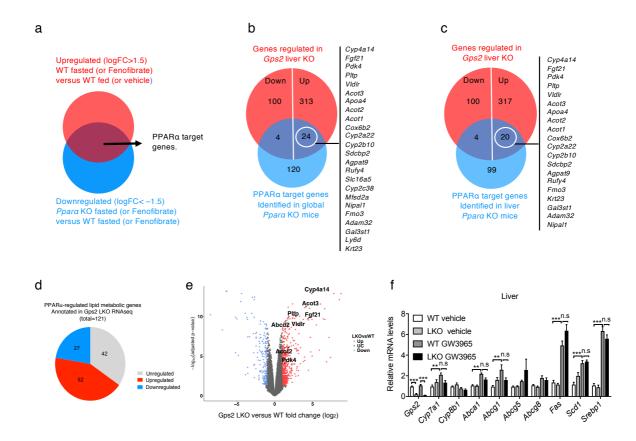
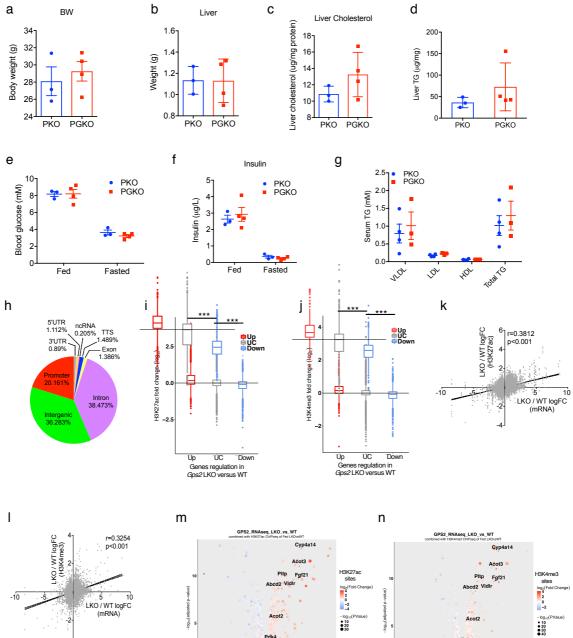

Hepatocyte-specific loss of GPS2 in mice reduces non-alcoholic steatohepatitis via activation of PPARα.

Liang et al.


Supplementary Figure 1: Phenotyping of *Gps2* LKO mice.

(a) QPCR analysis of *Gps2* expression in different organs in CD fed WT and LKO mice, n = 3, non-parametric Mann-Whitney test. (b) Western blot analysis of PPARa, HDAC3 and GPS2 in WT and LKO mice, β-actin was used as an internal control. (c) QPCR analysis of corepressor complex components in CD fed WT and LKO mice, n = 3, non-parametric Mann-Whitney test. (d) Body weight change in CD fed mice, WT n = 6-12, LKO n = 6-11, non-parametric Mann-Whitney test; (e) serum lipoprotein, WT n = 6, LKO n = 7, non-parametric Mann-Whitney test; and (f) plasma lipase activity, n = 7, non-parametric Mann-Whitney test; (g) serum and (h) liver cholesterol in 6 hour fasted WT and LKO mice, WT n = 6 and LKO n = 7, non-parametric Mann-Whitney test. (i) Body weight change of MCD fed mice, n = 4 in CD and n = 10-12 in MCD groups. (j) QPCR analysis of corepressor complex component expression in different time points of MCD fed mice, n = 3 in CD, n = 6 in 2 weeks of MCD and n = 4 in 4 weeks of MCD, one-way ANOVA followed by Tukey's test. (k) Serum and (l) liver cholesterol in 6 hour fasted WT and LKO mice after 4 weeks of MCD, WT n = 5 and LKO n = 4, non-parametric Mann-Whitney test. (m-n) QPCR analysis of mice liver mRNA expression in (1) LPS treatment; or (m) basal condition, vehicle n = 5 and LPS n = 4, non-parametric Mann-Whitney test. All data are represented as mean \pm s.e.m. *P < 0.05, **P < 0.01, ***P < 0.001.

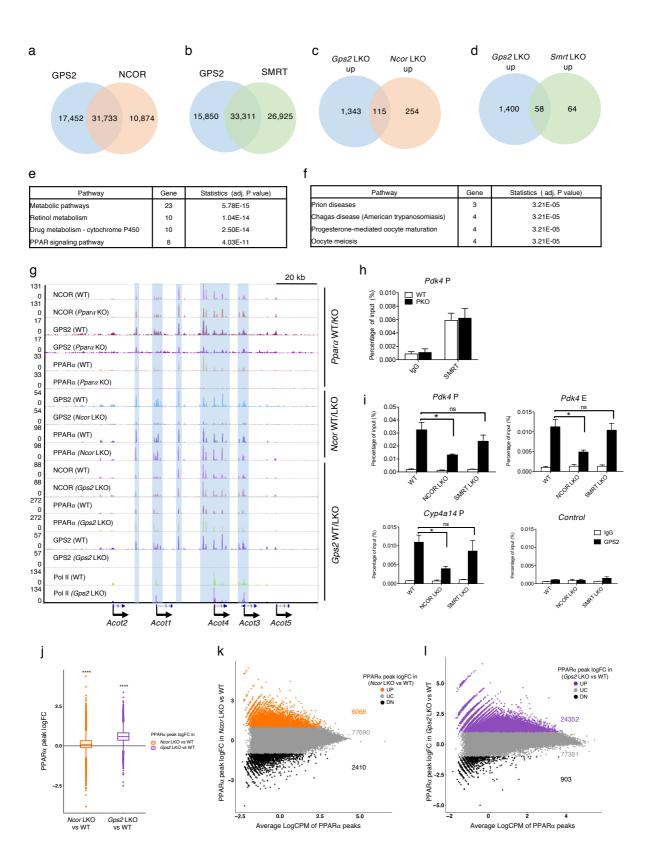

Supplementary Figure 2: Phenotyping of *Gps2* LKO mice.

(a-e) Fed and 12 hour fasted blood glucose in (a) 2 months old, n = 12 (b) 12 months old, n = 5; and (c) 16 months old mice, n = 5-6. (d-e) Fed and 12 hour fasted insulin in (d) 2 months old, WT n = 5 and LKO n = 6; and (e) 16 months old mice, WT n = 6 and LKO n = 5. (f-i) (f) OGTT, n = 6; and (g) ITT in 2 months old mice, n = 5. (h-i) (h) OGTT and (i) ITT in 16 months old mice, non-parametric Mann-Whitney test. (j) QPCR analysis of corepressor complex components in 8 weeks and 16 weeks of CD or HFD fed mice, n = 5 in each group, one-way ANOVA followed by Tukey's test. (k-l) (k) Food and (l) water uptake of the mice after 12 weeks of HFD feeding, n = 9. (m) Adipose tissue weight in HFD fed mice, WT n = 8 and LKO n = 9. (n) 6 hour fasted serum lipoprotein cholesterol profiles and (o) liver cholesterol in WT and LKO mice after 12 weeks of HFD, WT n = 6 and LKO n = 7, non-parametric Mann-Whitney test. (p) QPCR analysis of fibrotic genes in CD and HFD fed WT and LKO mice, n = 5, one-way ANOVA followed by Tukey's test. All data are represented as mean \pm s.e.m. *P < 0.05, **P < 0.01, ***P < 0.001.

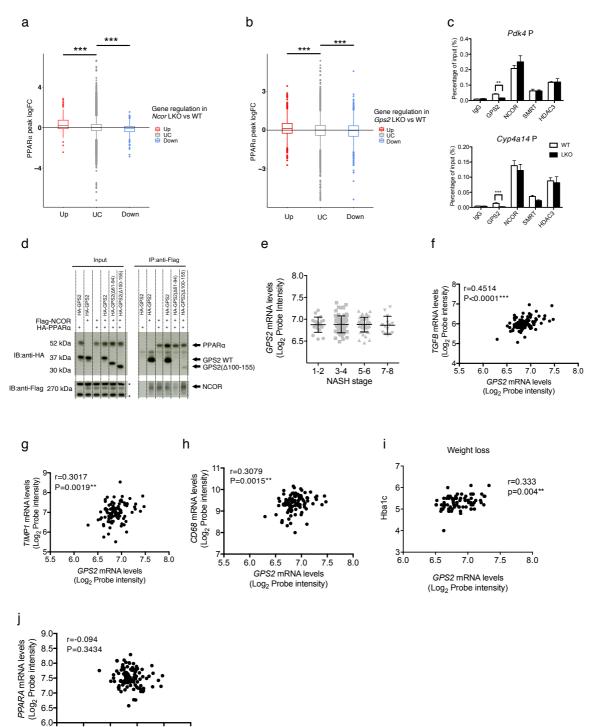
Supplementary Figure 3: GPS2 interplays with PPARα in mice liver.

(a) Flowchart representing the comparative analysis of transcriptomic data using different datasets. (b-c) Comparative analysis of *Gps2* LKO and (b) *Ppara* KO and (c) *Ppara* liver-specific KO transcriptomes. (d) Pie chart representing the percentage of GPS2 regulated genes among the 121 PPARa target metabolic genes. (e) Volcano plot of the global mRNA expression in LKO liver. (f) QPCR analysis of WT and LKO livers in vehicle and GW3965 (LXR agonist) treated mice, vehicle n = 3-7, GW3965 n = 6, one-way ANOVA followed by Tukey's test. All data are represented as mean \pm s.e.m. *P < 0.05, **P < 0.01, ***P < 0.001.

GPS2 LKO v


-6-

Acct2


Supplementary Figure 4: Further characterization of the GPS2-PPARa relationship in mice.

(a) Body weight; (b) liver weight; (c) 6 hour fasted liver cholesterol; (d) liver triglyceride; (e) fed and 12 hour fasted blood glucose; (f) insulin and (g) 6 hour fasted serum lipoprotein triglyceride in PKO and PGKO mice, PKO n = 3 and PGKO n = 4. (h) Global analysis of GPS2 peak distributions. Average logFC at (i) H3K27ac and (j) H3K4me3 sites in *Gps2* LKO versus WT of transcriptional (RNAseq) upregulated, downregulated and unchanged (UC) genes. (k-l) Global correlation analysis of mRNA logFC with (k) H3K27ac site logFC; and (l) H3K4me3 site logFC in LKO versus WT mice, nonparametric Spearman's test. (m-n) Volcano plot representing global gene expression along with logFC of (m) H3K27ac and (n) H3K4me3 sites (color from blue to red) and -log(P-value) (dot size) in LKO versus WT livers. Data are represented as mean \pm s.e.m. All the comparisons were done by two-tailed, non-parametric Mann-Whitney test. *P < 0.05, **P < 0.01, ***P < 0.001.

Supplementary Figure 5: Comparative analysis of GPS2, NCOR and SMRT transcriptome and cistrome.

(a-b) Comparative analysis of GPS2, (a) NCOR or (b) SMRT binding sites in mouse liver. (cd) Comparative analysis of *Gps2* and (c) *Ncor* LKO and (d) *Smrt* LKO transcriptome data. (ef) KEGG analysis of (e) GPS2/NCOR; and (f) GPS2/SMRT coregulated genes. (g) ChIP/seq tracks representing NCOR, GPS2, PPAR α recruitment in *Ppara*, *Ncor*, *Gps2* KO and respective WT livers in *Acot1-5* loci. (h) ChIP qPCR analysis of SMRT recruitment in WT and PKO livers, non-parametric Mann-Whitney test. (i) ChIP qPCR analysis of GPS2 recruitment in WT, *Ncor* and *Smrt* KO livers in *Pdk4* promoter (upper left), enhancer (upper right), *Cyp4a14* promoter (lower left) and control regions (lower right), WT n = 6, *Ncor* KO n = 3 and *Smrt* KO n = 3. (j) Box plot representing average logFC of PPAR α peaks in *Ncor* LKO and *Gps2* LKO versus WT livers, n = 3 in each group. (k-l) Smear plot of average logFC of PPAR α peaks in (k) *Ncor* LKO versus WT; and (l) *Gps2* LKO versus WT livers, against average logCPM, n = 3 in each group. One-way ANOVA, followed by Tukey's test. All data are represented as mean ± s.e.m. *P < 0.05, **P < 0.01, ***P < 0.001.

6.0 5.5 6.0 6.5 7.0 7.5 GPS2 mRNA levels

(Log₂ Probe intensity)

8.0

Supplementary Figure 6: *GPS2* mRNA correlation analysis in NASH and fibrosis human livers.

(a-b) Average logFC of PPAR α recruitment in (a) *Ncor* LKO versus WT at NCOR regulated genes (up- or down-regulated in *Ncor* LKO versus WT mice); and (b) *Gps2* LKO versus WT at GPS2 regulated genes (up- or down-regulated in *Gps2* LKO versus WT mice). One-way ANOVA followed by Tukey's test. (c) ChIP qPCR analysis of GPS2, NCOR, SMRT and HDAC3 recruitment in *Pdk4* (upper panel) and *Cyp4a14* (lower panel) promoters in WT and LKO mice livers, WT n = 4-12 and LKO n = 4-10, non-parametric Mann-Whitney test. (d) Co-immunoprecipitation of PPAR α with NCOR in WT or Δ 61-94 and Δ 100-155 truncated GPS2 co-transfected 293 cells (* represents non-specific bands). (e) Liver expression of GPS2 in different NASH stages in human NASH dataset (GSE83452), n = 104, one-way ANOVA followed by Tukey's test. (f-j) Correlative analysis of *GPS2* with (f) *TGFB*, (g) *TIMP1*, (h) *CD68* and (i) HbA1c in human NASH liver dataset (GSE83452), n = 104, non-parametric Spearman's test. (j) Correlation of GPS2 with *PPARA* in human NAFLD liver samples (GSE83452), n = 104, non-parametric Spearman's test *P < 0.05, **P < 0.01, ***P < 0.001.

Gene	Forward (5'-3')	Reverse (5'-3')
36b4	ACTGGTCTAGGACCCGAGAAG	TCCCACCTTGTCTCCAGTCT
Abcal	CCCAGAGCAAAAAGCGACTC	GGTCATCATCACTTTGGTCCTTG
Abcd1 Abcd2	CATTATCACTGCAACGGGCTTT	
		TCCGATCGCTAACCATAGCCT GCCAGAATATTCATGAGTGTGGAC
Abcg1	CAAGACCCTTTTGAAAGGGATCTC	
Abcg5	CCTGCTGAGGCGAGTAACAA	GGACGCGGAGAAGGTAGAAA
Abcg8	CCTGTGGATAGTGCCTGCAT	GGAGAAGGTGAAGTTGCCGA
Acot2	AGTGCCTATGAAGGACTGAGGA	GGCAGAAAGCACCTTTACCA
Acot3	CAGTCACCCTCAGGTAACAGG	AAGTTTCCGCCGATGTTGGA
Apoa4	GGCCAATGTGGTGTGGGATT	TTGTCCTGGAAGAGGGTACTGA
aSma	CAGTCGCTGTCAGGAACCCT	GATGGATGGGAAAACAGCCCT
Ccl2	CAGATGCAGTTAACGCCCCA	TGAGCTTGGTGACAAAAACTACAG
Ccl7	GATCTCTGCCACGCTTCTGT	TGTCTTGAAGATAACAGCTTCCCA
Collal	CACCCTCAAGAGCCTGAGTC	TCGATCCAGTACTCTCCGCT
Colla2	AGGAAAGAGAGGGTCTCCCG	GCCAGGAGGACCCATTACAC
Col3a1	GTCCAGGGATACGGGGTATG	CAGGGAAACCCATGACACCA
Ctgf	AGAACTGTGTACGGAGCGTG	GTGCACCATCTTTGGCAGTG
Cyp4a10	GAACTTCCCAAGTGCCTTTCC	CCTTTGGATCTGATCGCCCC
Cyp4a14	TCGGGGAGCAATATACGAGTCC	GGAGCAAACCATAACCAATCCAG
Cyp7a1	GGTCTGCCTGGAAAGCACTA	AGCATCGAAGATTTCCGGGT
Cyp8b1	TTGCAAATGCTGCCTCAACC	TAACAGTCGCACACATGGCT
Fasn	TGGGTGTGGAAGTTCGTCAG	CTGTCGTGTCAGTAGCCGAG
Fgf21	CTACCAAGCATA CCCCATCC	GCCTACCACTGTTCCATCCT
Gps2	GAAGCACCAGCTTTTCTTGCAGC	GCACTTGTGGTCCAAACATCTGC
Hdac3	TACAGCAGGCCAGAAGCACCCA	TGGGGAAACCATACTTTCCTTCCCA
Illb	AAATACCTGTGGCCTTGGGC	CTTGGGATCCACACTCTCCAG
116	GCTGGAGTCACAGAAGGAGTGGC	TCTGACCACAGTGAGGAATGTCCA
Lepr	CGCCAGCTAGGTGTAAACTGG	GAAGGGGTTCTTAGGTAATGGC
Ncor	TGGATCCTGCTGCTGCTTACCT	GGCTGCTCTCGTGGGGGACAGT
Pdk4	GATTGACATCCTGCCTGACC	CATGGAACTCCACCAAATCC
Pltp	ACTACTAAGCTTGGTCGCCAT	CCTGCTTCACCAGATCCAGA
Ppara	AATGCAATTCGCTTTGGAAG	GGCCTTGACCTTGTTCATGT
Scd1	CAGGTTTCCAAGCGCAGTTC	ACTGGAGATCTCTTGGAGCA
Smrt	GCCCTTAGTCCTAGGTGTGG	TTGTACAGAGGCGTGTGGGA
Srebf	GCTTCTCTGGGCTCCTCTCT	TGGCTCCTCTTTGATTCCAG
Tblĺ	CGGCGAGGGTGGTCCTGGACTT	CCAGAAAGTTCACCTCGTCGCTGG
Tblr1	TGCCGCCACTAACCAGCAAGG	CATGGCCCCGAAGCACAACCG
Tgfb1	GTCACTGGAGTTGTACGGCA	GGGCTGATCCCGTTGATTTC
Timpl	CAGATACCATGATGGCCCCC	CCCTTATGACCAGGTCCGAG
Tnfa	AGCCCACGTCGTAGCAAACC	GAGGAGCACGTAGTCGGGGC
ChIP Control	GTACCACAGCCTGCACGTAA	ACTGTGCAGCATACCAGTGA
ChIP Cyp4a14 P	CCATTTCTTGGGACAGGTCA	CGCCAAAGCTCTTTCCACTA
ChIP Fgf21 P	GGCTTCAGTGTCTTGGTCGT	GTCTTCCTGCTGGGGGGTCTA
ChIP Pdk4 E	TACCACCTTGCTTTCCCAAG	CTTCCCCATGTTGACTGAGC
ChIP Pdk4 P	GCCACACCAATCAGCTCAGA	GAAACCGTGTCGGGGATCACT
	UCALACCATICAUCICAUA	UT MACCOTOTCOOUATCACT

Supplementary Table 1: Primers for qPCR and ChIP qPCR.

GPS2 correlated gene list:							
PRELP	JUNB	LAPTM5	BSG	CYP1A1	MYO1F		
TIMP1	DHCR7	VIM	B2M	ABCD3	NCF2		
CTSD	ITGAX	CD68	N4BP2L1	ZFP1	ACLY		
TPP1	IL2RG	UBD	GMFG	TTC36			
GRN	CCL21	JUNB	ASPN	PPIB			
KCNN2	DTNA	ALOX5AP	CD53	CCND1			
IGFBP5	FAT1	IGFBP7	IL18	S1PR1			
PRAS	FLNA	AVP	GLIPR1	SERPINA4			
IFITM2	UCP2	FBLN5	WIPI1	GRR65			
HSPB1.2	HLA.DQA1.2	TGFB1	PDGFRA	SCPEP1			
TTYH3	HLA.DQA1.3	PTGIS	TMSB4X	ME1			
SCD	ACTA2	SULF2	MTHFD2L	KPNA2			
MMP2.1	MGP	LTBP4	AASS	TMSB10			
COL1A2	KRT18	HSPB1.1	AOX1	HLA.DRA			

Supplementary Table 2: GPS2 correlated NASH gene list in human subjects.