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Supplementary Methods 

1. Atomic Force Microscopy (AFM) characterization was obtained on a 

Multimode 8 (Bruker Cooperation) using the ScanAsyst mode. 

2. Thermal expansion measurement 

The investigated 3DGraphene foam sample was 15 × 6 × 6 mm
3
 cuboid. A thermal 

mechanical analyzer (TMA/SS6300, Seiko Instruments, Japan) was used to measure 

the thermal expansion between 4 K and 1273 K with a heating rate of 0.2 K min
-1

. 

And the results of both axial and radial directions were demonstrated in fig. S24. 

3. Scanning Electron Microscopy (SEM) characterization and analysis 

SEM images in Fig. 1B, c and fig. S14 were obtained on a Hitachi S-3500N scanning 

electron microscope using an accelerating voltage of 20 kV. 

 

Fig. S1. The schematic of the sample platform with precise positioner and 

temperature control in the SEM for in situ and variable-temperature 

characterization. When SEM observation was performed at 4 K, the electric hot 

plate was set to switch off and act as thermal conductor; when SEM observation was 

performed at 1273 K, the refrigerant in the cold head was drained out and the electric 

hot plate was set to switch on. 



 

 

In situ SEM images in Figs. 3 and 5A, fig. S18 and S23 and captures in Movie S3 and 

S4 for observing the real-time compress-release cycles at different temperatures were 

obtained on a ZEISS GEMINI SUPRA 55 scanning electron microscope, which was 

equipped with an in situ heating/cooling head and a micro-positioning sample holder 

(as shown in fig. S1), using an accelerating voltage of 10 kV and 60 μm aperture. 

Slices of the 3DGraphene foam were 600 μm (sample thickness, along the 

compression direction)  8 mm  5 mm for Fig. 5A and fig. S23 and Movie S3 and 

S4, and 500 μm  5 mm  5 mm for Fig. 3 and fig. S18. They were prepared by laser 

cutting and then manually and mechanically gripped between two counter sample 

holders (i.e., the electric hot plate and the sample holder) without chemical binder. 

The holder can move with precision of 2 μm. When the SEM observation was carried 

out at 4 K, the electric hot plate was set to switch off and acted as thermal conductive 

sample holder. After about 30 minutes pre-cooling with liquid nitrogen, the cold head 

was then loop-filled with liquid helium (1.1 L min
-1

) for about 50 minutes, and near 4 

K temperature was achieved and detected by the temperature sensor. For SEM 

observation at 1273 K, the refrigerant in the cold head was drained out and the electric 

hot plate (tungsten, 2500 W) was set to switch on to heat the sample to 1273 K. As a 

result, we can perform the high temperature SEM observation subsequently after the 

cryogenic one for the same sample without breaking the vacuum condition, which is 

very important for obtaining the SEM images/captures of the same area of the same 

sample upon changing the temperature. A series of images for the sample were 

obtained successively under a set of specific conditions and then digital software 

VE-Viewer (Fibics Incorporated) was used to stitch the images and finish the digital 

position alignment. High quality SEM images and captures were conducted with 

ZEISS Atlas 5 system integrated with the ZEISS GEMINI SUPRA 55 scanning 

electron microscope. 

  



 

 

4. Variable-temperature mechanical behaviors measurement 

The stress-strain curves included results of mechanical measurements along both the 

axial and radial directions of the 3DGraphene foam sample from 4 K to 1273 K were 

obtained using a homemade mechanical analysis system which shown in fig. S2. 

 

 

Fig. S2. Schematic of the homemade apparatus for mechanical property 

measurement from 4 to 1273 K. The system was mainly consisted of a vacuum 

chamber (both 20 cm in diameter and height) with the inner sample platform and an 

integrated precise positioner with 1.25 μm resolution (Model 7-PAC, SOFN 

Instruments CO., LTD). The stress sensor was eStrain μ-Force P4-X-O (CHIEF SI 

Incorporated, with 5  10
-6

 N resolution). The sample platform was connected with 

refrigerant pipeline for cooling down the sample. The temperature was adjusted by 

controlling the flow velocity of the refrigerant and measured by temperature monitor 

(for range from 4 K to 473 K using Lake Shore DT-670 Silicon Diode equipped with 

Lake Shore 211 temperature monitor in 0.15 K resolution, and for range from 673 K 

to 1273 K using commercial platinum rhodium thermocouple, model WRP-100, 

equipped with XMD-1216 temperature monitor in 0.1 K resolution, Jiangsu Plaza 

Premium Electric Instrument Co., Ltd.). Temperature calibration were performed 

before testing by setting the temperature sensor on the upper side of the sample. 



 

 

Temperatures from 4 K to 43 K were obtained by using liquid helium as the 

refrigerant and liquid nitrogen were selected refrigerant for temperatures from 77 K to 

273 K. For the temperature of 4 K, the chamber was first pre-cooling with liquid 

nitrogen for 30 minutes. After vacuum-pumping the liquid nitrogen out, the chamber 

was filled with liquid helium for 40 minutes and the cold head was also loop-filled 

with liquid helium (2.2 L min
-1

). Then the helium in the chamber was sucked out and 

the chamber was pumped to 1.5 × 10
-4

 Pa. At this stage, the sample temperature was 

controlled and maintained at around 4 K by the liquid helium looping in the cold 

head. Then the tests at 4 K temperature were carried out. Then, by simply adjusting 

the loop rate of liquid helium in the cold head, the sample temperature could be 

adjusted. For example, by setting the loop rate to 1.9 L min
-1

, the temperature was 

controlled at 20 K, and 1.6 L min
-1

 for 43 K. For the temperature of 77 K, the 

chamber was first pre-cooling with liquid nitrogen for 50 minutes, and the cold head 

was loop-filled with liquid nitrogen (2.6 L min
-1

) too. Then the nitrogen in the 

chamber was sucked out and the chamber was pumped to 1.5 × 10
-4

 Pa. At this stage, 

the sample temperature was controlled at around 77 K. Again, by simply set the loop 

rate of liquid nitrogen to 1.8 L min
-1

, the temperature was controlled at 233 K, and 1.6 

L min
-1

 for 273 K. 

For the measurements at the temperatures above room temperature, another 

configuration, an inner high temperature heater (silicon carbide heater, 4850 W 

power) equipped in the vacuum chamber, was used for reaching the temperature from 

473 K to 1273 K. All the tests were carried out under the vacuum of 1.5 × 10
-4

 Pa 

through a molecular pump system (Edwards EXT255H). 3DGraphene foam samples 

(cylindrical shape, both 15 mm in diameter and height) were investigated for 

stress-strain characterization from 0% to 90% strain with a rate of 0.1% strain s
-1

 at 4, 

20, 43, 77, 233, 273, 298, 473, 673, 873, 1073 and 1273 K, respectively (Fig. 4A). 

Using an endoscope, in situ real-time observations of the sample during the 

compress-release cycles at different temperatures were recorded, as shown in Movie 

S1 and S2 for two typical tests. 



 

 

5. Young’s modulus measurement 

3DGraphene foam samples (cylindrical shape, both 15 mm in diameter and height) 

were also investigated for Young’s modulus at different temperatures using the 

above-mentioned homemade mechanical analysis system.  

(1) Standard definition: Generally, the Young’s modulus is defined as the ratio of 

tensile or compressive stress (𝜎) to corresponding strain (𝜖) below the proportional 

limit (linear elastic range, i.e., 𝜎 ∝ 𝜖) of the material (2, 60) 

𝐸 =
𝜎

𝜖
=

∆𝐹/𝐴

∆𝐻/𝐻0
                        (𝐸𝑞. 1) 

where ∆𝐹 =  load increment, 𝐴 =  cross-sectional area, ∆𝐻 =  extension or 

compression increment, and 𝐻0 = initial length (∆𝐻 ≪ 𝐻0). Note that since almost 

all materials exhibit elastic deformation at only initial state and with small strain, this 

definition and their measurement of Young’s modulus are only applied for the very 

small initial elastic strain, and are not used for large deformation materials/range. 

(2) Thus, for a highly nonlinear elastic deformation (as is the case in this study), the 

standard definition of the Young’s modulus given above could not be applied directly 

to measure the Young’s modulus with high strains beyond the initial linear elastic 

range. Indeed, there are rarely study about the Young’s modulus analysis with highly 

nonlinear elastic materials, particularly at very high strains. So, we have the definition 

(Eq. 2) of Young’s modulus (𝐸𝜖) at a certain compressive strain (𝜖) of our material 

(with the very initial length 𝐻0) based on the standard definition (Eq. 1) as follows: 

At a certain compressive strain (𝜖), a sufficient small strain (𝜖′, based on the 

compressed length (1 − 𝜖)𝐻0) induced by a stress increment (∆𝜎), could be seen as 

linear elastic deformation that follow the standard Young’s modulus (∆𝜎 ∝ 𝜖′). As a 

result, the Young’s modulus (𝐸𝜖) at a certain compressive strain (𝜖) can be defined as 

the ratio of ∆𝜎 to corresponding 𝜖′ all over the stress-strain curve of the material 

in the whole testing strain range 

𝐸𝜖 =
∆𝜎

𝜖′
=

∆𝐹/𝐴

∆𝐻/[(1 − 𝜖)𝐻0]
                        (𝐸𝑞. 2) 



 

 

where ∆𝐹 =  load increment, 𝐴 =  cross-sectional area, ∆𝐻 =  extension or 

compression increment, and 𝐻0 = initial length (∆𝐻 ≪ (1 − 𝜖)𝐻0). Obviously, 𝐸𝜖 

will return to the standard 𝐸 at 𝜖 = 0 (uncompressed sample with the initial linear 

elasticity). 

(3) Test method: For practical measurements, also as demonstrated in this study (fig. 

S3), during stress-strain measurement, compression was interrupted by 

unloading-reloading cycles with a sufficient small 𝜖′ . With each 

unloading-reloading cycles the sample behaved approximately linear elasticity at each 

testing strain point. The Young’s modulus (𝐸𝜖) can be calculated based on Eq. 2 with 

the least squares fitting data of the whole unloading-reloading process.  

The detailed methods for the measurements of Young’s modulus in this study are as 

following: during one normal measurement of stress versus strain of 3DGraphene 

foam, compression with rate of 0.1% engineering strain s
-1

 was interrupted (every 

15% intervals in engineering strain) by unloading-reloading cycles (involving 1% true 

strain of the compressed sample for unloading and reloading) until a total engineering 

strain of 90% was reached. Young’s modulus (ratio of the stress to the true strain) at 

each selected engineering strain (where an unloading-reloading cycle was conducted) 

was calculated through statistically averaging the slopes of the least squares fittings of 

stress versus strain during the unloading and reloading parts of the cycle, as shown in 

fig. S3. And such a test procedure was repeated at different temperatures along both 

the axial and radial directions for the Young’s modulus at given temperature. All the 

Young’s modulus were obtained following such a procedure unless otherwise 

explained. 

In our study, we set a small 𝜖′= 1% for each unloading-reloading cycle, in which the 

sample behaved approximately linear elasticity (inset of fig. S3) around each testing 

strain point. This can be seen as a special case of the general/rigorous definition of the 

Young’s modulus at a certain compressive strain, but could be applied for the 

materials with high deformation range. 



 

 

 

 

Fig. S3. Measurements of the Young’s modulus of the 3DGraphene foam at 4 K. 

The engineering strain-time curve (top inset) and stress-engineering strain curve 

(bottom inset, corresponding to a 0.25% engineering strain or 1% true strain) showed 

details of a typical unloading-reloading cycle at 75% engineering strain. The 

unloading-reloading sections were highlighted using red open squares for clarity in 

both insets. The blue solid line in bottom inset was the least squares fitting of all the 

data of the whole unloading-reloading process, which was used to calculate the 

Young’s modulus at the corresponding engineering strain by averaging the ratios of 

differential stress to differential true strain within the blue solid line range. Note, the 

Young’s modulus at 0% strain was measured directly from the compress-release cycle 

from 0% to 1% engineering strain, and the others were measured from the 

unloading-reloading cycles at each 15% engineering strain intervals. 



 

 

6. Poisson’s ratio measurement 

3DGraphene foam were cut into cubic shape (15 × 15 × 15 mm
3
) using laser so that 

the axial direction and two orthogonal radial directions were perpendicular to the 

sides of the cut sample. Using endoscope and imaging processing software, the 

deformations required to experimentally derive the Poisson’s ratios were obtained 

from video frames of the sample’s rectangular lateral sizes during compression. The 

measurements provided lateral width (W) as a function of length (L) in the 

compression direction. Since our applied compressive strains were so large, we were 

in a different regime from the conventional materials that plastic deformation limited 

the strain range where Poisson’s ratio could be obtained (25). However, the Poisson’s 

ratio could still be defined using the following equation for a dynamic and large strain 

−dlog𝑊/dlog𝐿 = −(d𝑊/𝑊)/(d𝐿/𝐿) = Poisson′s Ratio 

  



 

 

 

Fig. S4. Measurements of the Poisson’s ratio of the 3DGraphene foam at 4 K. 

The left inset showed the strain-time curve of a typical unloading-reloading cycle 

between 40% and 50% engineering strain. The right inset was the logarithm of sample 

width (W) versus the logarithm of sample length (L) in the unloading-reloading cycle 

between 40% and 50% engineering strain. In both insets the unloading-reloading 

cycle were highlighted using red line for clarity. The blue solid curve in right inset 

was the least squares fitting of the reloading stage, which was used to calculate the 

Poisson’s ratio at the corresponding engineering strain by averaging the negative 

slopes of logW versus logL within the blue solid line range. 

 

So for the measurement of Poisson’s ratio in our case, the sample was compressed 

from 0% to 80% engineering strain at a strain rate of 0.1% engineering strain s
-1

 and 

such process was periodically inserted by an unloading-reloading cycle 

(corresponding to a 10% engineering strain change also at 0.1% engineering strain s
-1

) 

at each 10% engineering strain increase. Poisson’s ratios were calculated through 



 

 

statistically averaging the negative slopes of the least squares fittings of the logW and 

logL data in the reloading of each 10% engineering strain intervals, as shown in fig. 

S4. Such a test procedure was repeated at different temperatures along both the axial 

and radial directions. All the Poisson’s ratios were obtained following such a 

procedure unless otherwise explained. The measurement and calculation are the same 

as reported earlier (25). 

 

Supplementary Discussion 

1. Analysis of the structural/thermal stability of chemically crosslinked nodes during 

the compression in wide temperature range 

 

Fig. S5. The schematic of the nodes under compression. 

(a) Mechanical stability:  

A proposed schematic for the junction (node) between graphene sheets under 

compressive force was shown in fig. S5. The forces applied on the covalent bonds in 

the nodes that originated from compressive stress on the cell unit should include 

torsion force, bending force, compressive force and stretch force (2). Normally, 

torsion force, bending force and compressive force applied on the covalent bonds in 

the nodes could mainly result in localized chemical conformation transition (61) of 

the nodes but not destroy its structural stability unless in extreme case, which will be 

discussed more detailly in next section. However, once the stretch force applied on 

the covalent bonds in the nodes increased to be extremely large, the structure of the 

nodes would be unstable and the 3DGraphene foam would break up. 

 



 

 

 

Fig. S6. The modeling architecture of the plane perpendicular to the compression 

direction. Considering the homogenous and isotropic structure of the 3DGraphene 

foam, we averaged the compressive force applied on the cross-section plane of the 

sample into each nodes distributed along the edges of the cell units for simple 

assumption, using the similar honeycomb configuration for modeling the plane which 

is perpendicular to the compressive direction (plane XY in fig. S6, and the 

compressive direction is along the Z axis direction). The stretch force on covalent 

bonds, as a component force of the compressive force on the nodes, were followed the 

same simplified processing. The total covalent bonds of the nodes in this plane should 

be: N = (S/S0)  2  (L/d0)  f1  f2, in which N is the covalent bonds number, S is the 

area of the perpendicular plane, S0 is the area of the hexagonal cell, 2 is the average 

side number of each hexagonal cell, L is the side length of the hexagonal cell, d0 is the 

average distance of two edge carbon atoms along (graphene sheet) side of the 

hexagonal cell, f1 is the factor describing ratio of the actual crosslinked sides to all the 

hexagonal cells, f2 is the factor describing ratio of bonding atoms among all the edge 

carbon atoms. 

For the cylindrical sample, S = πr
2
, where r is the radius of the radial plane and r is 

7.5 mm. And 𝑆0 =  
√3

2
𝐿2, where L is the side length of the hexagonal cell. Based on 

the SEM results (Fig. 1B, C, Fig. 3, fig. S18 and S23) and the average lateral area of 

the graphene oxide sheets that we used (fig. S25), we take L as 10 μm for the 

convenience of modeling and reasonable assumption. In addition, if all the graphene 



 

 

sheets edges are zig-zag type, the d0 should be 0.142  √3 = 0.246 nm. Due to the 

deviation between the open-cell cellular and randomly structure of 3DGraphene foam 

and the above honeycomb structure, and not all the C atoms at the edge of the 

graphene sheet could construct a joint covalent bond (25), we hypothesized f1 and f2 

be both 0.5 for estimation and then N should be ~4.2  10
11

. 

The possible covalent bonds in the chemically crosslinked nodes could be C-O, C=O, 

C(O)-O, C-C and C=C (25, 35, 36). Generally double bond is stronger than single 

bond, and the typical rupture force of single covalent bond (C-C and C-O) under 

stretching should be at 4.0~4.5 nN (62). So all the covalent bonds at nodes in the 

model plane could undertake rupture force at least ~1.8  10
3 

N. The compressive 

force applied on the sample at the large strain (90%) should be S, where  is the 

corresponding stress and S is the cross-section area of the sample along the radial 

direction, and then this force should be ~1.2 N (7 kPa  3.14  0.0075
2
 m

2
). 

Therefore, the real average stretch force applied on the covalent bonds (component 

force of the compressive force on the nodes) should be several orders smaller than the 

force it could withstand. While in general the mechanical rupture happens first at the 

weakest point, it would be very unlikely the applied force could be concentrated on a 

few joint bonds at the molecular level for the nearly homogeneous and isotropic 

material in this case. Conclusively, the chemically crosslinked nodes will be stable 

even at large strain (3). The key point for such overall structure integrity stability is 

also due to the large void space between the chemically crosslinked graphene sheets, 

which offers the cushion room, different from the conventional materials. 

(b) Thermal stability: 

The discussion above is for the situation at the room temperature (T = 298 K). The 

rupture force of single covalent bond at temperature near absolutely zero is slightly 

larger than (or nearly the same with) the force at room temperature (63), so the 

stability of the chemically crosslinked nodes at cryogenic temperature of 4 K for our 

situation should be kept. Theoretically, the rupture force of the covalent bond should 

decrease with the increasing temperature (64). Though the specific values of the 



 

 

rupture force of covalent bond under high temperature (such as 1273 K) is unclear, 

there would not be order of magnitudes change just from 298 to 1273 K based on the 

original function (𝑣~𝜔0 exp[(𝐸𝑏 − 𝑓𝑥0) /𝑘𝑏𝑇], where f is the rupture force) (8). 

Therefore, we believe that chemically crosslinked nodes and the overall structural 

integrity of the 3DGraphene foam will not be damaged at 1273 K. This is also proved 

experimentally by our works (Movie S2 and S4) (1) and the literature which proved 

that above-mentioned covalent bonds are stable below 1800 °C (65). 

Generally, it is believed that bonds such as C=C/C-C/C-O are thermally stable due to 

their high bonding energy (~145/80/86 Kcal/mol). Considering the large conjugation 

system of this material (mainly as large aromatic system such as graphene sheets), the 

thermal stability should be further enhanced. In our case, annealing during high 

temperature tests should remove significant O containing groups as supported by 

decreased O amount (25, 36). Nevertheless, there are still some C-O/C=O remains 

after high temperature annealing (25, 35, 36). It is well known that even after over 

2000 °C annealing during carbon fiber preparation, there is still some O left (normally 

0.1-0.3%) in fiber in the form of O containing groups (65, 66). Importantly, 

cross-links between neighboring graphene sheets via oxygen functional cross-links 

may also be created up on thermal annealing (65). These results indicate that the 

covalent bonding nature at the junction sites would not be changed under high 

temperature conditions. As indicated by the repeating test results (the well-kept 

properties after 100-times testing at high temperatures shown in fig. S21 and S29, and 

the well-kept elastic deformation at 1273 K shown in Movie S2 and S4), it is believed 

the material (graphene sheets and covalent bonds) is rather stable, though it cannot be 

ruled out completely that some very minor/slow reaction could happen at high 

temperature for rather slow degradation due to the possible reaction between O and C 

atoms (groups). 

Note, above discussions are based on a periodic model and simple estimation. In fact, 

local stress concentration could happen in some nodes and involving covalent bonds 

could fail under localized large stretching force. However, such failure should be rare 



 

 

as mentioned above due to the nearly homogeneous and isotropic materials in this 

case. 

2. Simulation of compressive deformation mechanism and analysis of the temperature 

dependence 

In the whole compression process, as shown in Fig. 2B (and 4A), the 3DGraphene 

foam demonstrated a short linear-elastic regime following by a plateau of roughly 

constant stress, and finally leading into the regime of steeply rising stress. Each 

regime could probably associate with one or several dominated mechanisms of 

deformation, and in situ photographing (Figs. 3 and 5A, fig. S18 and S23, and Movie 

S3 and S4) of the material in the loading/deformation process combined with the 

theoretical deformation analysis/simulation made such identification be possible. 

 

Fig. S7. Schematic of the proposed elastic deformation of the 3DGraphene foam 

under compressive stress. The chemically crosslinked nodes keep structural integrity 

with localized conformation adjustment through covalent bond torsion and bond angle 

bending, combined with the subsequent elastic bending and/or buckling of the 

graphene sheets. 

Here, as shown in fig. S7, we envisage that once the compressive stress loading on the 

material, the torsion deformation of the covalent bonds (the dihedral angle torsion) 

and the bond angle bending (46), which mostly should locate and occur at the nodes 

(67), should appear immediately because of the easily understandable small 

energy/force demands of these deformation modes. Localized elastic bending of the 



 

 

graphene walls could probably appear too (as shown in Figs 3 and 5A and fig. S18 

and S23), and all these modes should give the linear elasticity region in the 

stress-strain curve of the material (68). Then, the elastic bending of the graphene 

walls should develop further with increasing compressive strain of the sample (Figs. 3 

and 5A and fig. S18 and S23). Moreover, when a critical stress was reached, a certain 

portion of the cell walls that satisfy the critical condition began to collapse by the 

elastic buckling (which should be elastically recoverable) (39). The integrated stress 

of these two deformation modes should exhibit an approximate plateau with gentle 

increase. Eventually, at high strains of the sample, the cell collapsed and deformed 

sufficiently that some cell walls touched each other, and some graphene walls would 

bend more seriously with quite large curvature under increasing compressive 

deformation of the sample. The highly compressed material should combine different 

kinds of highly developed deformation modes and the spatial density of all these 

deformation points should increase quickly under large strain of the sample too, 

which would result in the final steeply rising portion of the stress-strain curve that 

named densification (2, 69). In addition, the 3DGraphene foam possesses a porosity 

of ~99.93%. Such large cushion space (voids) between the cell walls enable sufficient 

freedom not only for large deformations during loading but also for efficient recovery 

of the cell walls upon unloading. 

  



 

 

 

Fig. S8. The schematic of the periodic honeycomb-like cell architecture for 

modeling the 3DGraphene foam and enlargement of one unit cell under the 

applied compressive stress. Generally, the properties of the foam/cellular material 

are not only determined by the intrinsic properties of the building blocks, but also in 

terms of its structure (2). Because of the complex and random structure of the 

3DGraphene foam, we model the compressive deformation roughly based on a simple 

and periodic honeycomb-like cell architecture (fig. S8) for the simulation, where three 

single layer graphene sheets (cell walls) are jointed/connected together in nodes along 

their edges via covalent bonds and only in-plane (plane X1X2) deformation is taken 

into consideration (because of the near-zero Poisson’s ratio, the deformation of the 

cell unit along the X1X3 plane which was perpendicular to the compressed direction, 

should be negligible here). Based on our previous works (25, 35, 36) and our 

understanding of the 3DGraphene foam, the covalent bonds in the nodes could be 

C-O, C=O, C(O)-O, C-C and C=C, or a combination of them. Considering their 

relatively small difference of bond strength in theory, and the dominated portion of 

the C-O bonds, we consider only C-O bonds for an easy estimation. 

As discussed above, the compressive deformation of the structure could be simulated 

through the combination of several potential modes: elastic torsion of the covalent 

bonds (the torsion of the dihedral angel), bending of the bond angle, elastic bending of 

the graphene walls, elastic buckling of the graphene walls, local compression/bending 



 

 

of the graphene in the densification stage. Based on the theory of modified continuum 

mechanics (70), these modes can be defined respectively as follows: 

  



 

 

 

Fig. S9. The schematic of a cell node under the applied compressive stress. 

(1) Elastic torsion of the covalent bonds as shown in fig. S9. 

The torsional energy Eτ can be represented as following (71) 

 

𝐸𝜏 = (𝑉1 2⁄ )(1 + cos𝜔) + (𝑉2 2⁄ )(1 − cos2𝜔) + (𝑉3 2⁄ )(1 + cos3𝜔) 

 

where V1, V2, and V3 are the torsion parameters of the covalent bond, and 𝜔 is the 

torsion angle. 

(2) Elastic bending of the covalent bond angles as shown in fig. S9. 

The bending energy of elastic bending of the bond angle 𝐸θ can be approximated in 

terms of elastic springs as following (72) 

 

𝐸θ =
1

2
𝑘θ(𝜃 ′ − 𝜃0)2 

 

where kθ is the angle bending force constant, 𝜃0 and 𝜃 ′ are bond angles before 

and after the bending. 



 

 

 

Fig. S10. The schematic of elastic bending of the graphene cell wall under the 

applied compressive stress. θ3 is the same angle in fig. S9. 

(3) Elastic bending of the graphene at small strain of the sample as shown in fig. S10. 

At small strains of the sample, the graphene sheets individually subject to bending to 

a certain curvature. As reported elsewhere (53, 73), the energy of elastic bending of 

the graphene, Ebending, can be represented as following 

 

𝐸bending =
1

2
𝑁𝑆0𝐵M𝑟−2 

 

where N is the number of atoms within the graphene sheet, S0 is the average area of 

carbon atom, BM is the bending rigidity of graphene, and r is the bending radius. 



 

 

 

Fig. S11. The schematic of elastic buckling of the graphene cell wall under the 

applied compressive stress. (4) Elastic buckling of the graphene as shown in fig. 

S11. 

Here, we analyze the buckling of graphene cell wall based on the continuum 

mechanics (41), where the related energy of potential elastic buckling of graphene 

struts, Ebuckling, can be obtained by following integral equation 

 

𝐸buckling = ∫
1

2
𝑁𝑆0𝐵M𝑟−2 

 

where N is the number of atoms within the graphene sheet, S0 is the average area of 

carbon atom, BM is the bending rigidity of graphene, and r is the curvature radius 

along the buckled graphene sheet/cell wall. The integration is taken along the 

deflection curve under buckling. 



 

 

 

Fig. S12. The schematic of deeply elastic bending of the graphene cell wall at 

large strain of the sample. (5) Elastic bending of the graphene at large strain of the 

sample as shown in fig. S12. 

At large strain of the sample, a certain portion of graphene sheets are supposed to be 

nearly folded and even squeeze each other and the graphene sheet is deeply 

compressed to a very small radius at the sharp bending area. So the related energy can 

be expressed as the similar formula in above mode 3 (53, 54) 

 

𝐸bending,large =
1

2
𝑁l𝑆0𝐵M𝑟−2 

 

where Nl varied from N in equation of mode 3 is the number of atoms within the 

specific bending area, S0 is the average area of carbon atom, BM is the bending rigidity 

of graphene, and r is the bending radius. 

With all these modes combined, so totally, the energy of one cell in the 

honeycomb-like cell architecture, Etotal, should be the sum of energies of the supposed 

modes as following 

 



 

 

𝐸total = 𝐶1[(𝑉1 2⁄ )(1 + cos𝜔) + (𝑉2 2⁄ )(1 − cos2𝜔) + (𝑉3 2⁄ )(1 + cos3𝜔)]

+ 𝐶2 [
1

2
𝑘θ1∆𝜃1

2 +
1

2
𝑘θ2∆𝜃2

2 +
1

2
𝑘θ3∆𝜃3

2] + 𝐶3

1

2
𝑁𝑆0𝐵M𝑟−2

+ 𝐶4 ∫
1

2
𝑁𝑆0𝐵M𝑟−2 

 

where C1, C2, C3, C4 are constant parameters that represent the weight coefficient of 

each mode taken into calculation, and 𝜃1, 𝜃2 and 𝜃3 are three bond angles in each 

node as shown in fig. S9. 

Using P = dE/dx, σ = P/Ω, and 𝜀 = d𝑥 𝑥0⁄ , we can derive 

 

𝜎 =
1

2(l + 𝜆)3 sin
𝜃3

2
(1 + cos

𝜃3

2
)

d𝐸

𝜀
 

 

where P is the compressive force applied on the cell, dE is the differential of energy, x 

is the height of the unit cell under P, σ is the stress applied on the cell corresponding 

to P, Ω = 2(l+λ)
2
sin(θ3/2) is the area that P applied on, ε is the strain of the cell under 

σ, dx is the height deflection of the cell under σ, and x0 = (l+λ)[1+cos(θ3/2)] is the 

original height of the cell, and λ is C-O bond length. Note the stress and strain of a 

unit cell are equal to the stress and strain of the whole structure for uniform regular 

structure based on periodic unit cells. 

Since 

 

d𝐸 = d𝐸total = 𝐶1[(𝑉1 2⁄ )(− sin 𝜔)d𝜔 + (𝑉2 2⁄ )(2 sin 2𝜔)d𝜔

+ (𝑉3 2⁄ )(−3 sin 3𝜔)d𝜔] + 𝐶2[𝑘θ1d𝜃1 + 𝑘θ2d𝜃2 + 𝑘θ3d𝜃3]

− 𝐶3𝑁𝑆0𝐵M𝑟−3d𝑟 − 𝐶4d𝑟 ∫ 𝑁𝑆0𝐵M𝑟−3 

 

And 

 

𝜀𝜔 =
d𝜔

2π
d𝑥 



 

 

 

which is the strain of the cell corresponding to torsion deformation of the covalent 

bond. 

Also, 𝜃1 = 𝜃2 = π −
𝜃3

2
, and 𝜀𝜃3

=
d𝜃3

cos
𝜃3
2

 which is the strain of the cell 

corresponding to the bending of bond angle θ3 (which was simplified as O-C-O bond 

angle), and 

 

𝜀bend,small =
𝛿 sin 𝜃

(l + 𝜆) cos 𝜃
 

 

which is the strain of the cell corresponding to bending of the graphene cell wall at 

small strain of the sample, where δ is the graphene cell wall deflection, and θ is a 

structural parameter, both are defined in fig. S9. From the standard beam theory (2) 

the wall deflects by 

 

𝛿 = 𝑀 ∙
(l + 𝜆)2

6𝐵M
 

 

where the bending moment 𝑀 =  
𝑊(l+𝜆) cos 𝜃

2
, and at equilibrium the component force 

(as shown in fig. S10) F = 0 and W = σ(l+λ)
2
cosθ. Then 

 

𝜀buckle =
2

l + 𝜆
[d𝑟 ∙ sin

l + 𝜆

2𝑟
+ 𝑟 ∙ 𝑑 (sin

l + 𝑟

2𝑟
)] 

 

which is the strain of the cell corresponding to buckling of the graphene cell wall, and 

 

𝜀bend,large =
d𝑟

𝑟
 

 

which is the strain of the cell corresponding to bending of the graphene cell wall at 

large strain of the sample. 

Note ε = εω + εθ3 + εbend,small + εbuckle + εbend,large, so all the calculation above giving 



 

 

 

𝜎 = 𝐶1𝐴τ𝜀 + 𝐶2𝐵θ𝜀 + 𝐶3,1𝐶bend,small𝜀

+ 𝐶4𝐷buckle [−
1

2
𝜀2 +

1

3
𝜀3 + ⋯ + (−1)n

𝜀n+1

n + 1
+ ⋯ ]

+ 𝐶3,2𝐶bend,large

1

√2π2
(

𝜀

1 − 𝜀
)

2

 

 

Using fifth order approximation for strain ε, one can derive the following stress-strain 

relationship 

 

𝜎 = (𝐶1𝐴τ + 𝐶2𝐵θ + 𝐶3,1𝐶bend,small)𝜀 + 𝐶4𝐷buckle [−
1

2
𝜀2 +

1

3
𝜀3 −

1

4
𝜀4 +

1

5
𝜀5]

+ 𝐶3,2𝐶bend,large

√3

2π
𝜀5 

 

where C3,1, C3,2 are constant parameters that represent the weight coefficient of elastic 

bending at small and large strain of the sample, and 𝐴τ, 𝐵θ, 𝐶bend,small, 𝐷buckle, 

and 𝐶bend,large  are calculated parameters that corresponding to covalent bond 

torsion, bond angle bending, graphene bending at small strain of the sample, graphene 

buckling and graphene bending at large strain of the sample, respectively, which are 

listed as follow 

𝐴τ =
√3

2
π

𝑉n

𝜆3
 

𝐵θ = − cos 𝜃3

2

𝜆2𝑡
𝑘θ 

𝐶bend,small =
3𝐵M

𝑙𝑡3
 

𝐷buckle =
π

4

𝐵M

𝑙𝑡3
 

Cbend,large =
2π𝐵M

𝑙𝑡3
 

 

where λ is the length of the covalent bonds, t is the thickness of the graphene cell wall 

(the thickness of the beam). 



 

 

Obviously, the obtained stress-strain relationship above possesses a high order 

polynomial form, which corresponds to the experimentally observed nonlinear 

elasticity as reported elsewhere (54). Importantly, the obtained stress-strain 

relationship above indeed reflect and agree with the observed temperature-invariant 

mechanical properties of individual graphene sheets, junction sites and the bulk 

material, in terms of the calculation parameters (𝐴τ, 𝐵θ, 𝐶bend,small, 𝐷buckle, and 

𝐶bend,large) related to the intrinsic and temperature-invariant mechanical properties of 

individual graphene sheets, junction sites. In contrast, no such high elasticity and 

temperature-invariant properties exhibited by our material could be obtained by 

applying the same model (with 5th or higher order) for traditional foam materials and 

use the properties of their cell walls and junctions (such as commercial polyurethane 

foam) (2). As a result, to investigate the temperature dependence of the mechanical 

properties of the 3DGraphene foam in the compression, the temperature influence of 

above mentioned deformation modes and corresponding parameters should be taken 

into account and discussed as following. 

Here, the covalent bond torsion parameter Vn = V1 = V2 = V3 = 2 ×
1.15

4
 kcal mol

-1
 

(51, 52, 74) is temperature-invariant (𝐾𝐼𝐽𝐾𝐿
𝑇 = 𝐾𝐼𝐽𝐾𝐿

0 , where T is the temperature) (30, 

75, 76); θ3 has a value set to be in the range of 100~120° (considering the core atom 

of the bond angle should be C or O, for which sp
3
 and sp

2
 hybridization are the 

dominated form) and independent of the temperature (77); for the majority of models 

used, the thickness of single layer graphene t = 0.34 nm, which is also assumed to be 

independent of the temperature, since the nature of only one atomic thickness; the cell 

wall length l is set to be 10 μm as discussed in above section, which does not change 

at different temperature. 

Next, the covalent bond length depends on temperature via λ = λ0(1+αT) (48), in 

which T is the absolute temperature, α is the thermal expansion coefficient of the C-O 

bond. As shown in fig. S24, the 3DGraphene foam exhibited very small thermal 

expansion coefficient at ~3 × 10
-6

 K
-1

. There should be two factors contributing to the 

material’s thermal expansion, the graphene cell walls and the cell nodes. As it has 



 

 

been reported that graphene sheet possesses a thermal expansion coefficient in the 

order of 10
-6

 K
-1

 too (78), it can be assumed that the thermal expansion coefficient of 

the covalent bond in the nodes is no larger than the order of 10
-6

 K
-1

. Even taken 9 × 

10
-6

 K
-1

 into calculation, the force constant Kq exhibits only a variance of 0.009 at 

most in our investigated temperature range of 10
3
 K, thus it has very small influence 

on the final result. On the other hand, from the structural and chemical viewpoints, 

C-O and C-C bonds are very similar, so the thermal expansion coefficient of them 

should not have large difference either (about 1~2 × 10
-6

 K
-1

for C-C bond). With all 

these in mind, we take 3.0 × 10
-6

 K
-1

 as the estimated value for thermal expansion 

coefficient of the C-O bond. 

Also, λ0 = 140∼145 pm is the C-O bond length at T = 298 K (77, 79). 

The covalent bond angle bending force constant depends on temperature via  

 

𝑘θ =
𝛽𝑍O

∗ 𝑍C
∗

{[2𝜆0
2(1 + 𝛼𝑇)2](1 − cos 𝜃3)}

5
2⁄

× 𝜆0
4(1 + 𝛼𝑇)4(3 sin 𝜃3

2 − cos 𝜃3) 

 

where 𝛽 =
664.12

𝜆0
2(1+𝛼𝑇)2, 𝑍O

∗ = 2.3 and 𝑍C
∗ = 1.912 are effective charges of O and C 

atom respectively. 

The bending rigidity of graphene depends on temperature via (47, 73) 

 

𝐵M = 1.12exp(−8.1𝑘B𝑇) 

 

where kB is the Boltzmann constant. 

Based on these, we can calculate that at room temperature (T = 298 K), Aτ = 

1.23∼1.28×10
-6

 kPa, Bθ = 2.3∼5.6×10
-5

 kPa, Cbend, small = 1.76 kPa, Dbuckle = 4.6 kPa, 

Cbend, large = 3.68 kPa. 

Considering the complexity/disorder of the actual foam structure, we have made some 

modification to improve the accuracy of the model. Here, some factors should be 

considered to determine the weight coefficient parameters of each deformations 



 

 

modes: (1) not all the C atoms at the edge of the graphene sheet could construct an 

joint covalent bond (C-O bond); (2) because of the deviation between the 

three-dimensional open-cell structure of 3DGraphene foam and above 

honeycomb-like cell structure which considering deformation only in one plane 

paralleled to the compressive stress, just part of the graphene sheets should be 

involved to calculate; (3) the actual graphene sheets in the material are not ideal 

square, so only part of the graphene sheet edges should be involved; (4) not all the 

crosslinked sites in the nodes have connectivity of three, which means the number of 

the bending bond angles should be decreased; (5) elastic bending of the graphene 

sheets probably be more frequent than elastic buckling of the graphene sheets. With 

all these as guidance and iterative optimization, the simulated stress-strain curve of 

the 3DGraphene foam under 298 K agreed well with the experimental result by 

setting C1 as 0.24, C2 as 0.13, C3,1 as 0.7, C4 as 0.14 and C3,2 as 0.9, as shown in fig. 

S26. In addition, the graphene cell walls should possess even an amount of defects 

(80). However, based on the in situ SEM observation (Fig. 3 and 5A, fig. S18 and 

S23, Movie S3 and S4), there were no cell wall fracture and structural damage 

observed, indicating the high mechanical stability of the graphene cell walls even with 

existence of defects. First of all, the graphene sheets intrinsically possess ultra-high 

in-plane strength with very high energy for defect formation (26, 34). Moreover, the 

nearly homogeneous and isotropic structure endues efficient load transfer and prevent 

local stress concentration in some localized defects (2, 14). Also, the large cushion 

space between the graphene cell walls could accommodate the possible local stress 

concentration and prevent further defect formation (14). 

The formula about the temperature influence of stress (σ) at a given strain (ε) could be 

deduced from above equations as following, which could clearly exhibit the 

temperature dependency of mechanical properties of 3DGraphene foam 

 



 

 

𝜎 = {
𝐶1𝐴τ

298K

[1 + 𝛼(𝑇 − 298)]3
+

𝐶2𝐵θ
298K

[1 + 𝛼(𝑇 − 298)]5

+ 𝐶3,1 [𝐶bend,small
298K −

3𝜇𝑘B(𝑇 − 298)

𝑙𝑡3
]} 𝜀

+ 𝐶4 [𝐷buckle
298K −

π𝜇𝑘B(𝑇 − 298)

4𝑙𝑡3
] [−

1

2
𝜀2 +

1

3
𝜀3 −

1

4
𝜀4 +

1

5
𝜀5]

+ 𝐶3,2 [Cbend,large
298K −

2π𝜇𝑘B(𝑇 − 298)

𝑙𝑡3
] ∙

√3

2π
𝜀5 

 

Here, we set C1, C2, C3,1, C4 and C3,2 be the same value as those at 298 K. 𝐴τ
298K, 

𝐵θ
298K, 𝐶bend,small

298K , 𝐷buckle
298K  and 𝐶bend,large

298K  are those parameters at T = 298 K, and μ 

= 9.07 is the fitting parameter, a dimensionless parameter which depends on the 

system size and a characteristic length (47). With these, the simulated stress-strain 

curves at 4 K (Fig. 5B) and 1273 K (Fig. 5C) also showed great agreement with the 

experimental data. Then we used this formula to derive the stress (σ) dependence on 

temperature (T) at fixed strains of ε = 6%, 40% and 80%, respectively. The results 

were shown in Fig. 5D, and the experimental data agreed very well with the 

calculated curves, which showed a very small temperature dependence of the stress in 

the investigated temperature range down to deep cryogenic temperature (4 K). The 

results demonstrated clearly that the origins of the temperature-invariant properties of 

3DGraphene foam are the quite small temperature influence on the mechanical 

properties of chemically crosslinked nodes (covalent bonds) and the graphene sheets 

(cell walls) from 4 K to 1273 K. 

As shown in bottom inset of fig. S3, the stress-strain curve of the unloading-reloading 

cycle (red open squares) showed indiscernible hysteresis and almost completely 

coincided with the original stress-strain curve (black solid squares). Such negligible 

difference should be the results of: (1) the special mechanical properties of 

3DGraphene foam which from the unique intrinsic properties of graphene sheets and 

structure of the 3DGraphene foam; (2) the very slow strain rate applied on the sample 



 

 

in this measurement; (3) the vacuum environment excludes the disturbance from the 

interaction between the 3DGraphene foam and the fluid such as air; (4) the super 

compressive elasticity of 3DGraphene foam in large strain range made each small 

enough strain range with small enough strain rate be nearly linearly elastic. So based 

on above definition of Young’s modulus, we could obtain an approximate Young’s 

modulus-engineering strain curve using the stress value of the normal stress-strain 

curve with quasi-static strain rate but not that from an designed and inserted 

unloading-reloading cycle (certainly the strain should be true strain considering the 

definition of Young’s modulus). The results were shown in fig. S27, which exhibited 

similar values but larger standard deviations compared with those from our standard 

method for Young’s modulus (obtained from inserted unloading-reloading cycle) at 

the same engineering strain. 

Similarly, now that we can obtain the theoretically simulated stress-strain curve as 

shown in Fig. 5B, C, and fig. S26, using the definition of Young’s modulus and 

discussion above, the Young’s modulus (E) should be approximately simulated by 

 

𝐸 =
d𝜎

d𝜀′
=

d𝜎

d[𝑙𝑛(1 + 𝜀)]
=

d𝜎

1
1 + 𝜀

d𝜀
 

= (𝐶1𝐴τ + 𝐶2𝐵θ + 𝐶3,1𝐶bend,small)(1 + 𝜀)

+ 𝐶4𝐷buckle[−𝜀 + 𝜀2 − 𝜀3 + 𝜀4](1 + 𝜀) + 𝐶3,2𝐶bend,large

5√3

2π
𝜀4(1

+ 𝜀) 

 

where the 𝜀′ is the ture strain and 𝜀 is the engineering strain, and 𝜀 ′ = ln(1 + 𝜀) 

(2). 

Moreover, the temperature influence of Young’s modulus (E) should approximately 

be 

 



 

 

𝐸 =
d𝜎

d𝜀 ′
= {

𝐶1𝐴τ
298K

[1 + 𝛼(𝑇 − 298)]3
+

𝐶2𝐵θ
298K

[1 + 𝛼(𝑇 − 298)]5

+ 𝐶3,1 [𝐶bend,small
298K −

3𝜇𝑘B(𝑇 − 298)

𝑙𝑡3
]} (1 + 𝜀)

+ 𝐶4 [𝐷buckle
298K −

π𝜇𝑘B(𝑇 − 298)

4𝑙𝑡3
] [−𝜀 + 𝜀2 − 𝜀3 + 𝜀4](1 + 𝜀)

+ 𝐶3,2 [𝐶bend,large
298K −

2π𝜇𝑘B(𝑇 − 298)

𝑙𝑡3
] ∙

5√3

2π
𝜀4(1 + 𝜀) 

 

Above simulation results were plotted as the Fig. 5E, insets of Fig. 5B, C, and inset of 

fig. S26, which all matched well with the experimental results from the standard 

method for Young’s modulus measurement (and experimental results from the normal 

stress-strain curves). These not only demonstrated clearly the same origins of the 

temperature-invariance of Young’s modulus down to deep cryogenic temperature of 4 

K, but also proved the rationality of both our whole simulation and the approximate 

method for obtaining Young’s modulus using the normal stress-strain curve. 

Similarly, we could obtain the tangent modulus (ratio of the stress to the engineering 

strain) of 3DGraphene foam by calculating the slopes at each strain of the stress-strain 

curve that could be the normal experimental one or the theoretically simulated one. 

The two curves matched quite well as shown in fig. S28. 

  



 

 

 

Fig. S13. The photograph of the 3DGraphene foam samples. The as-prepared one 

with somewhat irregular surface (left) and the laser cut one with pretty cylinder shape 

of both 15 mm in diameter and height (right). 

  



 

 

 

Fig. S14. Cross-sectional SEM images of the 3DGraphene foam. (A) Cross-section 

along the axial direction. (B) Cross-section along the radial direction. The material 

demonstrated isotropic morphology at both directions, ensuring isotropic mechanical 

properties. The scale bars were both 50 μm. 



 

 

 

Fig. S15. Energy dissipation mechanism. (A)-(D) SEM images of the 3DGraphene 

foam at varying compressive strains of 0, 30, 50, and 70% respectively. The blue 

arrows indicate that the graphene sheets are getting closer contact upon compression. 

(E) Schematic illustration of detaching and attaching of graphene cell walls during 

compress-release process. 

  



 

 

 

Fig. S16. Young’s modulus-engineering strain plots along the axial and radial 

directions at different temperatures. (A) 4 K, (B) 298 K, and (C) 1273 K, 

respectively. The lines are least squares fittings and error bars represented standard 

deviations for the repeated measurements. The 3DGraphene foam’s isotropy of 

Young’s modulus dependency on engineering strain demonstrated 

temperature-invariance in wide range down to 4 K. 



 

 

 

Fig. S17. Poisson’s ratio at different engineering strain of the 3DGraphene foam 

along the axial and radial directions at different temperatures. (A) 4 K, (B) 298 K, 

and (C) 1273 K, respectively. The black solid and red dashed lines were linear fittings 

of the Poisson’s ratio along the axial and radial directions respectively. The 

3DGraphene foam demonstrated all near-zero Poisson’s ratio along both axial and 

radial directions in wide temperature range from 4 K to 1273 K. Error bars represented 

standard deviations for the repeated measurements. 

  



 

 

 

Fig. S18. In situ SEM observations of the 3DGraphene foam during 

compress-release cycles at 4 K. (A) The first cycle and (C) the ninth cycle, which both 

demonstrating the high elasticity and recoverability and great cycle stability of the 

microstructure even at deep cryogenic temperature. (B) and (D) are enlargements of the 

marked zones with decreasing compressive strains (and stresses), which both 

demonstrating recoverability of the deformed graphene sheets during the unloading 

processes. Scale bars, 100 μm in A and C, and 20 μm in B and D. 



 

 

 

Fig. S19. The Young’s modulus versus applied engineering strain at different 

temperatures. (A) 77 K, (B) 298 K, (C) 873 K, and (D) 1273 K, respectively. Error 

bars represented standard deviations for the repeated measurements. The solid lines 

were fittings of the Young’s modulus with the least squares method at corresponding 

test temperatures. 

  



 

 

 

Fig. S20. The Poisson’s ratio versus applied engineering strain at different 

temperatures. (A) 77 K, (B) 298 K, (C) 873 K, and (D) 1273 K, respectively. Error 

bars represented standard deviations for the repeated measurements. The solid lines 

were fittings of the Poisson’s ratio with least squares methods at corresponding test 

temperatures. 

  



 

 

 

Fig. S21. The cyclic stability at different temperatures. (A) The stress-time curves 

of 100 compress-release cycles (2 seconds per cycle) along the axial direction at test 

temperatures of 77, 298, 873 and 1273 K. Each cycle was performed between 0% and 

90% strain at 90% strain s
-1

 rate (as shown in the inset). The squares and cycles indicate 

the stress values at 0% and 90% strains of each cycle at a certain test temperature, and 

the dashed and dotted lines correspond to least squares fittings of stress at 0% and 90% 

strains of each temperature respectively. Almost identical and overlapping stress-time 

curves at different temperatures demonstrate the temperature-invariant mechanical 

behaviors of 3DGraphene foam. The only slight decrease of the stress at 90% strain 



 

 

through several hundreds of complete cycles test from 77 K to 1273 K indicates a 

remarkable temperature-invariant cycle stability. (B) The Young’s moduli at 77, 298, 

873 and 1273 K (two typical groups of 45% and 75% engineering strains) kept almost 

unchanged during the cycling test at each temperature, showing the great cycle stability 

of the Young’s modulus in wide temperature range. The solid and dashed lines are least 

squares fittings for 45% and 75% engineering strains, respectively. (C) The steady 

near-zero Poisson’s ratio measured at 40% and 80% engineering strains versus the 

cycle number at 77, 298, 873 and 1273 K also show its outstanding cycle stability. The 

solid and dotted lines are least squares fittings for 40% and 80% engineering strains, 

respectively. Error bars in B and C represent standard deviations for repeated 

measurements of five samples. 

  



 

 

 

Fig. S22. The stepwise compress-release cycles with increasing maximum strain 

along both the axial and radial directions at different temperatures. (A) The strain 

versus time curve of the step-wise compress-release cycles with increasing maximum 

strain along both the axial and radial directions. (B) to (D) The step-wise stress-strain 

curves along the axial direction at 4, 298 and 1273 K, respectively. (E) to (G) The 

step-wise stress-strain curves along the radial direction at 4, 298 and 1273 K, 

respectively. The 3DGraphene foam’s isotropic stress-strain behavior performed 

temperature independence at deep cryogenic temperature of 4 K and high temperature 

of 1273 K. 



 

 

 

Fig. S23. Comparison of the in situ SEM images of the same sample under 0, 45, 

and 90% strains in the compress process. (A) to (B) In situ SEM images of the same 

sample under 0%, 45% and 90% strains in the compress process, and then released to 

45% and 0% strains at 4 K (A) and 1273 K (B). (C) Overlaps of the images with the 

same strain but at different temperatures (i.e., A and B), the 4 K images were processed 

with green color and the 1273 K images were processed with red color for clarity. (D) 

Enlargements of the labeled zones in (C), with green and red arrows showing the 



 

 

locations of the same graphene sheets in the compress/release process at 4 K and 1273 

K. Scale bars, 100 μm in A-C, and 25 μm in D. 

  



 

 

 

Fig. S24. Thermal expansion of the 3DGraphene foam in both axial and radial 

directions. The isotropic 3DGraphene foam demonstrated very small and nearly 

identical thermal expansion coefficients between 4 K and 1273 K, which were 2.6  

10
-6

 K
-1

 and 3.0  10
-6

 K
-1

 for the axial and radial directions, respectively. 

  



 

 

 

Fig. S25. A typical AFM image of GO sheets. The 3DGraphene foam was prepared 

from a GO ethanol solution of 0.5 mg ml
-1

. The height difference between the steps was 

1.06 nm, indicating the typical step height of an individual single layer GO sheet. 

  



 

 

 

Fig. S26. The simulated stress-strain curve at 298 K. The theoretically simulated 

stress-strain curve agrees well with the experimental result for the compression of 

3DGraphene foam at 298 K. Inset shows the simulated Young’s modulus-engineering 

strain curve agreeing well with the experimental data at 298 K. Error bars represent 

standard deviations for the repeated measurements. 

  



 

 

 

Fig. S27. The simulated Young’s modulus–engineering strain curves at different 

temperatures. (A) to (C) The experimental Young’s modulus-engineering strain 

results (black hollow squares) from the normal stress-strain curves (with 0.1% strain s
-1

 

between 0% and 90% strain) and from the standard method (green solid circles) at 4 K 

(A), 298 K (B) and 1273 K (C). The red lines were the theoretically simulated Young’s 

modulus-engineering strain curves at 4 K, 298 K and 1273 K, respectively. Error bars 



 

 

represented standard deviations for the repeated measurements of five samples with 

five times for each one. 

  



 

 

 

Fig. S28. The simulated tangent modulus–strain curves at different temperatures. 

(A) to (C) The theoretically simulated tangent modulus-strain curves (yellow lines) and 

the experimental results which were obtained from the normal stress-strain curves with 



 

 

0.1% strain s
-1

 between 0% and 90% strain at 4 K (A), 298 K (B) and 1273 K (C). Error 

bars represented standard deviations for the repeated measurements of five samples 

with five times for each one. 

  



 

 

 

Fig. S29. Results of cyclic mechanical test at 1273 K and that of the following test 

at other temperatures for the same samples. (A) The stress-time curves of 100 

compress-release cycles (2 seconds per cycle) along the axial direction at test 

temperatures of 1273, 298, 77 and 4 K. Each cycle was performed between 0% and 

90% strain at 90% strain s
-1

 rate (as shown in the inset). The squares and cycles 

indicate the stress values at 0% and 90% strains of each cycle at a certain test 

temperature, and the dashed and dotted lines correspond to least squares fittings of 

stress at 0% and 90% strains of each temperature respectively. Almost identical and 

overlapping stress-time curves at different temperatures demonstrate the almost 

unchanged mechanical behaviors of 3DGraphene foam after high temperature tests. 

(B) The Young’s modulus at 1273, 298, 77 and 4 K (two typical groups of 45% and 

75% engineering strains) kept almost unchanged during the cycling test at each 

temperature, showing the great thermal stability of the Young’s modulus after high 



 

 

temperature tests. The solid and dashed lines are least squares fittings for 45% and 

75% engineering strains, respectively. (C) The steady near-zero Poisson’s ratio 

measured at 40% and 80% engineering strains versus the cycle number at 1273, 298, 

77 and 4 K also show its outstanding thermal stability after high temperature tests. 

The solid and dotted lines are least squares fittings for 40% and 80% engineering 

strains, respectively. Error bars in B and C represent standard deviations for repeated 

measurements of five samples. 

  



 

 

 

Fig. S30. The relationship between compressed density and Young’s modulus 

with strain. (A) The measured Young’s Modulus increase with compressive strain (at 

298 K), and the same for the density, as shown by the hollow red points. When 

compressed to 90 % strain, the Young’s modulus reaches near ~100 kPa. At the upper 

limit compression strain near 100%, the density reaches the ideal value of HOPG 2.25 

g cm
-3

. (B) Comparison of the modulus-density relationship of varies cellular 

materials. 

  



 

 

Captions for Movies S1 to S4 

Movie S1. In situ optical observation for compress-release cycles of the 

3DGraphene foam at 4 K and corresponding stress-strain transient curves. In situ 

optical observation using endoscope for compress-release cycles of 3DGraphene foam 

at 4 K, from 0% to 90% strain at a rate of 50% strain s
-1

, for three complete cycles and 

one cycle with 10 s pause, which showed the highly reversible compressive elasticity 

and no brittleness of the 3DGraphene foam at such an extremely low temperature. 

Attached panel on the right side demonstrated the corresponding stress-strain curves 

of the whole process. The sample was 15 mm in both diameter and height, as 

indicated by the ruler next to the sample and the scale bar. 

Movie S2. In situ optical observation for compress-release cycles of the 

3DGraphene foam at 1273 K and corresponding stress-strain transient curves. In 

situ optical observation using endoscope for compress-release cycles of 3DGraphene 

foam at 1273 K, from 0% to 90% strain at a rate of 50% strain s
-1

, for three complete 

cycles and one cycle with 10 s pause, which showed the highly reversible 

compressive elasticity and no breakdown of the 3DGraphene foam at such a high 

temperature. Attached panel on the right side demonstrated the corresponding 

stress-strain curves of the whole process. The sample was 15 mm in both diameter 

and height, as indicated by the ruler next to the sample and the scale bar. The color 

deviation of the video was conducted by the high temperature radiation. 

Movie S3. In situ SEM observation for compress-release cycles of the 

3DGraphene foam at 4 K. In situ SEM observation of the 3DGraphene foam (with 

600 μm length along the compression direction) in the compress-release cycles at 4 K, 

from 0% to 90% strain with 15% strain each step. The scale bar in the video was 100 

μm. The microscopic structure of the 3DGraphene foam was almost completely 

reversible without obvious structural change through the compress-release process at 

such a deep cryogenic temperature. The elastic bending/buckling deformation of 

single graphene sheet during compress-release process of the material at such a deep 



 

 

cryogenic temperature could also be observed directly. All these indicated the high 

elasticity (without harden and brittleness) of both the graphene building block and the 

overall material. 

Movie S4. In situ SEM observation for compress-release cycles of the 

3DGraphene foam at 1273 K. In situ SEM observation of the 3DGraphene foam (the 

same one of Supplementary Video 3, with 600 μm length along the compression 

direction) in the compress-release cycles at 1273 K, from 0% to 90% strain with 15% 

strain each step. The scale bar in the video was 100 μm. The microscopic structure of 

the 3DGraphene foam was almost completely reversible without obvious structural 

change through the compress-release process at such a high temperature. The elastic 

bending/buckling deformation of single graphene sheet during compress-release 

process of the material at such a high temperature could also be observed directly. All 

these indicated the high elasticity (without soften and breakdown) of both the 

graphene building block and the overall material. 
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