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S2 Description of the analytical model
Here we provide a more complete overview of the analytical model, where Table S1
provides an overview of the notation used.

S2.1 Fitness expressions
To recap from the main text, the expected number wi j of offspring who successfully
establish themselves in a patch with i helpers and are born from a mutant adult
breeder in a patch with a total number of j helpers is given by

wi j � f j

(
1 − h•j

) 
nb (1 − d) s j→i

(
h◦j

)
C

(
h◦j ; h, j

) + d
nh,max∑

k�0
uk

nbsk→i (hk)
C (hk ; h, k)

 , (S1)

where f j reflects the total number of surviving newborns produced by the focal
adult breeder, a proportion 1− h•j of which develop as juvenile reproductives (rather
than helpers). These juvenile reproductives then go on to compete for any of the
nb available breeding positions in the natal patch with probability 1 − d (first part
in straight brackets), or in a random, remote patch with probability d (second part
in straight brackets), where uk reflects the population-wide frequency of patches
currently containing 0 ≤ k ≤ nh,max helpers. Philopatric reproductives compete with
a total number of C(h◦j ; h, j) philopatric and immigrant offspring (see eq. [S2] in the
Online Supplement), which is a function of (i) the average tendency h◦j expressed by
any locally born newborn to develop as a helper, (ii) the population wide tendencies
h � [h0, h1, . . . , hnh,max] to become helpers in any remote patch and (iii) the current
number of helpers j in the local patch. Finally, after successful establishment, the
probability that the newly established breeder is accompanied by i helpers in the next
generation is then given by s j→i(h◦j ) (see eq. 1). The expected number of offspring
who successfully compete in remote patch can then be derived in a similar fashion.

The total number of competing reproductive juveniles in a local patch C(h◦j ; h, j)
currently containing j helpers (where h◦j reflects the average tendency to develop as
a helper) is given by

C
(
h◦j ; h, j

)
� nb f j

(
1 − h◦j

)
(1 − d) + d

nh,max∑
k�0

uk nb fk (1 − hk) , (S2)

where the first part of the expression above describes the total number of philopatric,
non-helping offspring produced by all members of the local group. The second part
is the total number of juveniles who migrate to the current patch (with probability
d), originating from a patch that currently contains k helpers (with probability pk)
resulting in a patch-level production of nb fk(1 − hk) reproductives.
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Symbol Explanation
A Resident transition matrix
ai j Entry in row i and column j of the resident transition matrix
B Mutant transition matrix
bi j Entry in row i and column j of the mutant transition matrix

C(h j ; h, j) Total number of competing reproductive juveniles in a patch
which currently contains j helpers

d Juvenile dispersal probability
fi Fecundity of a mother breeding in a patch which currently

contains i helpers
φ0, φ1, φ2 Parameters of the fecundity function fi

hi Probability that a juvenile born from a resident mother develops
as a helper in a patch currently containing i helpers

h•i Probability that a juvenile born from a mutant mother develops
as a helper in a patch currently containing i helpers

h◦i Probability that any juvenile born on a mutant mother’s patch
develops as a helper in a patch currently containing i helpers

h Strategy vectors h � [h0, h1, . . . hnh,max] for the helping tendency
expressed by offspring born from resident mothers

h•,h◦ Strategy vectors for the average helping tendency expressed by
offspring born from focal mutant mothers and offspring born
from any mother in the mutant’s patch

mi Mortality probability of an adult breeder (see section S2.6)
nb Number of breeders in each local patch
nh Number of helpers in a local patch (varies among patches)

nh,max Maximum possible number of helpers in each local patch
Qi ,t Coefficient of consanguinity between two breeding mothers on a

patch containing i helpers at time t
Q̂i Equilibrium coefficient of consanguinity

rlocal,i Relatedness between focal mutant breeder in a patch containing
i helpers and any of the breeders in the focal’s patch (including
herself)

si→ j Probability that a patch which contains i helpers at time t will
contain j helpers at time t + 1 (see eq. 1)

ui Stable class frequency of patches currently containing i helpers
vi Reproductive value of an adult breeder in a patch currently

containing i helpers
wi j Expected number of offspring born who successfully establish

themselves in a patch with j helpers born from a mutant focal
mother in patch with i helpers

Table S1: Notation of the model on the evolution of helping.
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The mutant transition matrix B, with elements bi j � wi j , then comprises the
transition probabilities between all the different classes of mutants

B �


w00 w01 · · · w0nh,max
w10 w11 · · · w1nh,max
...

...
. . .

...
wnh,max0 wnh,max1 · · · wnh,maxnh,max

 , (S3)

while

A � B|h•�h◦�h (S4)

denotes the resident transition matrix which comprises the transition probabilities
evaluated at the population average.

S2.2 Selection gradients
Recapping from themain text, we obtain the following term for the selection gradient
Hk

Hk � Vk
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, (S5)

where Vk is a term that is proportional to the amount of additive genetic variance in
the helping tendency hk . Next, vi and u j are the individual reproductive values and
stable class frequencies of adult breeders which are in a patch with i helpers, which
are obtained from the dominant left and right eigenvectors of the resident transition
matrix (see eq. [S4]). Finally, the relatedness coefficient rlocal, j reflects the relatedness
between a focal adult breeder and all breeders in the local patch including herself
(see eq. [S7]).

S2.2.1 Selection gradient for unconditional help

The model for unconditional helping behaviour is identical to the model with
developmental plasticity, with the exception that we replace hiwith h for all i ∈
0, 1, . . . , nh,max. Consequently, the selection gradient for the unconditional strategy
H is given by

H � V
nh,max∑

i�0

nh,max∑
j�0

viu j

[
∂bi j

∂h•
+
∂bi j

∂h◦
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. (S6)
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S2.3 Relatedness
The relatedness coefficient rlocal, j reflects relatedness between a focal breeder and all
breeders in the local patch including herself, which is given by

rlocal, j �
1

nb
+

nb − 1
nb

Q̂ j , (S7)

With probability 1/nb the same breeder is sampled, so that identity is equal to 1.
Alternatively, with probability (nb − 1)/nb, two distinct breeders are sampled, and
the probability that both carry identical alleles is given by the equilibrium coefficient
of consanguinity Q̂ j in demes containing j breeders. The latter is calculated by
solving the following recursion equation for all j ∈ 0, 1, . . . , nh,max:

Q j,t+1 �

nh,max∑
k�0

uk sk→ j (hk)∑nh,max
`�0 u`s`→ j (h`)

gk (hk)2
(

1
nb

+
nb − 1

nb
Qk ,t

)
, (S8)

where uk sk→ j(hk)/
∑nh,max
`�0 u`s`→ j(h`) reflects the probability that a patch containing

j helpers at time t + 1 was a patch containing k helpers at time t, in which case
two natally born individuals are sampled with probability gk(hk)2. Here gk(hk) is
the probability that a philopatric juvenile successfully establishes itself as an adult
breeder. With probability 1/nb one of the sampled breeders is born from the other
sampled breeder, in which case the coefficient of consanguinity is 1. With probability
(nb − 1)/nb however, the sampled breeder has a different parent, in which case the
coefficient of consanguinity is equal to Qk ,t . The probability gk(hk) that a philopatric
juvenile successfully establishes itself as an adult breeder is then given by

gk (hk) �
nb fk (1 − d) (1 − hk)

C(hk ; h, k) . (S9)

S2.4 Numerical solutions
According to a standard result (e.g., [3–5]), the trait values in the next generation are
then given by 
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h1,t+1
...
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 �


h0,t
h1,t
...

hnh,max ,t
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 , (S10)

where C reflects genetic variation due to mutation. To find the convergence stable
evolutionary strategy [6, 7], we then iterate the above dynamic from the point ht�0 �

[0.01] until convergence, where |hi ,t+1 − hi ,t | < 1 × 10−8, using an algorithm written
in C++ (see main text). During each timestep t, we solve for the equilibrium values
of the left and right eigenvectors and the coefficients of consanguinity, given the
updated values of ht . For the evolution of unconditional helping, eq. (S10) is given
by ht+1 � ht +H (see eq. [S6]).
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S2.5 Individual-based simulations
We also ran some individual-based simulations to corroborate our results. To this
end, we simulated a population of np � 2500 patches, each containing nb � 2
hermaphroditic breeders. At the start of each generation, each breeder chooses
a random sperm donor among the n individuals in the local patch (including it-
self). Upon fertilization, each breeder produces a number of offspring according
to the same equation as in the analytical model, f j � (1/nb)(φ0 + φ1 jφ2) (see the
section “Evolutionary dynamics” in the main text), where we choose to multiply
f j by a fecundity parameter K � 60 to prevent local extinctions. Each offspring
has nh,max + 1 unlinked, haploid and autosomal gene loci, which correspond to the
helping tendencies h0, h1, . . . , hnh,max . Upon inheritance, each locus independently
mutates with probability µ � 0.01, which involves adding a random number from a
normal distribution with mean 0 and variance 0.0004 to its current allelic value (i.e.,
a continuum-of-alleles-model, [8]).

The number of helping offspring njuv,help, j produced by a parent with helping trait
h j is then drawn from a Poisson distribution, with mean f jh j while the number of
reproductive offspring is given by f j − njuv,help, j . A proportion d of all reproductive
offspring is added to a pool of dispersers, which are randomized and then evenly
distributed over all the np � 2500 patches, while the remainder of reproductive
offspring competes for breeding positions in the natal patch.

As fecundity f j is very large in the individual-based simulations (to prevent local
extinction), the number of helpers is always much larger than the number of helping
positions available. To approximate the analytical model therefore, we assume that
all juvenile helpers experience a mortality stage (reflecting, for example, mortality
during queing), during which individuals die with a probability of mjuv � 0.95
before becoming an adult helper. (An alternative approach in which fecundity f j is
small and extinct patches are recolonized by offspring born from randomly selected
remote parents resulted in similar outcomes.) After juvenile survival, the number of
helpers in the local patch in the next timestep is then the total number of surviving
helping juveniles produced by all breeders. Subsequent to helper recruitment, we
fill the vacant breeding positions by randomly sampling from the philopatric and
immigrant juvenile reproductives, after which the cycle is repeated. Simulations ran
for 40 000 generations, which was a sufficient amount of time for values of hi to reach
their equilibria. Simulations are coded in C++ and the source code is available on
zenodo: https://doi.org/10.5281/zenodo.1421729

S2.6 Overlapping generations
Here we relax the assumption of nonoverlapping generations by assuming that adult
breeders die with probability 0 < m ≤ 1. For the sake of tractability, we assume that
helpers are recruited anew during each timestep. The modified version of eq. (2) is

https://doi.org/10.5281/zenodo.1421729
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then

wi j � (1 − m)s j→i
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The other equations are identical, except for the recursions of the coefficients of
consanguinity (eq. [S12]), which are now given by (e.g., see [9])

Q j,t+1 �

nh,max∑
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uk sk→ j (hk)∑nh,max
`�0 u`s`→ j (h`)

[
(1 − m)2 Qk ,t + 2 (1 − m)m gk (hk)
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+
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Qk ,t

)
+ m2 gk (hk)2

(
1
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+

nb − 1
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Qk ,t
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. (S12)

The first part in straight brackets reflects a scenario where two breeders are sampled
which have both survived (each with probability 1 −m), since the previous timestep
and the probability that both have identical alleles is given by Qk ,t . The second part
reflects the probability that one breeder is newborn, who has replaced a breeder
that died (with probability m), while the other breeder has survived. In this case,
the newborn breeder is born from the other sampled breeder with probability 1/nb
(hence both sampled breeders carry identical alleles with probability 1), while with
probability (nb−1)/nb itwas born fromone of the other breeders (hence both sampled
breeders carry identical alleles with probability Qk ,t). Finally, both sampled breeders
are newborn with probability m2, which recapitulates the expression in eq. [S12].
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