R

(Key Resources Table). These data (mock compare to 4 hpi and mock compare to 18 hpi) are shown in Figure 5A. A more detailed

description of ANOVA can be found in NIST/SEMATECH e-Handbook of Statistical Methods (https://www.itl.nist.gov/div898/

handbook/eda/section3/eda355.htm).

iCLIP-seq data processing
To identify GEMIN5 binding sites on SINV RNAs, reads in the fastq files from sequencing were demultiplexed to separate the samples

according to the sample barcodes. Molecular and sample barcodes as well as trailing adaptor sequences were trimmed off. Molec-

ular barcode information was stored in the read name. Reads were then mapped to a combined human (GRCh38) and SINV genome

(pT7-SVwt) sequence using STAR. Uniquely aligned readswere then extracted using SAMtools. Binding sites were determined as the

50-most base of each uniquely mapped read. PCR duplicates were identified as reads with the samemapping position andmolecular

barcode and each unique fragment counted just once. The 50-most base in sequenced reads corresponds to the base directly 30 of
the crosslinked base. The number of unique fragment counts per position gives a measure of GEMIN5 interaction strength with that

position along the RNA.

Due to the sheer abundance of SINV RNA at 18 hpi, some background signal could be observed in GFP control. To account for this

background, GFP signal was subtracted from GEMIN5 signal after correction to total SINV reads. Signal along SINV was then visu-

alized individually per replicate (Figure S7) and as an average of all five replicates (Figure 7) as a coverage track and heatmap.
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Because the binding sites are narrow (sharp) and hence difficult to see when plotting the full SINV region, the plot shows an average

over a sliding window of 20 nt. Note that the negative signal from y axis (higher signal in GFP) is cut off to better highlight GEMIN5

enriched regions.

Significantly crosslinked sites were determined using iCount peaks (Key Resources Table). iCount peaks was run to generate a

background distribution by randomly distributing the crosslinked sites a hundred times along the SINV genome and compare the

actual observed distribution to this background to generate a false discovery rate. Since regions corresponding to genomic, subge-

nomic and 30 end region have different overall abundance, they were indicated as individual gene segments in the calculation to ac-

count for potentially higher background. Sites meeting FDR cutoff of 0.01 within 5 nt of each other were then merged using iCount

clusters to form binding sites. Binding sites were then given a ‘strength score’ calculated as counts within the binding site divided by

its width, and visualized in a heatmap in five bins to differently highlight the strengths of binding at different sites (Figures 7 and S7).

This process was done for the GEMIN5 replicates separately as well as for the library size normalized average of the five replicates.

Figure 7D additionally shows a heatmap that indicates how many replicates support a genomic position as binding site when deter-

mined individually per replicate. ggplot2 was used to facilitate plotting the heatmaps.

To look at base composition around the start of the SINV sgRNA, the 50-most base of unique fragments was extracted from aligned

reads taking softclipping into account. Count per base relative to total count in the sgRNA region is show in Figure S7H to indicate

relative binding site frequency and whether the sequenced base matches the genome.

Raw and processed iCLIP-seq data are available at GEO: GSE125182.

DATA AND SOFTWARE AVAILABILITY

The accession number for themass spectrometry data reported in this paper is ProteomeXchange: PXD009789. The accession num-

ber for the RNA-seq and iCLIP data reported in this paper is GEO: GSE125182.
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Figure S1 (Garcia-Moreno et al)
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Figure S1. Analysis of SINV-induced molecular signatures in different cellular 

models; related to Figure 1. A) Schematic representation of SINV genomic (g) and 

subgenomic (sg) RNAs. The diamond represents the opal termination codon between 

NSP3 and NSP4. B) Production of eGFP and mCherry in stable Tet-on HEK293-eGFP 

cells infected with SINV-mCherry at 0.1 or 10 multiplicity of infection (MOI). Green and 

red fluorescence were measured every 15 min in a plate reader with atmospheric control 

(5% CO2 and 37°C). eGFP synthesis serves as a proxy of host cell gene expression. 

Virus-induced shut off is reflected by the blockage of eGFP accumulation, which occurs 

at 5 hpi with 10 MOI (in agreement with the [35S]-Met/cys labelling analysis shown in 

Figure 1C) and at 15 hpi with 0.1 MOI. RFU, relative fluorescence units. C) Localisation 

by immunofluorescence of SINV C in SINV-infected HEK293 and Hela cells. SINV C 

accumulates in cytoplasmic foci known as the viral replication factories, which are 

detected in both HEK293 and HeLa at similar times post infection. D) Schematic 

representation of viral factory biogenesis. CPV, cytopathic vacuoles containing spherules 

where viral RNA is replicated. E) Heatmap representing the log2 fold expression change 

determined by RNAseq analysis of RNAs enriched with p<0.05 in SINV-infected (4 or 18 

hpi) versus uninfected HEK293 cells and annotated by 'antiviral response' and 'innate 

immunity' gene ontology (GO) terms. These GO terms were statistically enriched in 

infected over uninfected cells. Note the presence of interferons (IFNs), interferon 

stimulated genes (ISG), interferon induced proteins (IFI), and interferon regulatory factors 

(IRF). F) Percentage of HEK293 cells expressing SINV C after infection with SINV-

mCherry at different MOI. Cells were processed for immunofluorescence staining with α-

SINV C antibody and DAPI. 10 fields were counted for each independent experiment 

(n=3). Bars represent the mean and error bars represent the standard deviation (SD).  
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Figure S2. Analysis of the RNA-bound proteome in SINV-infected HEK293 cells by 

cRIC; related to Figure 2 and Table S1. A) Scatter plots displaying the intensity ratio 

for each protein (dots) in the cRIC eluates from cells infected with SINV for 4 h over 

uninfected cells, analysed by quantitative proteomics. Plots show the experimental 

reproducibility as each axis indicate the ratios obtained in one biological replicate. The 

three scatter plots represent the pair-wise comparison of the three replicates. B) As in 

(A) but comparing 18 hpi versus uninfected cells. Proteins enriched in infected cells with 

1% or 10% FDR are shown in red and orange, respectively. Proteins enriched in 

uninfected cells with 1% or 10% FDR are shown in blue or cyan, respectively. Grey dots 

represent non-enriched proteins. FDR, false discovery rate; n.s. non-significant. C) 

STRING network showing the protein-protein interaction map between SINV-inhibited 

RBPs (both 1% and 10% FDR). D) As in (C) but with SINV-stimulated RBPs. E) Scatter 

plots comparing the raw intensity of each protein in the eluates of cRIC from cells 

infected with SINV for 18 h. Viral proteins are highlighted in red. The three scatter plots 

display the pair-wise comparison between all three replicates. 

  



Figure S3 (Garcia-Moreno et al)
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Figure S3. Proteomic and transcriptomic analyses of whole SINV-infected cell 

lysates; related to Figure 3 and Tables S3-4. A) Scatter plots displaying the intensity 

ratio for each protein (dots) in the cRIC inputs from cells infected with SINV for 4 h over 

uninfected cells, analysed by quantitative proteomics. Plots show the experimental 

reproducibility as each axis indicate the ratios obtained in one biological replicate. The 

three scatter plots represent the pair-wise comparison of the three replicates. Black dots 

represent proteins significantly enriched in the eluates of cRIC experiments either at 4 hpi 

or in uninfected conditions (Figure 2A and S2A). WCL, whole cell lysate. B) As in (A) but 

between 18 hpi and uninfected conditions. Black dots represent proteins significantly 

enriched in the eluates of cRIC experiments either at 18 hpi or in uninfected conditions 

(Figure 2C and S2B). C) Scatter plots comparing the raw intensity of each protein in the 

inputs of two cRIC replicates from cells infected with SINV for 18 h. The three scatter 

plots display the pair-wise comparison between all three replicates. Viral proteins are 

highlighted in red. D) Scatter plots comparing the intensity of each protein in the cRIC 

eluates normalised to the intensity in the inputs of two biological replicates from cells 

infected with SINV for 18 h. The three scatter plots display the pair-wise comparison 

between all three replicates. E) Heatmap representing the differential expression of 

cellular RNAs detected by RNAseq in SINV-infected (4 or 18 hpi) and uninfected HEK293 

cells. Only RNAs with log2 fold change >3 or <-3 and p<0.01 in mock to infected 

comparisons are displayed. F) Principal component analysis of gene expression profiled 

by RNAseq in uninfected and SINV-infected cells at 4 or 18 hpi. The three replicates of 

each condition are considered separately. Data shows that, first, replicates from the same 

condition cluster together (i.e. they are more similar to each other than to other conditions) 

and, second, that the transcriptome at 18 hpi strongly differs from the uninfected control 

and 4 hpi. G) Read counts for viral RNA, cellular protein-coding RNA and cellular non-

coding RNA quantified by RNAseq in mock and SINV-infected cells. These plots show 

the changes in the RNA composition of the cells as infection progresses. 
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Figure S4. Localisation of host RBPs in SINV-infected HeLa cells; related to Figure 

4. A) Localisation analysis of poly(A) RNAs and SINV C protein in uninfected and infected 

cells (18 hpi) by combined fluorescence in situ hybridisation with an oligo(dT) probe 

coupled to Alexa594 and immunofluorescence with an antibody against SINV C. DAPI 

was used to indicate the position of the nuclei; oligo(dA) probe coupled to Alexa 594 was 

used as a negative control. At 18 hpi, cytoplasmic poly(A) RNA concentrates in 

cytoplasmic foci that co-localise with SINV C. This poly(A) RNA is thus likely to be viral. 

B) Localisation by immunofluorescence of the eGFP-fused RBPs in uninfected or SINV-

infected cells (18 hpi). Immunofluorescence with an antibody against SINV C and DAPI 

staining were used to localise the viral replication factories and the nuclei, respectively. 

At least 10 fields from at least two biological replicates were inspected for each protein to 

determine whether the proteins accumulate in the viral factories, are diffused in the 

cytoplasm or are excluded from the viral factories (indicated with a green, grey or red box, 

respectively). Plots of green and red fluorescence intensity profiles in a representative 5 

µm section (white line) are shown for each protein. AFU, arbitrary fluorescence units. C) 

Localisation analysis of SINV RNA and GEMIN5-GFP (left panel) or MOV10-YFP (right 

panel) in uninfected or SINV-infected cells (18 hpi) by combined in situ hybridisation and 

immunofluorescence. Yellow scale-bar represents 10 µm. 
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Figure S5. Analysis of the contribution of transcription, processing and 

degradation to the transcriptome of SINV-infected cells; related to Figure 5. A) Plots 

representing the log2 fold change of cellular RNAs detected by RNAseq between 

uninfected and SINV-infected (4 hpi) cells, compared to rates of RNA synthesis (left), 

processing (middle) and degradation (right) determined in (Mukherjee et al., 2017). B) As 

in (A) but comparing uninfected cells and 18 hpi. C) Schematic representation of HIV-1 

single-round replication virus tagged with mCherry in Nef or Gag. D) Bright-field 

microscopy images of HEK293 wt and XRN1 knock out cells. E-F) 25,000 HEK293 wt or 

XRN1 knock out cells were seeded per well of a 96-well plate. Cell viability was estimated 

24, 48 and 72 h later by adding CellTiter 96 Aqueous One Solution reagent and measuring 

absorbance at 490 nm on a plate reader (panel E). The number of cells was counted 24, 

48 and 72 h after seeding using an automated cell counter (panel F). Values are 

represented as the mean ± standard deviation of three independent experiments. 
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Figure S6. Effects of host RBP perturbation on SINV infection; related to Figure 6. 

A) HEK293 cells were treated with different inhibitors targeting host RBPs and viability 

was monitored using CellTiter 96 Aqueous One Solution kit. Absorbance at 490 nm was 

measured on a plate reader. Data is represented as the mean ± standard deviation (SD) 

of at least three independent experiments performed in triplicate. T test was employed to 

determine the significance of the changes in viability of cells treated with the inhibitors or 

dimethyl sulfoxide (DMSO) as a control. Any dose that caused a reduction in cell viability 

greater that 20% was considered ‘toxic’. B) Cell viability (upper panel) and proliferation 

(lower panel) was analysed as in Figure S5E and S5F, respectively, in HEK293 

HSP90AB1 or PPIA knock out cells. C) RNA-binding sites of HSP90AB1 identified by 

RBDmap (Castello et al., 2016). RBDmap employs UV crosslinking, denaturing lysis, 

oligo(dT) capture and partial proteolysis to determine in a system-wide manner the protein 

regions engaged in RNA binding. Y-axis indicates the enrichment of each identified 

peptide in the RNA-bound fraction and X-axis represents the protein from N- to C-

terminus. Boxes below the X-axis indicate the position of annotated protein domains 

(Pfam). Red lines represent peptides engaged in RNA binding identified with 1% FDR 

(RBDpeps), while cyan lines indicate peptides that do not bind to RNA. D) Upper panels 

show the mCherry expression in HEK293 cells overexpressing the candidate RBPs fused 

to eGFP and infected with SINV-mCherry. Red fluorescence was measured as in Figure 

S1B. Overexpression was confirmed by western blot analyses with specific antibodies. 

RFU, relative fluorescence units. Bottom panels show Western blotting analysis of SINV 

C accumulation in cells overexpressing the candidate RBP-eGFP and infected with SINV 

or SINV-mCherry for 18 h. E) As in (D) but using eGFP antibody to detect the expression 

of RBP-eGFP fusion proteins. ***p<0.001; **p<0.01; *p<0.05; n.s. non-significant. 
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Figure S7. Analysis of GEMIN5 molecular partners in SINV-infected cells; related 

to Figure 7 and Table S5. A) mCherry expression in HEK293 wt and TRIM25 knock 

out cells infected with SINV-mCherry (upper panel). Red fluorescence was measured as 

in Figure S1B. RFU, relative fluorescence units. Bottom panels show Western blotting 

analysis of TRIM25 knock out cells infected with SINV-mCherry or SINV wt for 18 h. 

Fold change of SINV C (TRIM25 KO vs wt cells) is shown below. ***p<0.001; **p<0.01. 

B) TRIM25 knock out cells viability (upper panel) and proliferation (lower panel) was 

analysed as in Figure S5E and S5F, respectively. C) eGFP (left panels) and GEMIN5-

eGFP (right panels) expressed in Tet-on HEK293 cells were immunoprecipitated with 

GFP-Trap_A. Eluates were analysed by Western blotting with an antibody against 

eGFP and silver staining. Immunoprecipitation was performed in the presence or 

absence of RNase A. D) STRING protein-protein interaction map of the proteins 

enriched in GEMIN5 IPs with p<0.01. E) Coverage of 5'-first base of unique sequenced 

fragments from GEMIN5 iCLIP shown along SINV RNA genome. The data is shown as 

20 nt sliding mean of library-size normalised reads (RPM) after subtraction of 

background observed in GFP control. The five biological replicates are shown 

individually. F) As in E but in a heatmap representation. G) Binding sites predicted 

individually for the five replicates, grouped into five categories based on strength of 

binding (coverage normalised to peak width). H) Count of sequenced 5' base of unique 

molecules mapping to the region around SINV sgRNA start site relative to total count in 

the region, shown for the five replicates. Position indicated as ‘1’ is the first base of the 

SINV sgRNA. The number of counts (binding events) is highest at the region 

corresponding to the beginning of the sgRNA. Base ‘0’ just before the start of the 

sgRNA is often sequenced as ‘G’ rather than the genomic ‘A’. These observations 

suggest that GEMIN5 binding this region is likely to interact with the sgRNA, exclusively 

or in addition to the overlapping gRNA, and that that additional ‘G’ correspond to the 

cap structure. 
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