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A. THE EIGENVALUES OF CORRELATION MATRIX

Recall the two-period nested exchangeable correlation structure is written as
Ri(@) = (1 = ap)1,, +(ag — a) &_, J,, +aJ,,.
For example, when the cluster-period size m;; = m;, = 3, the explicit form of R, is (each block represents a cluster-period)

1 ay ap|a; a; o
a 1 ay|ay o o

ay oy 1oy ap o

ay ap a| 1 ag a

ay a; aj|ag 1 a

a ap ap|ag oy 1

Next, to derive the eigenvalues of R;, we write the left hand side of the characteristic equation as

Ri@) = 41, = A B _ (I —ay— NI} + ayd, aJ, ’
CcD aJy (I —ag— VI, + ayd,
where we denote Iy = 1, . I, =1, .J, = J, . J, = Jy = Jon,xm, and J, = J, for notational convenience. It is
straightforward to see that when A = 1 —a;, R;(a) — A1, is less than full rank and has zero determinant. Therefore 4;; = 1 —q

is an eigenvalue of R;. To obtain the rest of the eigenvalues, we now suppose that A is invertible. By Theorem 8.3.4 and 8.4.4
in Graybilll, any u X u exchangeable matrix E = xI + yJ is invertible if and only if x # 0 and x + uy # 0. Further the inverse

can be written as
El=-l—-——17J 6))
and the determinant is

det(E) = x"'(x + uy). (2



2|

This tells us that a sufficient and necessary condition for the existence of A™! is that 1 # 1 — a; and A # 1 + (m;; — )a,. By
Theorem 8.2.1 in GraybillY, the determinant of this block matrix is det(R;(a) — /Um/) = det(A) det(D — CA~! B). This suggests
additional eigenvalues are the solutions to det(D — CA™'B) = 0.

Since A is assumed nonsingular, the inverse can be computed by formula (T)

— 1 I, — ay
l—ag—4 " (I—ay— D[+ (m; — Day — 4]

A7l J,.

Routine matrix algebra gives

(1 —ay—Aay+ mil(aé - a%)

D-CA'B=(-ay- NI, +
(1=a =D 1+ (m;, — Dag — A

2
whose determinant could be obtained by formula (2)) as
det(D — CA™'B) = (1 — ay — A" [1 + (m;; — Dy — A1 g(A, myy, myy, 0, ),
where we define
g, myy, mp, ag,a) = A% = [(myy + mp)ag + 2(1 — ag)lA+ myymy(ag — o) + (my; + mp)ag(1 — ag) + (1 — ap)*.

Clearly, the eigenvalues are the solutions to g(4, m;, m;,, &y, @;) = 0 with 4 as the unknown.
The function g is quadratic in A and has two real roots since the discriminant A = (m;; — miz)zag + 4mi1mi2af > 0. Therefore

the two roots could be obtained by the quadratic formula as

1
m; M — My \? 2
b=t (3= oo = {(F572) o + mumaat |

m; m, —m.,\2 1
Ay =1+(?'—1>a0+{(%> a§+mi1mi2af}2.

Note that each of these two eigenvalues has multiplicity one, and therefore 4, has multiplicity m, — 2.

For R; to be positive definite, we require all the eigenvalues to be positive. This requires a, < 1, and

m; m; — mp\?2 ) )
1+(7—1>ao> <T) ay +mympa; > 0.

Equivalently, this suggests the constraints —1/(m,/2 — 1) < a; < 1 and

o

2 . <1+(m,-1 - 1)a0)<1+(mi2— 1)a0>
! m; mp .
If the cluster-period sizes are balanced such that m;; = m;, = m/2, the roots to g(4,m/2,m/2, ay, a;) are simplified as

Ay =14+ (m/2 - Day — ma, /2 and 43 = 1 + (m/2 — 1)a, + ma; /2. In this case, the constraints for R; to be positive definite



further reduce to —1/(m/2 — 1) < @y < 1 and

14+ @m/2 - Day, 14+ @m/2 - Day,
——m/2 <a < —m/2 .

B. THE ANALYTICAL INVERSE OF CORRELATION MATRIX

We will assume R; is nonsingular and hence the corresponding positive eigenvalue conditions hold. Let A = (1 — )1, + (o —
) @’_, J, and B =a,J, . By Henderson and Searle?, the inverse of R; is
R'=(A+B)'=4a""-A"BU, +A7'B'A7". 3)

It is easy to verify that the A~! has similar basis matrices as A and can be expanded as A~ = xl, + 69}2,:1 Vij Jmu. Because

I, = AAT = (1 - ap)x1l, + (ay—a)x EBlz.zl I, + (1 =) 69?:1 Yijdm, + (@ = ay) EBlz.zl Yijmijdm, >

we must have

we obtain

Observe that

-1 2 %
Im‘+A B=Im’+ ®j=1 v Imij Jm,”
ij

whose inverse again shares the same basis matrices, and could be expressed by (1,,, +A71B)! = L, +(69J2.=1 z;; Imu ), - Observe

that

~
Il

I, +A7'B)U, + A"'B)™!

1 1
Imi + < ®§=l ZijImij)Jm: + (X1< 6912'=1 ;Imij).]ml + (X1< 612:1 W_Imu )Jm:< ®§=1 Zijlmi,')me
J

1, +C.
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If the above equality holds, then the (j, j)th block of C must be

ay(myz;y +mpzp)

a
0=1z;J, +—J, + ms

ll/lj iy WIJ i
which implies
zy + oy /wy +ag(myz + mpzn) /vy =0

Zp + o /W + ay(my 2y + mpzyn) /[y, =0

“

&)

Note that although the above linear system of equations are found by only looking at the diagonal blocks, it turns out that they

are sufficient to ensure C = 0. To solve for z;; and z;,, we multiply (4) by m;; and (5) by m;, and add them up to obtain

2 2 m..o 2 m..o 2

ij1 ijel
Z m;z,; + Z - 4 z - E m;;z,; ) =0,
j=1 j=1 Vij j=1 j=1

Yij

which gives

Define

Vij =1 Vij = Vi Vij
Then
1 py—1 4— 1 oy —
I+A1B1A'=[I (2—11 )JH I 2
U ) e i I M T = O T
1 2 ay — ay 2 1
- I, — &> m—(ea. 4 )Jm<
1_% ; 1—1(1 _0‘0)‘/’:/ ij j=1 g ;
Further, routine calculations show that
-1 1 py—1 41 2 @ 2 % 2
AT'BUI, +A7'B)IAT = <€B-=1 —Im_i)Jm, —(EB-=1 —Im,>Jm_<e9.
i =LA = ap)yy; ™ i =Ly i J

1

(04 [0
—( &>, —I, >Jm ( &>, —I, )Jm ( &>, —I,
J= II/U ij i J= yu ij i J= IIIIJ ij

2 % o L=(my /vy +mp/vn)e
= (eaj:l Imi/>‘]m‘<®j:1 : 1
Vij Vij

The inverse is then given in closed form by

mij(aO —a)

=l (1- ao)Wij

m

L= (my /vy +mp/yia I

- 1 ay — o a
R () = I -l — % < 2 Sy )J ( 2
i (a) 1-— a m; ®/=1 Wij(l _ 0‘0) mij ®j=1 Wij mj; m; ®j=1
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Notably, when m;; = m;, =m;/2 =m/2, wehave y;; = 1+(m/2—D)ay—ma, /2 = y,andy;; = 1+(m/2—Day+ma, /2 = 43,

and the inverse simplifies to

_ 1 Ay —
R a) = I, -
! 1 —a, Ay(1 = ap)

I,®J,, s

1
Aydy "
which is the inverse of the nested exchangeable correlation in Teerenstra et al.?! (after correcting the typo in equation (1) of their

manuscript).

C. MATRIX-ADJUSTED ESTIMATING EQUATIONS FOR CORRELATION PARAMETERS

We use the matrix-adjusted estimating equations (MAEE) introduced by Preisser et al.# to reduce the finite-sample bias in esti-
mating the correlation parameters. Resuming the notations in Section 2.2, we define the collection of upper triangular elements

of R[ asfj; = (Rilz, Rm, s Ry —1ym ). Then we write the expectation of these correlation estimates as p;(a) = E(#;) such that

pijyp = apif 1 <j <j' <myormy +1<j<j <m,andp;; = a otherwise. Let S; = dp;/0a’ and W to be a (";) by (";)

diagonal working covariance matrix. The a-estimation equations are specified by
n
D SIW G — py(a) = 0. 6)
i=1

A simple choice for the working covariance W; that preserves the consistency of estimation is the identity matrix”. Alternative
specification of W, requires an expression for the higher-order moments of Y;;,. If the outcome Y;;, is binary, the diagonal
elements of W, is provided in Prentice® and Lu et al.”Z, If the outcome Y, ;k 18 continuous, the diagonal elements is given by Li et
al®as 1+p7 . Denote the cluster leverage® as H, = D,(¥_, D;V;”' D)~ D}V;”". Preisser et al.* corrected for the finite-sample
bias in estimating the correlation parameters by setting R, =G jﬁ,—. ; for j < j', where G;;. is the jthrow of G; = (I m—H, )
and R, ;, is the j'th column of of R, = r,(a)r/(f,) with r,(A,) = (ryyy iy )s Faa(fin)s - Fiom (B, )Y - Joint estimation for
model parameters based on the #-estimating equations (GEE) and a-estimating equations (6)) follows the iterative steps outlined
in Prentice®. Finally, unless the dispersion parameter ¢ is set to be unity, we follow Li et al.® and update the dispersion estimate
from iteration s to s + 1 as

T3 R

Z?:] m; —p ,

where R;;, = G, R, for | = 1,...,m; and p = 3 is the number of regression parameters in the marginal mean model given in

6D = g

Section 2.1.
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D. SAMPLE SIZE METHODS ASSUMING NO PERIOD EFFECT

Assuming no period effect, the marginal mean model reduces to g(y;;,) = 7 + 6X,;, where 7 is the grand mean of the outcome

ij»
on the link function scale. Then the design matrix for each cluster is Z; = [1,, X;] ® 1,, 5.

For continuous outcomes with the identity link, since D; = Z;, we have

n n !/
1 1 12M12 IL,MX;
== ) ZR'Z =— ,
o? Z‘ o ; X/M1, X/MX,

i=

Some algebraic simplification shows that the bottom-right element of nZl‘l is 6§ = 41,6%/m. We then obtain the sample size

formula based on a z-test as

4(251/2 + 252)2/1262
n=

; )

méé
which is identical to the formula provided by Giraudeau et al. 1% Observe that in the absence of the period effect, the sample
size formula is free of z, namely the required sample size is not affected by the proportion of clusters assigned to each
treatment sequence.

For binary outcomes with the logit link, since there is no period effect, P, = Q, and P, = Q,. Recall that D, = A, Z,, we have

1/2

i

1/2M91/2

i i Xi nm

1, X'Q* M *x, RV &

| QM 10 A€

n
_ 121 412
T, =) DAPRIATD, = e s
i=1 MQ

i=1 X{Qi ; MQ

Some algebraic simplification leads to @ = (4, + 4;) P;(1 — P;), and

E=A+ )P -P)+ (4, — /13)\/P1(1 - P)P(1 - Py),

and the upper-left element is written as

A=Ay + )P(1=P)+ (4, + 13)P(1 = Py)+2(4, — 13)\/P1(1 - P)P(1-P,).

Then the bottom-right element of nX " is 67 = 44,43 A/[m(@A — £*)] by matrix inversion. Notice that @A — &> = 42,4, P, (1 —

P))P,(1 — P,), therefore the sample size formula (based on a z-test) becomes

®)

(ze, 0 + 2., { Ay + A5 Ay + A5 204y — 43)

n= ,
mé; P =P)  P(-P) /P -P)P(-P)

which equals to half of the required sample size provided by Preisser et al.l for a pretest-posttest cross-sectional design. Here,

since 4, + A3 = 24+ (m —2)a and 4, — A; = —ma,, the required sample size # is increasing in a; and decreasing in «;,. Further,

if the inter-period correlation coefficient &, = 0, the CRXO design without period effect can be regarded as a parallel design



with twice the sample size. In this case, the sample size formula (8)) reduces to

(ZE]/Z + 252)2()’2 + )'3) 1 1
"= { ) } ©)

+
ms? P(1-P) P(-P

which shares a similar form with the formula provided by Shih?. On the other hand, when the intervention effect is small such

that P|(1 — P) = P(1 - P,) = \/Pl(l - P)P,(1 - P,) = P*(1 — P*), can be approximated by

Mz, p+z, )
N 1/2 2 2' (10)
mégP*(l — P¥)
We remark that such an approximation was used by Forbes et al.l4. Interestingly, formula now shares a similar structure

to ((7) derived for continuous outcomes assuming no period effect. In this case, 4, may be considered as an approximate design

effect for binary outcomes.

E. RELATIONSHIP BETWEEN CORRELATIONS AND POWER FOR BINARY OUTCOMES

Although it is challenging to analytically study the relationship between a;, ; and o-§ with binary outcomes, we have numerically
assessed the values of ag as a function of plausible correlation values. We give an illustrative numeric example in Web Figure
The example uses a small cluster size with m = 20 so that a wider range of (a, @) values are plausible (i.e. the resulting
R(a) is positive definite). The results for larger value of m are similar and not shown. We choose 7, so that a cluster receiving the
control condition in the first period has an expected prevalence 0.3. The effect size is chosen by 6 ~ —0.89 so that in the absence
of period effect (i.e. 7, = 7,), the expected prevalence will reduce from 0.3 to 0.15 due to the intervention. Note that these
numbers mimic the TTANGO trial in Section 5 of the manuscript. Finally, we let the odds ratio e™ /e™ = 1.3 or 0.8, representing
gently increasing or decreasing period effect in opposite directions. This latter scenario corresponds to larger variance of the
intervention effect since the time partially confounds with the intervention for clusters receiving the AB sequence. We further
varied e™ /e™ = 0.4 to represent an extreme scenario where the period effect 7, — 7, = 6. From Web Figure we observe
as the within-period correlation « increases, crg becomes larger and more clusters are required to achieve a fixed power. By

contrast, as the inter-period correlation @, increases, a§ decreases and fewer clusters are required.

F. EXTENSION OF SAMPLE SIZE METHODOLOGY TO ALTERNATIVE LINK FUNCTIONS

For binary outcome Y;;,, we could alternatively specify g as the log function such that the marginal mean of cluster i is y; =
exp(Z;0). We use the Bernoulli model and assume the variance function A(y; ;) = (1 — ;) and no over-dispersion, so
¢ = 1. Now define P, = exp(r; + §,) and P, = exp(r,) to be the expected prevalence in period 1 and 2 for clusters receiving

the AB sequence. Similarly, we define Q, = exp(r;) and Q, = exp(z, + §,) to be the expected prevalence in period 1 and 2 for
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Web Figure 1 The variance of the intervention effect o§ as a function of the within-period correlation &, and the inter-period
correlation @,, under different assumptions of period effect.

clusters receiving the BA sequence. Using these quantities, the detectable effect size in terms of the log risk ratio (RR) is:

1 1
6o = 3 log(P,/P,) — 3 log(Q,/0,).
With the log link, we now have D, = diag(y;)Z;, and it follows from Section 3.2 in the main manuscript that

n FiI/ZMF.il/Z F}l/zMF}I/ZX[ m A 5

T 4dy & o ’

=

=1 x/F'?

MFil/z Xl.’Fil/zMFil/in

where F;, = diag{ P, /(1 — P,), P,/(1 — P,)} for clusters receiving the AB sequence, F; = diag{Q,/(1 — Q,),0,/(1 — Q,)} for

clusters receiving the BA sequence, and

w = (A + B)xP /(1 - P)+(1-m)0,/(1 -0y,

(Ay+23)P /(1= P) (4 — 43)1/0, /0 = 0V0O, /(0 = 0,)
E=nm +(-n) s
(A3 = A)V/ P /(1 = P)\/Py/(1 — Py) (dy + 23)0,/(1 = Q,)
N (Ay+ A)P /(1 - P) (A = A)\/P, /(1 = P)\/P,/(1 — Py)
=7
(A, — )V P /(1 = P)\/P,/(1 - Py) (Ay + APy /(1 = Py)
fm (A + 23)0, /(1 = Q) (4 = 43)0/0, /(0 = 00,/ - 0,)
-
(4 — 2)V0, /(0 = 0)\/0,/(0 - 0,) (A + 43)0,/(1 — 0,)

The revised sample size formula can be obtained once we substitute the new values of 6, , &, A in equations (16), (17) of the

main paper.
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Similar logic extends to the linear probability model, in which g is specified as the identity link. In this case, P, = 7, + &,
P, = 1, are the expected prevalence in period 1 and 2 for clusters receiving the AB sequence; O, = 7, and Q, = 7, + §, are the
expected prevalence in period 1 and 2 for clusters receiving the BA sequence; the detectable effect size in risk difference (RD)
is simply

Lo, o).

1
50=§(P1_P2)_2

It can be shown that the revised sample size formula is obtained if we specify §, in terms of RD, and substitute w, &, A in

equations (16), (17) of the main paper with the following:

@ = (A + )P (1= P} + (1 = m){0,(1 - 0,)}7'],

(A + A){P (1= P}t (4 — A){0,(1 = 0)0,(1 — 0,)}71/2
(=nx +0 -7 ,
(Ay = A){P (1 = P)Py(1 - Pz)}_l/z (A, + A3){0,(1 = Qz)}_l
A (Ay + A{ P (1 = P)}! (Ay = AD{P;(1 = P)Py(1 — Py)}~1/2
=7
(Ay = AD{P,(1 = P)Py(1 — P)}7'/2 (A + A{P(1 - P}
(A + {0, (1 =0 }! (A — )0, (1 = 00, (1 — 0,)}71/2

+-n)

(A = 2){0,(1 = 0DO,(1 = 0y)} /2 (A + 2){0,(1 = 0}

G. EXTENSION OF SAMPLE SIZE METHODOLOGY TO COHORT CRXO TRIALS

Our sample size methodology readily extends to cohort CRXO designs, in which the same set of individuals are included in
both periods for a cluster. The GEE analyses of cohort CRXO trials could still be based on the marginal mean model (1) in
the main manuscript, but the correlation structure should additionally reflect the association between repeated measurements
from the same individual. More specifically, three types of correlations should be considered: the within-period correlation,
corr(Y, 4, Y;j0) = ag for k # k" and j = 1,2, the inter-period correlation, corr(Y;y, Vo) = a; for k # k', and the within-
individual correlation, corr(Y;;;, Y;5;) = ,. Assume m/2 individuals are included in each cluster, we follow Li et al.® and define

the two-period block exchangeable correlation structure for cluster i as

R@=0—-ay+a; —a)l,+(,—a))), ® Im/2 +(y—a)l, ® Jm/2 +aoJ,,
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where @ = (ag, @), a,)" is the vector of correlation parameters, I, is a u-dimensional identity matrix, J; = 1,1/ is an s by s

matrix of ones. For example, suppose the ith cohort size is m/2 = 3, the explicit form of the block exchangeable matrix is
I ay ap|ay ay o
a 1 ay|a; ay a

ay ag 1oy a; a

a ap a| 1 ay a

a oy ap|ag 1 a

ay a; a|ag oy 1

The properties of the block exchangeable correlation structure has been studied by Li et al.® in the context of cohort stepped
wedge CRTs and we adapt their results to inform the design of cohort CRXO trials. According to Li et al.®, R;(a) has the

following four eigenvalues

K1=1—a0+a1—a2, K2=1—a’0—0£1+0{2,

5 1+(%—1>(a0—a1)—a2, K4=1+(%—1>(a0+a1)+a2.

Therefore, valid correlation values are among those such that R;(«) is positive definite, and can be determined efficiently by
directly assessing the positivity of above eigenvalues. Furthermore, the closed-form inverse of the block exchangeable correlation
is also available:

Q) — qy ay — ay

H®1,, -

ay — 0 )(Ay — A A0y — X
Ri—l(a): iIm_ ( 2 1)( 0 l) + 240 I}Jm
Ky KKy KiK3

L®J,,+
? "2 { K1K3K3 Kok3Ky
With the block exchangeable correlation matrix, one could repeat the derivation presented in Section 3.1 and 3.2 of the main

manuscript and obtain the appropriate sample size formulae for cohort designs. We provide the main idea as follows.

For continuous outcomes with identity link, we have

1 " 1 " M MX,;
i=1| X l’ M X ,/ MX,
but the constant matrix now becomes

m K3+ K4 K3 —Ky
M =
4Kk,

Ky — K4 K3 + Ky

It can then be shown by matrix inversion that the bottom-right element of nZl_l is

K302
6= —————
S mn(l-x)
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and the the required total sample size to achieve a prescribed type I error rate £, and type II error rate €, for a z-test becomes

2
K30

n=(z, p+2z, ) —
2T 21 - oyms?

Given the above sample size formula, the new variance inflation factor (design effect) remains to be an eigenvalue of the block

exchangeable correlation matrix, k3. This variation inflation factor suggests that the required number of clusters increases as the

within-period correlation @ increases, and as the inter-period correlation &, or the within-individual correlation a, decreases.
For binary outcomes with the canonical logit link, the revised sample size formula for cohort trials can be obtained by

essentially replacing 4,, A5 in equations (16), (17) in the main manuscript with x5 and x,, respectively.
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H. WEB TABLES

Web Table 1 Summary of parameter constellation and convergence rates for GEE analyses of simulated continuous outcomes.

o -1 6/ ay n  m Convergence (Size)* Convergence (Power) ®
0 -0.2 -0.40 0.05 0.025 8 90 876 877
0 -0.2 -0.40 0.05 0.025 10 50 988 990
0 -0.2 -0.40 0.07 0.035 12 40 999 999
0 -0.2 -0.40 0.07 0.035 8 140 844 844
0 -0.2 -0.40 0.07 0.035 14 30 998 1000
0 -0.2 -0.30 0.07 0.035 12 150 1000 1000
0 -0.2 -0.30 0.07 0.035 16 60 996 1000
0 -0.2 -0.30 0.10 0.050 14 120 1000 1000
0 -0.2 -0.30 0.10 0.050 18 70 999 1000
0 -0.2 -0.25 0.10 0.050 20 130 1000 1000
0 -0.1 -0.30 0.05 0.040 10 80 977 977
0 -0.1 -0.25 0.05 0.040 12 90 1000 1000
0 -0.1 -0.25 0.07 0.035 16 120 1000 1000
0 -0.1 -0.25 0.07 0.035 18 100 1000 1000
0 -0.1 -0.25 0.07 0.035 16 150 1000 1000
0 -0.1 -0.25 0.10 0.050 24 104 1000 1000
0 -0.1 -0.25 0.10 0.050 26 70 1000 999
0 -0.1 -0.25 0.10 0.050 20 90 1000 1000
0 -0.1 -0.20 0.10 0.080 22 80 999 997
0 -0.1 -0.20 0.10 0.080 18 120 1000 1000

2 Convergence rates (out of 1000) in simulation scenarios for studying test size.

b Convergence rates (out of 1000) in simulation scenarios for studying power.
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Web Table 2 Summary of parameter constellation and convergence rates for GEE analyses of simulated binary outcomes.

eT e; / eT el ay a; n m  Convergence (Size)* Convergence (Power) ®
0.5 0.8 04 0.05 0.025 8 90 805 783
0.5 0.8 04 005 0.025 10 36 988 975
0.5 0.8 04 0.07 0.035 12 30 985 994
0.5 0.8 0.4 0.07 0.035 8 150 825 798
0.5 0.8 04 0.07 0.035 14 24 986 977
0.5 0.8 0.5 0.07 0.035 10 160 998 977
0.5 0.8 0.5 0.07 0.035 12 90 969 971
0.5 0.8 0.5 0.10 0.050 16 50 918 910
0.5 0.8 0.6 0.10 0.050 18 170 1000 1000
0.5 0.8 0.6 0.10 0.050 22 130 997 1000
0.3 0.8 04 0.05 0.040 10 50 912 874
0.3 0.8 0.5 005 0.040 12 70 949 932
0.3 09 05 007 0035 14 80 967 966
0.3 09 05 007 0035 16 100 964 971
0.3 09 05 007 0035 14 130 998 996
0.3 09 06 0.10 0.050 24 170 1000 998
0.3 09 0.6 0.10 0.050 26 110 1000 1000
0.3 09 06 0.10 0080 20 70 929 941
0.3 09 06 0.10 0.080 18 104 1000 999
0.3 09 06 0.10 0080 24 50 905 905

2 Convergence rates (out of 1000) in simulation scenarios for studying test size.

b Convergence rates (out of 1000) in simulation scenarios for studying power.
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