# Sample-to-answer palm-sized nucleic acid testing device towards low-cost malaria mass screening

Gihoon Choi<sup>1</sup>, Theodore Prince<sup>1</sup>, Jun Miao<sup>2</sup>, Liwang Cui<sup>2</sup> and Weihua Guan<sup>1, 3\*</sup>

<sup>1</sup> Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA

<sup>2</sup> Department of Entomology, Pennsylvania State University, University Park 16802, USA

<sup>3</sup> Department of Biomedical Engineering, Pennsylvania State University, University Park 16802, USA

<sup>\*</sup> Correspondence should be addressed to w.guan@psu.edu

#### **Supplementary Figure**



**Supplementary Figure S1**. Determination of the threshold time  $(T_t)$ . A real-time amplification curve (blue) and its differential profile (dRFU/dt, orange). The threshold time  $(T_t)$  was determined at the maximum slope of RFU. ( $T_t$ : threshold time, t: time,  $S_{max}$ : maximum value of the slope)

## Supplementary Table

| Assay | Detection<br>Method        | Real-time<br>Ability | Automation | Sample<br>Processing                            | LOD<br>(p/µl) | "Sample-to-<br>Answer"<br>Turnaround<br>Time | Ref.                                           |
|-------|----------------------------|----------------------|------------|-------------------------------------------------|---------------|----------------------------------------------|------------------------------------------------|
| LAMP  | Fluorescence               | Yes                  | Automated  | Magnetic bead-<br>based extraction              | 0.6           | <50 minutes                                  | This Work                                      |
| LAMP  | Turbidity                  | No                   | Manual     | gravity-driven<br>filtration                    | 2             | < 1 hours                                    | (Lucchi et al., 2016)                          |
| LAMP  | Turbidity                  | No                   | Manual     | thermal lysis centrifugation                    | 5             | 60 - 80<br>minutes                           | (Sema et al., 2015)                            |
| LAMP  | Fluorescence               | Yes                  | Manual     | gravity-driven<br>filtration                    | 5             | 45 minutes                                   | (Xu et al.,<br>2016)                           |
| LAMP  | Hydroxynaphthol blue (HNB) | No                   | Manual     | Saponin-chelex<br>lysis                         | 1-5           | Not reported                                 | (Britton et al., 2015)                         |
| PCR   | Fluorescence               | Yes                  | Manual     | Off-chip                                        | 5             | < 1 hours                                    | (Nair et al.,<br>2016)                         |
| PCR   | Fluorescence               | Yes                  | Manual     | Off-Chip                                        | 2             | Not reported                                 | (Taylor et al., 2014)                          |
| RPA   | Interferometer             | Yes                  | Manual     | Dimethyl<br>adipimidate/thin<br>film extraction | 1             | ~1.2 hours                                   | (Liu et al.,<br>2016; Shin<br>et al.,<br>2015) |
| HDA   | Lateral flow strip         | No                   | None       | None                                            | 200           | ~2.5 hours                                   | (Li et al.,<br>2013)                           |

### Supplementary Table S1. Comparison of NAT POC devices for malaria diagnosis

| Species                                     | Primer                                              | Sequence $(5' \rightarrow 3')$                                                                                                                                            |
|---------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Plasmodium<br>genus(Polley et al.,<br>2010) | F3                                                  | TCGCTTCTAACGGTGAACT                                                                                                                                                       |
|                                             | B3c                                                 | AATTGATAGTATCAGCTATCCATAG                                                                                                                                                 |
|                                             | FIP (F1c - F2)                                      | GGTGGAACACATTGTTTCATTTGATCTCATTCCAATGGAACCTTG                                                                                                                             |
|                                             | BIP (B1 – B2c)<br>LE                                |                                                                                                                                                                           |
|                                             | LB                                                  | TGGACGTAACCTCCAGGC                                                                                                                                                        |
|                                             | 22                                                  |                                                                                                                                                                           |
| P. falciparum(Polley<br>et al., 2010)       | F3                                                  | CTCCATGTCGTCTCATCGC                                                                                                                                                       |
|                                             | B3c<br>FIP (F1c – F2)<br>BIP (B1 – B2c)<br>LF<br>LB | AACATTTTTTAGTCCCATGCTAA<br>ACCCAGTATATTGATATTGCGTGACAGCCTTGCAATAAATA                                                                                                      |
| P. vivax(Britton et al 2016)                | F3                                                  | GGTACTGGATGGACTTTATAT                                                                                                                                                     |
| , 2020)                                     | B3c<br>FIP (F1c – F2)<br>BIP (B1 – B2c)<br>LF<br>LB | GGTAATGTTAATAATAGCATTACAG<br>CCAGATACTAAAAGACCAACCCACCATTAAGTACATCACT<br>GCTAGTATTATGTCTTCTTTCACTTAATATACCAAGTGTTAAACC<br>GATAACATCTACTGCAACAGG<br>CTACTGTAATGCATCTAAGATC |

## Supplementary Table S2. Primer sets for genus-, *Pf*-, and *Pv*-specific LAMP amplification.

| System      | Description                          | Part#        | Function                  | Unit<br>Cost<br>(\$) | Unit<br>Qty. | Ext. Cost<br>(\$) |
|-------------|--------------------------------------|--------------|---------------------------|----------------------|--------------|-------------------|
| Electronics | Arduino Mega 2560 R3                 | DEV-1106     | Microcontroller           | 45.95                | 1            | 45.95             |
| Electronics | 36-pin Stripe Male Header            | 392          | Headpins                  | 4.95                 | 0.083        | 0.41              |
| Electronics | DC Barrel Power Jack/Connector       | PRT-00119    | Power Connector           | 1.25                 | 1            | 1.25              |
| Electronics | Shield Stacking Headers for Arduino  | 85           | Wire Sockets              | 1.95                 | 0.33         | 0.64              |
| Electronics | Premium Male/Male Jumper Wires       | 758          | Wires                     | 3.95                 | 0.75         | 2.96              |
| Electronics | Trimmer Potentiometer, $500\Omega$   | 62J1468      | LED adjustment            | 1.98                 | 4            | 7.92              |
| Electronics | Through Hole Resistor, $10k\Omega$   | 38K0328      | Temperature control       | 0.09                 | 5            | 0.45              |
| Electronics | Through Hole Resistor, $47\Omega$    | 38K0326      | Resistors for LED         | 0.09                 | 2            | 0.18              |
| Electronics | Capacitor 470µF                      | 65R3137      | Power stabilizing         | 0.11                 | 1            | 0.11              |
| Electronics | Capacitor 0.33µF                     | 46P6304      | Voltage regulating        | 0.27                 | 1            | 0.27              |
| Electronics | Capacitor 0.1µF                      | 46P6667      | Voltage regulating        | 0.354                | 1            | 0.354             |
| Electronics | Diode, Standard, 1A, 50V             | 78K2043      | Diode                     | 0.07                 | 1            | 0.07              |
| Electronics | 26 pin Wire Connector                | 1171         | Wiring                    | 4.95                 | 1            | 4.95              |
| Electronics | 26 pin GPIO Ribbon Cable             | 862          | Wiring                    | 2.95                 | 1            | 2.95              |
| Servo       | Micro Size - High Torque Servo       | 2307         | Actuation of disk         | 11.95                | 1            | 11.95             |
| Magnets     | Neodymium Disc Magnet Nickel         | 58605K33     | Holding magnetic beads    | 2.69                 | 4            | 10.76             |
| Thermal     | Cold Plate                           | CP-0.91-0.91 | Heating stage             | 5.75                 | 0.25         | 1.44              |
| Thermal     | Peltier Heater                       | 102-1667-ND  | Heater                    | 16                   | 1            | 16.00             |
| Thermal     | N Channel Power MOSFET               | 63J7707      | Switch for Peltier heater | 1.66                 | 1            | 1.66              |
| Thermal     | Thermistor                           | 95C0606      | Temperature sensing       | 7.34                 | 1            | 7.34              |
| Optics      | Color Sensor                         | 1334         | Detection                 | 7.16                 | 4            | 28.64             |
| Optics      | Optical Plastic Light Guide          | #02-538      | Guiding light             | 2.55                 | 0.24         | 0.61              |
| Optics      | CREE LED, Blue, T-1 3/4 (5mm)        | 04R6674      | Fluorescence excitation   | 0.21                 | 1            | 0.21              |
| Bluetooth   | Bluetooth Low Energy (BLE 4.0)       | 1697         | Bluetooth connectivity    | 19.95                | 1            | 19.95             |
| LCD         | 3.5" TFT 320 x 480                   | 85           | touch screen LCD          | 39.95                | 1            | 39.95             |
| SD          | MicroSD Card Breakout Board          | 254          | SD module                 | 7.5                  | 1            | 7.50              |
| Enclosure   | Adjustable-Friction Hinge            | 1791A44      | Hinge                     | 6.72                 | 2            | 13.44             |
| Enclosure   | ABS Filament                         | 90003001     | 3D platform material      | 18.5                 | 0.4          | 7.40              |
| Enclosure   | Acrylic Sheet, 1/8" Thick, 12" x 24" | 8505K12      | Holding plates            | 13.46                | 0.7          | 9.42              |
| Enclosure   | Screws (M4 cap screw)                | W8S038       | Hinge holding             | 3.25                 | 0.04         | 0.13              |
| Enclosure   | Screws (M3 set screw)                | SS3M6        | For holding color sensor  | 9.25                 | 0.0006       | 0.01              |

### Supplementary Table S3. Bill of materials

Total Cost

\$244.87

| Reagents              | Vendor        | Function        | Stock Vol (ml) | Unit Cost (\$) | Vol.(µl)/test | Ext. Cost (\$)/test |
|-----------------------|---------------|-----------------|----------------|----------------|---------------|---------------------|
| UltraPure PCR Water   | VWR           | LAMP master mix | 20             | 91.88          | 7.25          | 0.033               |
| F3                    | IDT           | LAMP master mix | 1.4            | 9.22           | 0.25          | 0.002               |
| B3                    | IDT           | LAMP master mix | 1.5            | 10.22          | 0.25          | 0.002               |
| FIP                   | IDT           | LAMP master mix | 1.0            | 7.14           | 2.00          | 0.013               |
| BIP                   | IDT           | LAMP master mix | 1.4            | 9.18           | 2.00          | 0.013               |
| LF                    | IDT           | LAMP master mix | 1.7            | 11.86          | 1.00          | 0.007               |
| LB                    | IDT           | LAMP master mix | 1.3            | 8.61           | 1.00          | 0.007               |
| Calcein               | Sigma-Aldrich | LAMP master mix | 8000           | 133.00         | 0.63          | 0.000               |
| MnCl <sub>2</sub>     | Sigma-Aldrich | LAMP master mix | 100            | 62.60          | 1.88          | 0.001               |
| Betaine               | Sigma-Aldrich | LAMP master mix | 1.5            | 24.25          | 2.00          | 0.032               |
| dNTP Mix              | Thermo Fisher | LAMP master mix | 3.2            | 107.00         | 3.50          | 0.117               |
| Bst polymerase        | NEB           | LAMP master mix | 1              | 264.00         | 1.00          | 0.264               |
| NEB Isothermal Buffer | NEB           | LAMP master mix | 6              | 24.00          | 2.5           | 0.010               |
| $MgSO_4$              | NEB           | LAMP master mix | 6              | 20.00          | 1.75          | 0.006               |
| Lysis Buffer          | Invitrogen    | Sample Prep.    | 800            | 142.00         | 1000.00       | 0.178               |
| Purification Buffer   | Invitrogen    | Sample Prep.    | 20             | 28.97          | 30.00         | 0.043               |
| Wash Buffer           | Invitrogen    | Sample Prep.    | 100            | 144.84         | 150.00        | 0.217               |
| Proteinase K          | Invitrogen    | Sample Prep.    | 1              | 1.45           | 10.00         | 0.014               |
| Magnetic Beads        | Invitrogen    | Sample Prep.    | 2              | 2.90           | 10.00         | 0.014               |
| Acrylic Adhesive      | ePlastics     | Compact disc    | 118            | 9.69           | 1.5           | 0.041               |
| 1/32" Acrylic Sheet   | ePlastics     | Compact disc    | -              | 14.98          | -             | 0.025               |
| 1/16" Acrylic Sheet   | ePlastics     | Compact disc    | -              | 17.72          | -             | 0.030               |
|                       |               |                 |                |                | Total Cost    | \$ 1.07             |

Supplementary Table S4. Microfluidic reagent disc cost

#### Reference

Britton, S., Cheng, Q., Grigg, M.J., Poole, C.B., Pasay, C., William, T., Fornace, K., Anstey, N.M., Sutherland, C.J., Drakeley, C., *et al.* (2016). Sensitive Detection of Plasmodium vivax Using a High-Throughput, Colourimetric Loop Mediated Isothermal Amplification (HtLAMP) Platform: A Potential Novel Tool for Malaria Elimination. Plos Neglected Tropical Diseases *10*, e0004443.

Britton, S., Cheng, Q., Sutherland, C.J., and McCarthy, J.S. (2015). A simple, high-throughput, colourimetric, field applicable loop-mediated isothermal amplification (HtLAMP) assay for malaria elimination. Malar J 14, 335.

Li, Y., Kumar, N., Gopalakrishnan, A., Ginocchio, C., Manji, R., Bythrow, M., Lemieux, B., and Kong, H.M. (2013). Detection and Species Identification of Malaria Parasites by Isothermal, tHDA Amplification Directly from Human Blood without Sample Preparation. J Mol Diagn *15*, 634-641.

Liu, Q., Nam, J., Kim, S., Lim, C.T., Park, M.K., and Shin, Y. (2016). Two-stage sample-to-answer system based on nucleic acid amplification approach for detection of malaria parasites. Biosens Bioelectron *82*, 1-8.

Lucchi, N.W., Gaye, M., Diallo, M.A., Goldman, I.F., Ljolje, D., Deme, A.B., Badiane, A., Ndiaye, Y.D., Barnwell, J.W., Udhayakumar, V., *et al.* (2016). Evaluation of the Illumigene Malaria LAMP: A Robust Molecular Diagnostic Tool for Malaria Parasites. Sci Rep-Uk *6*.

Nair, C.B., Manjula, J., Subramani, P.A., Nagendrappa, P.B., Manoj, M.N., Malpani, S., Pullela, P.K., Subbarao, P.V., Ramamoorthy, S., and Ghosh, S.K. (2016). Differential Diagnosis of Malaria on Truelab Uno(R), a Portable, Real-Time, MicroPCR Device for Point-Of-Care Applications. Plos One *11*, e0146961.

Polley, S.D., Mori, Y., Watson, J., Perkins, M.D., Gonzalez, I.J., Notomi, T., Chiodini, P.L., and Sutherland, C.J. (2010). Mitochondrial DNA targets increase sensitivity of malaria detection using loop-mediated isothermal amplification. J Clin Microbiol *48*, 2866-2871.

Sema, M., Alemu, A., Bayih, A.G., Getie, S., Getnet, G., Guelig, D., Burton, R., LaBarre, P., and Pillai, D.R. (2015). Evaluation of non-instrumented nucleic acid amplification by loop-mediated isothermal amplification (NINA-LAMP) for the diagnosis of malaria in Northwest Ethiopia. Malaria J *14*.

Shin, Y., Lim, S.Y., Lee, T.Y., and Park, M.K. (2015). Dimethyl adipimidate/Thin film Sample processing (DTS); A simple, low-cost, and versatile nucleic acid extraction assay for downstream analysis. Scientific reports *5*.

Taylor, B.J., Howell, A., Martin, K.A., Manage, D.P., Gordy, W., Campbell, S.D., Lam, S., Jin, A., Polley, S.D., Samuel, R.A., *et al.* (2014). A lab-on-chip for malaria diagnosis and surveillance. Malaria J *13*.

Xu, G., Nolder, D., Reboud, J., Oguike, M.C., van Schalkwyk, D.A., Sutherland, C.J., and Cooper, J.M. (2016). Paper-Origami-Based Multiplexed Malaria Diagnostics from Whole Blood. Angewandte Chemie *55*, 15250-15253.

**Video S1. Device workflow**. 20  $\mu$ I of finger-prick blood was collected using a capillary tube and lysed in the collection tube filled with 1000  $\mu$ I of lysis buffer. 180  $\mu$ I of blood lysate was transferred into each binding chamber of the testing units on the reagent compact disc. After loading the sample, the disc was sealed with PSA tape. The prepared disc was inserted into the mobile analyzer for a streamlined nucleic acid sample preparation (binding, washing, and elution), and amplification process. During the amplification, the fluorescence intensity data were recorded on a non-volatile memory card and displayed on the LCD screen in real-time. After the amplification, the built-in algorithm reports the test results to the user. Users also have an option to receive the results using a smartphone.

**Video S2. Streamlined DNA extraction and amplification on the reagent compact disc.** It consists of the following three steps: binding, washing, and elution. The negatively charged parasite DNAs first bind to the pH-sensitive charge-switchable magnetic beads at pH 5.0. During the binding process (3 min), the reagent compact disc was rotated back and forth slowly to ensure thorough mixing of the beads and the lysate. The DNA-binding magnetic beads were then transferred to the washing chamber by magnetic actuation. The washing process lasts for 4 min, and the magnetic beads with purified DNAs were further transferred to the reaction chamber, where the LAMP master mix is present. The LAMP master mix has a pH of 8.8, which switches the surface charge of the magnetic beads towards negative. The negatively charged DNAs were therefore repelled off from the magnetic beads and eluted into the master mix. After that, the residual magnetic beads were removed from the reaction chamber, and LAMP reaction is initiated.