Supplementary Information

A new type of DNA phosphorothioation-based antiviral system in archaea

Xiong et al.

	GATC	Downstream base				
H. jeotgali A29		A	С	G	Т	
	٨	11.1%	11.0%	2.7%	5.5%	
	A	(119/1072)	(159/1445)	(106/3890)	(37/670)	
	C	5.0%	13.4%	3.2%	3.3%	
Linstream base	C	(188/3754)	(710/5290)	(343/10834)	(124/3769)	
opsilean base	G	3.4%	5.0%	1.2 %	1.2 %	
	Ũ	(45/1323)	(78/1556)	(63/5087)	(17/1395)	
	т	10.5%	17.8%	2.6%	3.9%	
	•	(91/870)	(230/1289)	(97/3798)	(44/1116)	
<i>H. limi</i> JCM 16811	GATC	Downstream base				
		A	С	G	<u> </u>	
	А	9.8%	9.9%	2.7%	9.4%	
		(58/593)	(94/953)	(50/1856)	(38/405)	
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3.8%	4.7%			
Upstream base		(102/1820)	(310/2866)	(175/4563)	(86/1830)	
	G	G (102/1820) (310/2886) (173/4383) 2.1% 4.2% 0.6% (16/762) (51/1286) (17/2860)		0.6%	2.0%	
	C C	(16/763)	(51/1205)	(17/2960)	(18/892)	
	т	19.1%	22.8%	6.0%	10.5%	
		(81/424)	(172/756)	(111/1836)	(63/601)	
H. salinum JCM 19729	GATC	Downstream base				
		A	С	G	<u> </u>	
		1.9%	3.2%	0.7%	0.9%	
	А	((1.0/1000)			
	A	(17/905)	(1.9/1220)	(18/2725)	(5/579)	
	A C	(17/905) 1.9%	(1.9/1220) 7.4%	(18/2725) 1.7%	(5/579) 0.9%	
Upstream base	A C	(17/905) 1.9% (53/2795)	(1.9/1220) 7.4% (273/3678)	(18/2725) 1.7% (96/5762)	(5/579) 0.9% (27/2745)	
Upstream base	A C G	(17/905) 1.9% (53/2795) 1.2%	(1.9/1220) 7.4% (273/3678) 4.9% (42/881)	(18/2725) 1.7% (96/5762) 0.6%	(5/579) 0.9% (27/2745) 0.5% (6(1125)	
Upstream base	A C G	(17/905) 1.9% (53/2795) 1.2% (12/1009)	(1.9/1220) 7.4% (273/3678) 4.9% (43/881)	(18/2725) 1.7% (96/5762) 0.6% (22/3781) 2.6%	(5/579) 0.9% (27/2745) 0.5% (6/1135)	
Upstream base	A C G T	(17/905) 1.9% (53/2795) 1.2% (12/1009) 8.3% (55/660)	(1.9/1220) 7.4% (273/3678) 4.9% (43/881) 13.9% (136/977)	(18/2725) 1.7% (96/5762) 0.6% (22/3781) 2.6% (71/2739)	(5/579) 0.9% (27/2745) 0.5% (6/1135) 4.6% (38/830)	
Upstream base	A C G T	(17/905) 1.9% (53/2795) 1.2% (12/1009) 8.3% (55/660)	(1.9/1220) 7.4% (273/3678) 4.9% (43/881) 13.9% (136/977)	(18/2725) 1.7% (96/5762) 0.6% (22/3781) 2.6% (71/2739)	(5/579) 0.9% (27/2745) 0.5% (6/1135) 4.6% (38/830)	
Upstream base N. bangense JCM 10635	A C G T GATC	<pre>(17/905) 1.9% (53/2795) 1.2% (12/1009) 8.3% (55/660)</pre>	(1.9/1220) 7.4% (273/3678) 4.9% (43/881) 13.9% (136/977) Downst	(18/2725) 1.7% (96/5762) 0.6% (22/3781) 2.6% (71/2739) ream base	(5/579) 0.9% (27/2745) 0.5% (6/1135) 4.6% (38/830)	
Upstream base N. bangense JCM 10635	A C G T GATC	(17/905) 1.9% (53/2795) 1.2% (12/1009) 8.3% (55/660) A 3.7%	(1.9/1220) 7.4% (273/3678) 4.9% (43/881) 13.9% (136/977) Downst C	(18/2725) 1.7% (96/5762) 0.6% (22/3781) 2.6% (71/2739) ream base G 1.4%	(5/579) 0.9% (27/2745) 0.5% (6/1135) 4.6% (38/830) T 2.1%	
Upstream base N. bangense JCM 10635	A C G T GATC A	(17/905) 1.9% (53/2795) 1.2% (12/1009) 8.3% (55/660) A 3.7% (43/1168)	(1.9/1220) 7.4% (273/3678) 4.9% (43/881) 13.9% (136/977) Downst C 6.5% (81/1241)	(18/2725) 1.7% (96/5762) 0.6% (22/3781) 2.6% (71/2739) ream base G 1.4% (46/3181)	(5/579) 0.9% (27/2745) 0.5% (6/1135) 4.6% (38/830) T 2.1% (14/656)	
Upstream base <i>N. bangense</i> JCM 10635	A C G T GATC A	(17/905) 1.9% (53/2795) 1.2% (12/1009) 8.3% (55/660) A 3.7% (43/1168) 4.0%	(1.9/1220) 7.4% (273/3678) 4.9% (43/881) 13.9% (136/977) Downst C 6.5% (81/1241) 12.9%	(18/2725) 1.7% (96/5762) 0.6% (22/3781) 2.6% (71/2739) ream base G 1.4% (46/3181) 3.5%	(5/579) 0.9% (27/2745) 0.5% (6/1135) 4.6% (38/830) T 7 2.1% (14/656) 2.5%	
Upstream base <i>N. bangense</i> JCM 10635	A C G T GATC A C	(17/905) 1.9% (53/2795) 1.2% (12/1009) 8.3% (55/660) A 3.7% (43/1168) 4.0% (142/3513)	(1.9/1220) 7.4% (273/3678) 4.9% (43/881) 13.9% (136/977) Downst C 6.5% (81/1241) 12.9% (479/3686)	(18/2725) 1.7% (96/5762) 0.6% (22/3781) 2.6% (71/2739) ream base G 1.4% (46/3181) 3.5% (270/7691)	(5/579) 0.9% (27/2745) 0.5% (6/1135) 4.6% (38/830) T 2.1% (14/656) 2.5% (79/3123)	
Upstream base <i>N. bangense</i> JCM 10635 Upstream base	A C G T GATC A C	(17/905) 1.9% (53/2795) 1.2% (12/1009) 8.3% (55/660) A 3.7% (43/1168) 4.0% (142/3513) 1.6%	(1.9/1220) 7.4% (273/3678) 4.9% (43/881) 13.9% (136/977) Downst C 6.5% (81/1241) 12.9% (479/3686) 4.8%	(18/2725) 1.7% (96/5762) 0.6% (22/3781) 2.6% (71/2739) ream base G 1.4% (46/3181) 3.5% (270/7691) 0.9%	(5/579) 0.9% (27/2745) 0.5% (6/1135) 4.6% (38/830) T 2.1% (14/656) 2.5% (79/3123) 0.6%	
Upstream base <i>N. bangense</i> JCM 10635 Upstream base	A C G T GATC A C G	(17/905) 1.9% (53/2795) 1.2% (12/1009) 8.3% (55/660) A 3.7% (43/1168) 4.0% (142/3513) 1.6% (20/1215)	(1.9/1220) 7.4% (273/3678) 4.9% (43/881) 13.9% (136/977) Downst C 6.5% (81/1241) 12.9% (479/3686) 4.8% (42/880)	(18/2725) 1.7% (96/5762) 0.6% (22/3781) 2.6% (71/2739) ream base G 1.4% (46/3181) 3.5% (270/7691) 0.9% (31/3567)	(5/579) 0.9% (27/2745) 0.5% (6/1135) 4.6% (38/830) T 2.1% (14/656) 2.5% (79/3123) 0.6% (7/1242)	
Upstream base <i>N. bangense</i> JCM 10635 Upstream base	A C G T GATC A C G	(17/905) 1.9% (53/2795) 1.2% (12/1009) 8.3% (55/660) A 3.7% (43/1168) 4.0% (142/3513) 1.6% (20/1215) 7.2%	(1.9/1220) 7.4% (273/3678) 4.9% (43/881) 13.9% (136/977) Downst C 6.5% (81/1241) 12.9% (479/3686) 4.8% (42/880) 13.4%	(18/2725) 1.7% (96/5762) 0.6% (22/3781) 2.6% (71/2739) ream base G 1.4% (46/3181) 3.5% (270/7691) 0.9% (31/3567) 3.1%	(5/579) 0.9% (27/2745) 0.5% (6/1135) 4.6% (38/830) T 2.1% (14/656) 2.5% (79/3123) 0.6% (7/1242) 2.6%	

Supplementary Table 1. Analysis of consensus sequences in four archaeal strains

Data represent the SMRT sequencing-determined frequency of sequences containing the noted bases flanking the 5'-G_{PS}ATC-3' consensus sequences in four halophilic archaea. Preferential and rare occurrences of PT modifications were present in the 5'-tGATCc-3' (red) and 5'-gGATC(g/t)-3' (blue) motifs, respectively.

Supplementary Table 2. Analysis of methylation motifs in four archaeal strains by SMRT

sequencing

n. jeolyali Azə								
Motif	Modified Position	Modification Type	Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV1	Mean Motif Coverage	Partner Motif
CATTC	2	^{m6} A	98.04%	2,554	2,605	127.04	93.66	-
CACCAYG	5	^{m6} A	97.96%	817	834	121.82	97.64	-
GAGGAG	5	^{m6} A	95.87%	5,903	6,157	113.53	96.81	-
CTGACGNNBN NGT	5	^{m4} C	67.56%	152	225	63.61	97.23	-
CTAGBNNGT	1	^{m4} C	40.72%	68	167	56.32	95.22	-
GCAATNNBNN NNNV	4	^{m6} A	22.75%	276	1,213	50.59	104.80	-
GGTRTVGCR	3	unknown	21.08%	78	370	40.10	111.03	-
TCCYAVYW	1	unknown	16.39%	150	915	42.29	117.23	-
GNNNNNGTH	1	unknown	4.45%	5,674	127,511	37.94	112.01	-
THR	1	unknown	1.10%	6,662	604,625	35.34	139.63	-
N. bangense J	CM 1063	5		,				
Motif	Modified Position	Modification Type	Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
CAGATG	4	^{m6} A	99.51%	1.832	1.841	152.16	105.28	-
CATTC	2	^{m6} A	98.74%	4,085	4,137	151.99	102.10	-
CTAGTTCG	1	^{m4} C	81.48%	22	27	82.91	95.32	-
AGGCMGYA	1	^{m6} A	36.87%	153	415	68.86	109.76	-
ANNNACTAG	1	^{m6} A	31.40%	65	207	69.91	100.38	-
TTRBAVBW	1	unknown	16.06%	592	3,687	46.97	107.93	-
TVNNNNH	1	unknown	3.57%	34,805	973,601	36.79	114.01	-
H. salinum JCN	A 19729							
Matif	Modified	Modification	Motifs	# Of Motifs	# Of Motifs	Mean	Mean Motif	Partner
IVIOTII	Position	Туре	Detected	Detected	In Genome	Modification QV	Coverage	Motif
GAGATC	4	^{m6} A	81.69%	5,096	6,238	69.36	46.61	-
GCATC	3	^{m6} A	73.85%	5,271	7,137	74.21	46.80	-
CTTGAT	5	^{m6} A	73.18%	745	1,018	77.56	47.58	-
CTAGYNNG	1	^{m4} C	52.43%	335	639	52.49	45.52	-
CGATCC	3	^{m6} A	14.20%	1,246	8,777	60.14	34.05	-
HGWNVNVDG	2	unknown	4.55%	4,973	109,331	36.59	49.78	-
H. limi JCM 16811								
Motif	Modified Position	Modification Type	Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
CGATCC	3	^{m6} A	99.76%	7,133	7,150	149.53	93.40	-
TTCGAA	6	^{m6} A	88.88%	1,303	1,466	109.61	86.55	TTCGAA
RAGGYASYT	2	^{m6} A	43.92%	83	189	59.02	93.49	-
DAGGYVGYA	2	^{m6} A	20.14%	149	740	64.07	92.99	-
TNNNNNH	1	unknown	2.10%	18,282	869,418	36.65	98.39	-
TVRVNNNG	1	unknown	1.72%	2,692	156,155	35.81	98.57	-

1 QV = quality value

Supplementary Table 3. Strains and plasmids used in this study.

Straine	Characteristics	Reference or	
Strains	Characteristics	Source	
<i>E. coli</i> DH5α	E. coli host for pFJ6H and its derivatives	Sangon Biotech	
Natrinema sp. J7-1	With SNJ1 proviral genome pHH205, cannot be infected by SNJ1	1	
Natrinema sp. CJ7-F	$\Delta pyrF$, pHH205-free derivative of J7-1, can be infected by SNJ1	2	
H. salinum JCM 19729	d(G _{PS} A)	3	
H. limi JCM 16811	d(G _{PS} A), d(G _{PS} G)	4	
H. jeotgali A29	d(G _{PS} A)	5	
N. bangense JCM 10635	d(G _{PS} A)	6	
Placmide	Characteristics	Reference or	
Flasifilus	Characteristics	Source	
	A shuttle expression plasmid constructed based on the stable	7	
prcj-nn	replicon of SNJ1	1	
	A shuttle plasmid that can replicates in both Natrinema sp. CJ7-F	2	
pi 30-i i	and <i>E. coli</i> DH5α		
pWHU3253	pYCJ-HH derivative harbouring dndCDEA from H. jeotgali A29	This work	
pWHU3803	pFJ6-H derivative for expression of dndCDEA	This work	
pWHU3804	pFJ6-H derivative for expression of pbeABCD	This work	
pWHU3789	pFJ6-H derivative for expression of <i>dndCDEA_{C344S}-pbeABCD</i>	This work	
pWHU3808	pFJ6-H derivative for expression of dndCDEA-pbeABCD	This work	
pWHU3809	pFJ6-H derivative for expression of ΔdndC-dndDEA-pbeABCD	This work	
pWHU3810	pFJ6-H derivative for expression of <i>∆dndD-dndCEA-pbeABCD</i>	This work	
pWHU3811	pFJ6-H derivative for expression of <i>∆dndE-dndCDA-pbeABCD</i>	This work	
pWHU3812	pFJ6-H derivative for expression of ΔdndA-dndCDE-pbeABCD	This work	
pWHU3813	pFJ6-H derivative for expression of dndCDEA-ApbeA-pbeBCD	This work	
pWHU3814	pFJ6-H derivative for expression of dndCDEA-ΔpbeB-pbeACD	This work	
pWHU3815	pFJ6-H derivative for expression of <i>dndCDEA-DpbeC-pbeABD</i>	This work	
pWHU3816	pFJ6-H derivative for expression of <i>dndCDEA-ApbeD-pbeABC</i>	This work	

Drimoro		Reference or			
Primers	Sequence (5-3)	Source			
Heterologous expression					
dndCDEA-pYC-F	TACGTAACGGTTTCACAATCT	This study			
dndCDEA-pYC-R	AAGCTTAAGTCGCTGAGTCTAG	This study			
dndCDEA-pFJ-F	TATTTGCGGGCAAGGGCGGCCGCACGGTTTCACAATCT	This study			
dndCDEA-pFJ-R	GATTACGCCAAGCTTGCATGCAAGTCGCTGAGTCTAG	This study			
pbeABCD-F	TATTTGCGGGCAAGGGCGGCCGCATGCCTGAGGACAAGCCGAATC	This study			
pbeABCD-R	GATTACGCCAAGCTTGCATGCGAGTTGCTGTCGTAGCGAAACG	This study			
Hpro-dndCDEA-F	AGAGCAGATTGTACTGAGAGTGCACCATATGCGCGTCGACCGCCCTCGAGGCGAGC	This study			
Hpro-dndCDEA-R	AAGAATAAGCCGAGATGGATCCCCGGGTACCCAGCTATGACCATGATTACGCCTCA	This study			
In-frame gene del	etion				
ΔdndC-3F	GTTGAGCTTCATTTCTCGATCCACTCCCTATAAGATTGTG	This study			
ΔdndC-2R	CACAATCTTATAGGGAGTGGATCGAGAAATGAAGCTCAAC	This study			
ΔdndD-3F	GGTTGAGGTCTTTACTCATTTTCTCGATTTACTCCATCAT	This study			
ΔdndD-2R	ATGATGGAGTAAATCGAGAAAATGAGTAAAGACCTCAACC	This study			
∆dndE-2F	GAGTCTGTGGTCATGATTCTAGGTCTTTACTCATTGTTGA	This study			
ΔdndE-2R	TCAACAATGAGTAAAGACCTAGAATCATGACCACAGACTC	This study			
∆dndA-F	AGAGCAGATTGTACTGAGAGTGCACCATATGCGCGTCGACCGCCCTCGAGGCGAGC	This study			
∆dndA-R	TAAGCCGAGATGGATCCCCGGGTACCGACTTCCCGATCAGAGTCTG	This study			
ΔpbeA-F	AAGACGGTATTTGCGGGCAAGGGCGGCCGCGTCTGTAAGAAGCAGAGCAG	This study			
ΔpbeA-R	CGACGGGCTCGCCTCGAGGGCGGTCATATGGTGCACTCTCAGTACAATCT	This study			
ΔpbeB-UF	ATGAATCAGAGCTATTAGCGGTACTTAATGAGGATTACACGAATTTCACT	This study			
ΔpbeB-UR	CGGTATTTGCGGGCAAGGGCGGCCGCATGCCTGAGGACAAGCCGAATCCA	This study			
ΔpbeB-DF	ACGGGCTCGCCTCGAGGGCGGTCATATGGTGCACTCTCAGTACAATCTGC	This study			
ΔpbeB-DR	TTATATCGGAGGGGTTGGTCAAGAGCATGCCAAGCTTGGCGTAATCATG	This study			
ΔpbeC-UF	TATTTGCGGGCAAGGGCGGCCGCATGCCTGAGGACAAG	This study			
∆pbeC-UR	ACGACACAGGAAAGACATAATGGCTCGAACGCTCA	This study			
∆pbeC-DF	TGAGCGTTCGAGCCATTATGTCTTTCCTGTGTCGT	This study			
∆pbeC-DR	CGCCTCGAGGGCGGTCATATGGTGCACTCTCAGTAC	This study			
∆pbeD-UF	TATTTGCGGGCAAGGGCGGCCGCATGCCTGAGGACAAG	This study			
ΔpbeD-UR	ATGCTTACGTTCGAGCCATTAGTCATCA	This study			
ΔpbeD-DF	GAACGTAAGCATGCCAAGCTTG	This study			
∆pbeD-DR	CGCCTCGAGGGCGGTCATATGGTGCACTCTCAGTAC	This study			
Point mutation					
dndA _{C344S} -UF	GTACTGAGAGTGCACCATATGACCGCCCTCGAGGCG	This study			
dndA _{C344S} -UR	CACTCGCACTAGCCGAC	This study			
dndA _{C344S} -DF	GTCGGCTAGTGCGAGTG	This study			
dndA _{C344S} -DR	CGAGATGGATCCCCGGGTACCCAGCTATGACCATGA	This study			
Real-time qPCR assay					
radA-F	CGTCAACGTCCAGCTTCCACAG	2			
radA-R	GAGCCTTCGATTTCGCGGTCC	2			
SNJ1-F	GCGGAAATACCCGAACACCAAG	2			
SNJ1-R	CTCGCCACAGCAGTCGCAGAT	2			
Southern blot ass	ay				
SNJ1-southern-F	AAGATGAGATCCGAGGGAAGTGGCT	This study			
SNJ1-southern-R	CGCTGCGTCTCGCTCCAAACT	This study			
RT-PCR		1			
Primer A	ATGATCTGTTGGTTCTCCCTG	This study			
Primer B	CTCTATGGCATCTCGGACCT	This study			
Primer C	GGCTAAGGATCACGGAGAAC	This study			
Primer D	CGTACTTCAGCACTTCCTTCC	This study			
pbeC-D-F	TATCGCCTGAGTCTATTG	This study			
pbeC-D-R	TTCATCTACTGCCTTCTG	This study			

Supplementary Table 4. Primers used in this study

Supplementary Figure 1. The PT modifications in archaeal strains detected using liquid chromatography-coupled tandem quadrupole mass spectrometry (LC-MS/MS). Naturally occurring d(G_{PS}A), with the protonated molecular ion [M+H] appearing at *m/z* 597, in *H. jeotgali* A29 exhibited a retention time identical to that of synthetic d(G_{PS}A) *R*_P. Plasmid pWHU3803, expressing the *dndCDEA* operon from *H. jeotgali* A29, conferred d(G_{PS}A) in *Natrinema* sp. CJ7-F. The fragmentation pattern of d(G_{PS}A) is shown in the structural inset. Source data are provided as a Source Data file.

Supplementary Figure 2. SMRT sequencing analysis reveals full and hemi-PT modifications in archaeal genomes. Example IPD (interpulse duration) ratio plots showing instances of fully and hemi-PT-modified 5'-G_{PS}ATC-3'/5'-G_{PS}ATC-3' and 5'-G_{PS}ATC-3'/5'-GATC-3', respectively, in *H. jeotgali* A29. Source data are provided as a Source Data file.

Supplementary Figure 3. RT-PCR analysis of the co-transcription of *DVR14_03960-DVR14_03955-DVR14_03950-DVR14_03945* (*pbeABCD*). The primers are schematically located above or below the genes. The PCR products were obtained using genomic DNA (lanes marked with "D"), reversetranscribed cDNA (lanes marked with "RT") and untranscribed RNA (lanes marked with "R") from *H. jeotgali* A29 as the template. Primers A and B were used to produce the 1,061-bp PCR fragment; primers C and D were used to generate the 701-bp PCR fragment; and primers A and D were used to produce the 2,825-bp PCR fragment. Source data are provided as a Source Data file.

Supplementary Figure 4. Pbe proteins, their domain annotations and sequence alignments. **a** Domain annotations of Pbe proteins using the Pfam version 32.0 database. The domain annotation scores and e-value are listed in Supplementary Data 5. **b** Sequence alignments of individual domain of PbeA and PbeC with homologous domains. The domain-based multiple sequence alignments of these candidate domains with other similar domain architectures were performed using ClustalW in MEGA software version 7.

Supplementary Figure 5. LC-MS/MS analysis of PT modification in the SNJ1 virus. PT-modified d(G_{PS}A) was detected in the SNJ1 virus after propagation in CJ7-F(pWHU3803) cells expressing *dndCDEA* from *H. jeotgali* A29. No PT modification was detected when the SNJ1 virus was propagated in CJ7-F cells in the presence of the empty plasmid pFJ6-H. Source data are provided as a Source Data file.

Supplementary Figure 6. Growth profiles and phage resistance of CJ7-F cells expressing DndCDEA-PbeABCD and variants. **a** CJ7-F cells carrying pWHU3809, pWHU3810, pWHU3811 or pWHU3812, expressing the inactivated *dndCDEA* genes but the complete *pbeABCD* cluster, displayed similar growth profiles to that of CJ7-F cells containing the empty vector pFJ6-H. **b** The individual deletion of each of the *dndCDEA* genes restored the sensitivity of CJ7-F cells to the SNJ1 virus. Source data are provided as a Source Data file.

Supplementary Figure 7. The effects of a single point mutation in DndA on DNA PT modification, *pbe* module transcription and antiviral activity. **a** The single point mutation C344S in DndA in pWHU3789 resulted in the loss of the DNA PT modification in d(G_{PS}A). This mutation had no effect on the transcription of the *pbe* operon (**b**) but caused failure to reduce the ability of the SNJ1 virus to form plaques (**c**). PCR products were obtained using genomic DNA (lanes marked with "D"), reverse-transcribed cDNA (lanes marked with "RT") and untranscribed RNA (lanes marked with "R") from CJ7-F(pWHU3808) and CJ7-F(pWHU3789) as templates, respectively. Primers pbeC-D-F and pbeC-D-R were listed in Supplementary Table 4. Source data are provided as a Source Data file.

Supplementary Figure 8. Co-evolutionary comparison of the DndCD-PbeAC and DndCD-DndFGH systems. For strains harbouring both *pbeAC* and *dndCD*, we aligned the PbeAC and DndCD protein sequences with those of *H. jeotgali* A29. The alignment similarity rates of the former were regressed on the alignment similarity rates of the latter. A similar procedure was applied to the strains with both *dndFGH* and *dndCD*. Since *H. jeotgali* A29 lacks *dndFGH*, alignments were made with the sequence data from *S. enterica* serovar Cerro 87. **a** The high correlation coefficient ($\rho = 0.582$) suggests the co-evolution of the DndCD and DndFGH components, consistent with previous observations. **b** In contrast, the low correlation coefficient ($\rho = 0.107$) indicates a separate evolutionary process for DndCD and PbeAC.

References

- 1. Zhang, Z. et al. Temperate membrane-containing halophilic archaeal virus SNJ1 has a circular dsDNA genome identical to that of plasmid pHH205. *Virology* **434**, 233-241 (2012).
- 2. Wang, Y., Chen, B., Sima, L., Cao, M. & Chen, X.J.A. Construction of expression shuttle vectors for the Haloarchaeon natrinema sp. J7 based on its chromosomal origins of replication. *Archaea* **2017**(2017).
- 3. Song, H.S. et al. Halapricum salinum gen. nov., sp. nov., an extremely halophilic archaeon isolated from non-purified solar salt. *Antonie van Leeuwenhoek* **105**, 979-986 (2014).
- 4. Cui, H. et al. Halobellus limi sp nov and Halobellus salinus sp nov., isolated from two marine solar salterns. *International Journal of Systematic and Evolutionary Microbiology* **62**, 1307-1313 (2012).
- 5. Cha, I.-T. et al. Genome sequence of the haloarchaeon Haloterrigena jeotgali type strain A29T isolated from salt-fermented food. *Standards in Genomic Sciences* **10**, 49 (2015).
- 6. Xu, Y., Zhou, P. & Tian, X. Characterization of two novel haloalkaliphilic archaea Natronorubrum bangense gen. nov., sp. nov. and Natronorubrum tibetense gen. nov., sp. nov. *International Journal of Systematic and Evolutionary Microbiology* **49**, 261-266 (1999).
- 7. Wang, Y. et al. Identification, characterization, and application of the replicon region of the halophilic temperate sphaerolipovirus SNJ1. *Journal of bacteriology* **198**, 1952-1964 (2016).