
Text A. Sample Size Selection

A type II/type I error ratio of 4 is typically recommended for experimental design, hence using α = 0.05, a

statistical power (1−β) of greater than or equal to 80% is appropriate. We used the widely accepted Chambers

score to determine the effect-and the sample size. Glasson et al. 2004 [1] report a baseline score (mean1 =

1.25, std1 = 0.25) in Sham operated mice (Wk 4 & Wk 8) and a score for DMM (mean2 = 3.75, std2 = 0.5

at week 4), which we take as a minimal effect, see table below. Using these means and standard deviations,

the effect size would be 6.06, which under a Wilcoxon-Mann Whitney one sided test requires a sample size of

N = 2 for a power (1− β) of 95%. These calculations are done a priori and form a guide for understanding the

quality of our results a posteriori. For robustness, we choose (N = 3).

Glasson et. al. 2004 (Chambers Score)

Week Sham Sham SEM DMM DMM SEM Effect Size Sample Size Power

4 1 0.25 3.75 0.5 6.95 2 0.97

8 1.25 0.3 3.75 0.5 6.06 2 0.95

t tests - Means: Wilcoxon-Mann-Whitney test (two groups)

Options: A.R.E. method       

Analysis: A priori: Compute required sample size      
Input: Tail(s)                       = One              

Parent distribution           = Normal                           
Effect size d                 = 6.063391                           
α err prob                    = 0.05                          
Power (1-β err prob)          = 0.8                           
Allocation ratio N2/N1        = 1                           

Output: Noncentrality parameter δ     = 5.9251761            
Critical t                    = 3.1271576                           
Df                            = 1.8197186                           
Sample size group 1           = 2                           
Sample size group 2           = 2                           
Total sample size             = 4                           
Actual power                  = 0.9502808                           

t tests - Means: Wilcoxon-Mann-Whitney test (two groups)

Options: A.R.E. method       

Analysis: A priori: Compute required sample size      
Input: Tail(s)                       = One              

Parent distribution           = Normal                           
Effect size d                 = 6.957011                           
α err prob                    = 0.05                          
Power (1-β err prob)          = 0.8                           
Allocation ratio N2/N1        = 1                           

Output: Noncentrality parameter δ     = 6.7984261            
Critical t                    = 3.1271576                           
Df                            = 1.8197186                           
Sample size group 1           = 2                           
Sample size group 2           = 2                           
Total sample size             = 4                           
Actual power                  = 0.9796011                           

Table A: G ∗ Power output for the sample size calculation using the Glasson et al. 2004.

Text B. Zoning

The superficial zone was chosen as the area of interest as it was observed that the naive mice had near iden-

tical chondrocyte populations through time. Immunofluorescence stainings with specific antibodies directed

against collagen type II were used to identify the region of articular cartilage. The clear and consistent sparsity

of collagen type II staining in the upper cartilage layer was used to outline the superficial zone of the tibial

plateau and femoral condyle. The superficial zone was considered the region of interest, and was used in the

following for the automated analysis of chondrocyte and apoptosis populations.

Text C. Thresholding and Contouring

First, the image was thresholded on RGB such that any noise and light scattering due to the extracellular-

matrix (ECM) in the image was removed. The DAPI and TUNEL signals were processed within their respective

channels only. The thresholding of the respective channel was kept fixed for all images. Then any pixel which

had an intensity above the threshold was amplified to the maximum intensity. Following this procedure, the
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image should only contain regions where there is a possibility of a signal and regions of no signal. Then

a contour was drawn around each connected set of pixels. Each contour was classified as a signal. The

number of pixels within the contour was considered the area of the signal. The signal was then classified to be

accepted, rejected or recounted (Fig 1).

Text D. Classification

The area of a true positive signal in the superficial zone in all images was assumed to follow the same contour

area distribution. This distribution was empirically calculated by manually measuring the areas of 200 cells that

are considered to be a true positive signal from randomly selected images. These sampled areas were then

fitted to a gamma distribution. The accepted signal area begins within the 95 percentile confidence interval

of the fitted gamma distribution. The extracted signals were then automatically assessed if they should be

accepted, rejected or recounted (Fig 1). Within the processing of tissue sections it occurs that sometimes

cell nuclei leave their natural position in the lacunae and are found in a region of collagen type II stained

extracellular matrix. Since these nuclei cannot be clearly assigned to a specific lacunae or region, these

signals were rejected and excluded from the analysis. These signals can be identified as they show an overlap

of the DAPI or TUNEL staining and the collagen type II staining. In the case that separate nuclei are close

to each other, the signal appears as the union of more than one nuclei. In such cases, if the signal area is

greater than the 95th percentile, this signal is considered for recounting, by cutting them using the WaterShed

method. All mentioned rules were applied to the images, so no human adjustments were needed to the data

set generated by the automated process. To test the sensitivity and specificity of the data extraction method,

ten slices were randomly selected from the pool of all images (excluding the images used for constructing the

empirical distributions of the signal area) to compare the automated classification and human classification.

The automated method had a sensitivity of 91% and a specificity of 95%.

Text E. Test Change Point Analysis

The aim is to split the time course into two phases: a transient phase and a stationary phase. The transient

phase captures the studied effect changing, whereas, the stationary phase captures the studied effect stabil-

ising. We distinguish these phases by detecting changes in the mean and variance through time. Specifically,

in a transient phase we expect the means between adjacent time points to vary dramatically, whereas in the

stationary phase, we expect the means among adjacent time points to be very similar. There may be more

than two phases which the studied effect undergoes, however, in this work we consider modelling only two

phases (we seek at most one change point). Finding a change point in a time series is referred to as a binary

segmentation- or At Most One Change (AMOC) analysis in the Change Point Analysis literature [2]. We now

formulate the problem statistically as done in [3]:

There are N time points which are ordered chronologically, and in each time point there are I replicates.

Let µn, σ2
n be the mean and the variance of the studied effect at time n. Then the following hypotheses are

considered:
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H0 : µ1 = µ2 = . . . = µN = µ and

σ2
1 = σ2

2 = . . . = σ2
N = σ,

versus the alternative hypothesis,

H1 : µ1 = . . . = µk 6= νk+1 = . . . = µN and

σ2
1 = . . . = σ2

k 6= σ2
k+1 = . . . = σ2

N ,

where µ and σ2 are unknown common parameters if there is no change, and k is the possible change point

location. We use the Schwarz Information Criterion (SIC) as the test statistic for testing the hypotheses above.

Before presenting the computational aspects of the hypothesis test, we describe the steps and principles of

the analysis. The null hypothesis states that fitting a single Gaussian to all the samples is a better model than

aggregating points on either side any k and fitting two Gaussians respectively. We denote SIC(N) to be the

Schwarz Information Criterion for fitting all samples to one Gaussian (H0), and SIC(k) the Schwarz Information

Criterion of splitting the samples at time k and fitting two Gaussians respectively (H1 for k). Hence, we have a

series of alternative hypotheses; then to reject H0 implies that there is no k, no splitting, which describes the

samples better than a single Gaussian. More formally, the hypothesis test is given as follows:

k̂ := arg min
k∈{2,...,N−2}

SIC(k),

we fail to reject H0 if

SIC(N) ≤ SIC(k̂) + cα,

and reject H0 if

SIC(N) > SIC(k̂) + cα.

The term cα is the critical value from the distribution of SIC(N), which was empirically calculated and given

in [3, Table 1]. In our case cα = 10.317 for α = 0.05 and the total number of samples is equal to 18. If H0 is

rejected, then the position k̂ is a good estimate for the change point in the interval. We now present the details

for calculating the test statistics described above. For k ∈ {2, . . . , N − 1} we define:

µ̂0 =
N∑
n=1

I∑
i=1

xin
N I

, µ̂1,k =
k∑

n=1

I∑
i=1

xin
k I

, µ̂2,k+1 =
N∑

n=k+1

I∑
i=1

xin
(N − k) I ,

and

σ̂2
0 =

N∑
n=1

I∑
i=1

(
xin − µ̂

)2

N I
, σ̂2

1,k =
k∑

n=1

I∑
i=1

(
xin − µ̂1,k

)2

k I
, σ̂2

2,k+1 =
N∑

n=k+1

I∑
i=1

(
xin − µ̂2,k+1

)2

(N − k) I ,

where xin denotes sample point of the ith replicate at time point n. The terms µ̂0 and σ̂2
0 are the empirical mean

and variance of all the samples; µ̂1,k and σ̂2
1,k are the empirical mean and variance of the samples up to and

including time k; lastly, µ̂2,k+1 and σ̂2
2,k+1 are the empirical mean and variance of the samples from time points

greater than k. Then the test statistics are calculated as follows: for H0, the SIC for two unknowns is given by:

SIC(N) = −2 log (L0 (µ̂0, σ̂0)) + 2 log(N I),

= N I log(2π) +N I log
(

N∑
n=1

I∑
i=1

(xin − µ̂0)2

)
+N I + (2−N I) log(N I),
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where L0 is the likelihood, that all samples are from a Gaussian distribution with mean µ̂0 and variance σ̂2
0 .

Similarly, the SIC for the alternative hypotheses has four unknowns for each k and is given by:

SIC(k) = −2 log
(
L1
(
µ̂1,k, µ̂2,k+1, σ̂

2
1,k, σ̂

2
2,k+1

))
+ 4 log(N),

= N I log(2π) + (k I) log(σ̂2
1,k) + (N − k) I log(σ̂2

1,k+1) +N I + 4 log(N I),

where L1

(
µ̂1,k, µ̂2,k+1, σ̂

2
1,k, σ̂

2
2,k+1

)
is the likelihood, that samples up to and at time t = k are from a Gaussian

distribution with mean µ̂1,k and variance σ̂2
1,k, and samples from time greater than k are observed from a

Gaussian distribution with mean µ̂2,k+1 and variance σ̂2
2,k+1.

Table B: Change point analysis of the studied effects in the respective treatments. (*) The factor Lesion Width

did not satisfy the required assumptions due to the nature of the variable, since a lesion is formed or not and

a lesions only formed after a fixed time, trend analysis on Sham and DMM were omitted and we treat all the

sample points as being from a single distribution. Table 1

k̂ SIC(k̂) + c↵ SIC(N) SIC(N) > SIC(K̂) + c↵ H0

Change Point Critical Value Test Statistic Hypothesis Test QQ Plot R^2

Studied 
Effects Treatment

Average 
Apoptotic 
Population

Sham 4 41.933 52.110 Reject H_0 0.746

DMM 4 79.031 83.071 Reject H_0 0.892

MCLMM 4 103.602 114.466 Reject H_0 0.844

Average 
Chondrocyte 
Population

Sham 2 178.779 164.540 Fail To Reject H_0 0.946

DMM 2 164.136 166.986 Reject H_0 0.978

MCLMM 4 170.084 177.617 Reject H_0 0.745

Average 
Lesion 

Width(*)

Sham N/A N/A N/A No Analysis 0.221

DMM N/A N/A N/A No Analysis 0.678

MCLMM 4 266.069 282.281 Reject H_0 0.844

Average 
Cartilage 

Thickness

Sham 2 164.715 155.726 Fail To Reject H_0 0.942

DMM 6 170.605 158.737 Fail To Reject H_0 0.984

MCLMM 6 174.977 192.824 Reject H_0 0.829

Average 
Cartilage 

Area

Sham 8 413.080 399.569 Fail To Reject H_0 0.896

DMM 8 415.596 406.457 Fail To Reject H_0 0.913

MCLMM 6 435.788 436.178 Reject H_0 0.846
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