Supporting Information

Kinetic Understanding of N₂ Reduction versus H₂ Evolution at the E₄(4H) Janus State in the Three Nitrogenases

Derek F. Harris^a, Zhi-Yong Yang^a, Dennis R. Dean^b, Lance C. Seefeldt^{a*}, Brian M. Hoffman^{c*} ^aDepartment of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA. ^bDepartment of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, USA. ^cDepartment of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.

Steady-State Kinetic Analysis of Scheme D

The equations that describe the time-dependence of the populations of the three states comprising the high-flux **Schemes C** are given in **eq S1**, where, setting the population derivatives to zero expresses the steady-state condition, namely populations are invariant in time.

$$\frac{dE_{2}(2H)}{dt} = -(k_{ac} + k_{HP})E_{2}(2H) + k_{HP}E_{4}(4H) + k_{cat}E_{4}(2N2H) \xrightarrow{SS}{\rightarrow} 0$$

$$\frac{dE_{4}(4H)}{dt} = -(k_{HP} + k_{re}P(N_{2}))E_{4}(4H) + k_{ac}E_{2}(2H) \xrightarrow{SS}{\rightarrow} 0$$

$$\frac{dE_{4}(2N2H)}{dt} = -k_{cat}E_{4}(2N2H) + k_{re}P(N_{2}))E_{4}(4H) \xrightarrow{SS}{\rightarrow} 0$$

$$S1$$

$$E_4(2H) + E_4(4H) + E_4(2N2H) = E_0^0$$

The three kinetic equations, in combination with the 'conservation' condition that the populations of the three states sum to the total enzyme population, E_0^0 , can be solved to obtain formulas for the steady-state populations of the three states involved in the scheme.

$$\frac{E_2(2H)}{E_0^0} \xrightarrow{ss} \frac{\left(\frac{k_{HP}}{k_{ac}}\right) + \left(\frac{k_{re}}{k_{ac}}\right) P_{N2}}{1 + \left(\frac{k_{HP}}{k_{ac}}\right) + \left(\frac{k_{re}}{\overline{k}}\right) P_{N2}}$$

$$\frac{E_4(4H)}{E_0^0} \xrightarrow{ss} \frac{1}{1 + \left(\frac{k_{HP}}{k_{ac}}\right) + \left(\frac{k_{re}}{\overline{k}}\right) P_{N2}}$$

$$\frac{E_4(2N2H)}{E_0^0} \xrightarrow{ss} \frac{\left(\frac{k_{re}}{k_{cat}}\right) P_{N2}}{1 + \left(\frac{k_{HP}}{k_{ac}}\right) + \left(\frac{k_{re}}{\overline{k}}\right) P_{N2}}$$

$$\frac{1}{\overline{k}} = \frac{1}{k_{ac}} + \frac{1}{k_{cat}}$$

S2

The rates of formation of products are obtained by multiplying the populations involved with the appropriate rate constants,

The final steady-state rate constants, k_{NH_3} , k_{H_2} , are given in the text. As the populations, and thus product formation, are zeroth order in time, the accumulation of product is simply proportional to the rate constant, the total enzyme concentration, and time.

As discussed in the text, **Scheme C**, and the rate constants presented in the main text, incorporate HP at both $E_2(2H)$ and $E_4(4H)$. However, as the flux increases, whether or not N_2 is present and/or P_{N_2} becomes large, the population of $E_2(2H)$ becomes negligible,

$$\frac{E_2(2H)}{E_4(4H) + E_4(2N2H)} = \frac{\left(\frac{k_{HP}}{k_{ac}}\right) + \left(\frac{k_{re}}{k_{ac}}\right)P_{N2}}{1 + \left(\frac{k_{re}}{k_{cat}}\right)P_{N2}} \xrightarrow{\left(\frac{k_{HP}}{k_{ac}}\right)} \xrightarrow{hi flux} 0; P_{N2} \to 0$$

$$S4$$

and as a result, HP at $E_2(2H)$ is quenched and **Scheme C** evolves into **Scheme D**. In the absence of N₂, of course $E_4(2N2H)$ cannot form and its population vanishes. At high N₂ pressures, $E_4(4H)$ itself gets depopulated as the system is 'pushed' to $E_4(2N2H)$ by the second-order reaction with N₂/*re* of H₂,

$$\frac{E_4(4H)}{E_4(2N2H)} = \frac{1}{k_{rs}P_{N2}} \xrightarrow{P_{N2} \to \infty} 0$$

As a final comment, the formulation presented here, with populations and rate constants for **Schemes C**, **D** is designed for the description of high-flux experiments and is only valid in that regime because it assumes E_0 doesn't ever accumulate; such accumulation would occur at low flux, which thus would require populations to be calculated with **Scheme B**. *However*, the flux dependence of the ratio of rate constants, $r = k_{H2}/k_{N2}$, presented in **eq 6** is valid as the system falls out of the high-flux regime becauses it is the *ratio* of product-formation rate constants, and thus depends only on the relative populations of the reacting states, namely the two E_4 and E_2 in **Schemes B-D**.

H₂ oa and the Steady-State Kinetics

As described in **Fig 1**, the *re/oa* process is a dynamic equilibrium, with the forward *re* process driven by N₂ binding and the reverse reaction induced by H₂ binding.¹⁻⁶ The kinetic analysis in the main text ignores the *oa* reaction, because the turnover is not carried out under an atmosphere containing H₂. But such situations can arise, as for example in our turnover experiments under an atmosphere of N₂, C₂H₂, and added D₂, which showed that E₄(2H,2D) forms by *oa* (it reacts with C₂H₂ to form *cis*-C₂H₂D₂). Moreover, *some* H₂ is generated during the turnover experiments. Therefore, we here analyze the influence of H₂ *oa* on the kinetics, and in so doing show that it is proper to ignore this in treating the reported experiments.

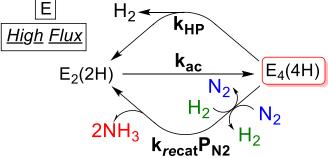

The presence of H_2/D_2 and its *oa* reaction with $E_4(2N2H)$ clearly would inhibit the net formation and reaction of $E_4(2N2H)$. This is straightforwardly incorporated as an extension of the reactions of $E_4(2N2H)$ (**Fig 2**), as shown in **Fig S1**. The $E_4(2N2H)$ intermediate is formed by

Figure S1: Extension of kinetic schemes of **Fig 2** to include the *re/oa* equilibrium where $E_4(2N2H)$ is formed by H_2 *re* with N_2 binding, but this can be reversed by the H_2 *oa* process with N_2 release.

 N_2 binding and lost through a competition between the second-order process of H_2 *oa* and firstorder progress to NH_3 formation. This intermediate itself be may then be taken to be in steadystate, leading to the further simplified **Scheme E** in which $E_4(4H)$ reacts with N_2 with the

composite second-order steady-state rate constant, k_{recat} , and, upon directly returning to E_0 , in turn is promptly reduced to $E_2(2H)$. The kinetic cycle thus involves only $E_4(4H)$ and $E_2(2H)$, with k_{recat} given in **eq S1**, k_{HP} and k_{ac} defined as in the other Schemes. The *oa* reaction with H_2 is incorporporated into the

steady-state rate constant, k_{recat} , which is a function of the H₂ partial pressure.

$$k_{recat} = \frac{k_{cat}k_{re}}{k_{cat} + k_{oa}P_{H2}} = \frac{k_{re}}{1 + \frac{(k_{oa}P_{H2})}{k_{cat}}}$$
S6

We recently measured¹ the equilibrium constant for the *re/oa* equilibrium for Monitrogenase to be, $K_{re/oa} \sim 2$, implying that $k_{oa} \sim k_{re}/2 = 42$ atm⁻¹sec⁻¹ using the value for Monitrogenase in **Table 1**. The experimental vessel used in turnover experiments has a headspace volume of ~ 8 mL, and the maximum amount of H₂ produced in a turnover experiment (at P_{N2} = 0), ~ 1700 nmoles, corresponds to a partial pressure of P_{H2} ~ $5x10^{-3}$ atm. As a firstapproximation, we may take the average pressure during H₂ accumulation in such an experiment to be half that, ~ $2.5x10^{-3}$ atm (a precise integration of the differential equations that arise from Scheme **E** is possible, but does not change the discussion here significantly). With these values, then during a turnover experiment, the *oa* of H₂ yields a maximum contribution to the denominator of **eq S1** of, k_{oa} ·P_{H2} < 0.1 sec⁻¹. As the analysis in the main text shows that, $k_{cat} \bar{k} \ge$ = 11 sec⁻¹, the analysis here shows that the 'inhibition' of the forward *re* reaction caused by *oa* of H₂ formed during catalysis can cause *no more* than ~1% variation in the value of k_{re} for Monitrogenase determined by ignoring *oa*. *Moreover*, as extensively discussed in the main text, H₂ formation is suppressed when reaction with N₂ is significant (**Fig 5**), so even this value is an over-estimate of the impact of *oa* for Mo-nitrogenase.

The maximum amount of H₂ produced during a Fe-nitrogenase titration is ~1/2 that for Mo-nitrogenase, but k_{re} , and thus k_{oa} are ~ 10-fold greater, resulting in an (overestimate) upper bound of < 5% decrease in the reported k_{re} for Fe-nitrogenase, well below the uncertainty in the measurement.

Thus, although the inclusion of H_2 *oa* would be essential for analysis of turnover with significant *added* pressures of H_2/D_2 , this analysis validates the simplification introduced in Schemes **B-D** of ignoring inhibition of N_2 fixation by *oa* of H_2 formed during steady-state turnover.

Data for Figures 4-6 and Table 1

Table S	S1: Specific activities	of P_{N_2} titration, equation used	in SigmaPlot, and derived					
constan	ts from Figure 4 .							
	Mo-nitrogenase							
P _{N2} (atm)	Specific Activity - nmol NH3/nmol protein/s	SigmaPlot Equation	Derived constants					
0.005	0.09	_						
0.01	0.13	_						
0.02	0.31	y=(1/4)*((a*x)*(1+z*b*x))/(1+b*x)						
0.04	0.54	$y = nmol NH_3/nmol protein/s$						
0.06	0.84	$a = k_{re}$	$k_{re} (s^{-1} A tm^{-1}) = 83(5)$					
0.08	1.00	$b = K_a$	$K_{\rm a} = k_{re}/\bar{k} ({\rm Atm}^{-1}) = 7.3(5)$					
0.1	1.27	$z = k_{\rm HP}/k_{\rm ac}$						
0.2	1.77	$x = P_{N_2}$						
0.6	2.33	_						
1	2.42							
		Fe-nitrogenase						
P _{N2} (atm)	Specific Activity - nmol NH3/nmol protein/s	SigmaPlot Equation	Derived constants					
0.05	0.08							
0.1	0.19	y=(1/4)*((a*x)*(1+z*b*x))/(1+b*x)						
0.2	0.30	$y = nmol NH_3/nmol protein/s$						
0.3	0.40	$a = k_{re}$	$k_{re} (s^{-1} Atm^{-1}) = 8.5(5)$					
0.4	0.51	$b = K_a$	$K_{\rm a} = k_{re}/\bar{k} ({\rm Atm}^{-1}) = 1.8(2)$					
0.6	0.65	$z = k_{\rm HP}/k_{\rm ac}$						
0.8	0.69	$x = P_{N_2}$						
1	0.75							

~-8		rate constants from Figure 5 .		
		Mo-nitrogenase		
P _{N2}	Ratio H ₂ /N ₂	SigmaPlot	Derived constants	
(atm)		Equation		
0.005	181.87			
0.01	127.99			
0.02	50.99	$(1 + (1/4) \times (1 + 4 \times 2) \times k \times 2) / ((1/4) \times k \times 2))$		
0.04	26.92	y=(1+(1/4)*(1+4*a)*b*x)/((1/4)*b*x)) y = ratio H ₂ /N ₂	$\rho = k_{re}/k_{\rm HP} ({\rm Atm}^{-1}) = 5.1(1)$	
0.06	15.69	$a = k_{HP}/k_{ac}$		
0.08	12.74	$b = \rho$		
0.1	8.96	$x = P_{N_2}$		
0.2	4.92			
0.6	2.18			
1	1.81			
		Fe-nitrogenase		
P _{N2}	Datio II./N.	SigmaPlot	Derived constants	
(atm)	Ratio H ₂ /N ₂	Equation		
0.05	101.65			
0.1	43.64	/1 、/1 /42-5/1 、4 歩 25-1 歩 22///1 /42-5-1 歩 2	$\rho = k_{re}/k_{\rm HP} ({\rm Atm}^{-1}) = 0.77(5)$	
0.2	25.39	y=(1+(1/4)*(1+4*a)*b*x)/((1/4)*b*x) y = ratio H ₂ /N ₂ a = k _{HP} /k _{ac} b = ρ x = P _{N2}		
0.3	17.75			
0.4	12.30			
0.6	8.88			
0.8	8.05			
	6.62			

Table S2: Values for ratio of H_2 produced to N_2 reduced per P_{N_2} , equation used in SigmaPlot, and derived rate constants from **Figure 5**.

Table S3: Values for ratio of H_2 produced to N_2 reduced per <i>M</i> Fe:Fe molar ratio, equation							
used in SigmaPlot, and derived values from Figure 6.							

Mo-nitrogenase					
MoFe:Fe	Ratio H ₂ /N ₂	SigmaPlot Equation	Derived value		
0.05	1.81				
0.5	2.29	$= y = (1 + (1/4)^*(1 + 4^*(a^*x))^*b^*c)/((1/4)^*b^*c)$			
1	2.44	$\begin{array}{l} - \qquad \qquad y = ratio H_2/N_2 \\ - \qquad \qquad a = scale factor \end{array}$			
2	3.13	$\frac{b}{b} = \rho$	a = 0.22		
4	4.96	$c = P_{N_2}$			
8	10.53	x = MFe: Fe ratio			
16	17.22				
		Fe-nitrogenase			
FeFe:Fe	Ratio H ₂ /N ₂	SigmaPlot Equation	Derived value		
0.0333	6.71	y=(1+(1/4)*(1+4*(a*x))*b*c)/((1/4)*b*c)			
0.1	6.80	$y = ratio H_2/N_2$			
0.25	7.27	a = scale factor	<i>a</i> = 0.19		
0.5	7.31	$b = \rho$			
1	8.07	$c = P_{N_2}$			
4	13.19	$\mathbf{x} = M$ Fe:Fe ratio			

References:

(1) Lukoyanov, D., Khadka, N., Yang, Z.-Y., Dean, D. R., Seefeldt, L. C., and Hoffman, B. M. (2016) Reversible photoinduced reductive elimination of H_2 from the nitrogenase dihydride state, the $E_4(4H)$ Janus intermediate. *J. Am. Chem. Soc.* 138, 1320–1327.

(2) Lukoyanov, D., Khadka, N., Yang, Z.-Y., Dean, D. R., Seefeldt, L. C., and Hoffman, B. M. (2016) Reductive elimination of H₂ activates nitrogenase to reduce the N \equiv N triple bond: characterization of the E₄(4H) Janus intermediate in wild-type enzyme. *J. Am. Chem. Soc. 138*, 10674–10683.

(3) Lukoyanov, D., Yang, Z.-Y., Khadka, N., Dean, D. R., Seefeldt, L. C., and Hoffman, B. M. (2015) Identification of a key catalytic intermediate demonstrates that nitrogenase is activated by the reversible exchange of N₂ for H₂. *J. Am. Chem. Soc.* 137, 3610–3615.

(4) Hoffman, B. M., Lukoyanov, D., Yang, Z.-Y., Dean, D. R., and Seefeldt, L. C. (2014) Mechanism of nitrogen fixation by nitrogenase: The next stage. *Chem. Rev. 114*, 4041–4062.

(5) Yang, Z.-Y., Khadka, N., Lukoyanov, D., Hoffman, B. M., Dean, D. R., and Seefeldt, L. C. (2013) On reversible H2 loss upon N2 binding to FeMo-cofactor of nitrogenase. *Proc. Natl. Acad. Sci. U. S. A. 110*, 16327–16332.

(6) Lukoyanov, D., Yang, Z.-Y., Barney, B. M., Dean, D. R., Seefeldt, L. C., and Hoffman, B. M. (2012) Unification of reaction pathway and kinetic scheme for N_2 reduction catalyzed by nitrogenase. *Proc. Natl. Acad. Sci. U.S.A.* 109, 5583–5587.