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Supplementary Figure 1: Modeling titration of transcription factor and reporter                   
plasmids. Conditions for reporter and BenR DNA concentrations used in Figure 2                       
were modeled using ordinary differential equations to capture qualitative trends in the                       
data. Simulations were rescaled to use the same scale as data. The heatmap                         
represents GFP model signal after four hours. 
 
  

4 



 

 
Supplementary Figure 2: Time course of the benzoic acid biosensor response to                       
varying concentrations of inducer. Kinetics of optimized benzoic acid sensor at                     
37°C, where the TF plasmid concentration was 30 nM and the reporter plasmid                         
concentration was 100 nM. Data are the average, with standard deviation, of three                         
technical repeats from three experiments performed on three different days and all                       
fluorescence values have relative expression units (REU) compared to the four hour                       
level for 100 pM of a strong, constitutive sfGFP-producing plasmid. Fold change                       
measurements were taken from the four hour time point. 
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Supplementary Figure 3: Modeling metabolic transducer behavior for HipO and                   
CocE. Hippurate or cocaine can be detected using different metabolic tranducers.                     
Conditions for inducer and DNA concentrations used in Figure 3 were modeled using                         
ordinary differential equations to capture qualitative trends in the data. Simulations                     
were rescaled to use the same scale as data. The heatmap represents GFP model                           
signal after four hours.  
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Supplementary Figure 4: Superfolder-GFP expression with J23101 and pBEST                 
promoter (OR2-OR1-Pr). Expression levels of J23101 and OR2-OR1-Pr promoters                 
were compared in a cell-free reaction to provide comparative strength data for our                         
computer model. Reactions were conducted at 6.5 ng/µL at 37°C for fifteen hours and                           
data at the four hour time point showed that J23101 is approximately three times                           
weaker than OR2-OR1-Pr in our cell-free system. 
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Supplementary Figure 5: Model-predicted shift in HipO concentration for peak                   
biosensor signal at high concentrations of TF plasmid and inducer. Increasing TF                       
plasmid concentration results in a right-shift of HipO plasmid concentration for optimal                       
performance. Left panel: Model calculations for sfGFP output for a range of                       
pBEST-HipO concentrations for TF plasmid concentrations at 30 nM and 100 nM.                       
Right panel: Experimental results to examine if the same right-shift could be seen                         
experimentally. Results are the mean from three experiments on three different days                       
and error bars represent the standard deviation. For all experiments and model                       
calculations, reporter plasmid concentration was fixed at 100 nM and a hippurate                       
inducer concentration of 1000 µM was used. All fluorescence values have relative                       
expression units (REU) compared to the four hour level for 100 pM of a strong,                             
constitutive sfGFP-producing plasmid.  
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Supplementary Figure 6: Time course of the hippuric acid biosensor response to                       
varying concentrations of inducer. Kinetics of optimized hippuric acid sensor at                     
37°C, where the HipO plasmid concentration was 3 nM and the TF and reporter                           
plasmids were maintained at the same concentrations as the optimized benzoic acid                       
sensor (30 nM and 100 nM, respectively). Data are the average, with standard                         
deviation, of three experiments performed on three different days and all fluorescence                       
values have relative expression units (REU) compared to the four hour level for 100 pM                             
of a strong, constitutive sfGFP-producing plasmid. Fold change measurements were                   
taken from the four hour time point.  
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Supplementary Figure 7: Time course of the cocaine biosensor response to                     
varying concentrations of inducer. Kinetics of optimized cocaine biosensor at 30°C,                     
in which the CocE plasmid concentration was 10 nM and the TF and reporter plasmids                             
were maintained at the same concentrations as the optimized benzoic acid sensor (30                         
nM and 100 nM, respectively). Data are the average, with standard deviation, of three                           
experiments performed on three different days and all fluorescence values have                     
relative expression units (REU) compared to the four hour level for 100 pM of a strong,                               
constitutive sfGFP-producing plasmid. Fold change measurements were taken from                 
the four hour time point. 
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Supplementary Figure 8: Time course of the benzoic biosensor response to 1x                       
and 0.1x beverages. Kinetics of sfGFP expression at 37ºC using our optimized                       
benzoic acid biosensor to detect benzoates in commercial beverages. The top panel                       
depicts kinetics in response to addition of 2 µL of unaltered beverage to a 20 µL                               
cell-free reaction. The bottom panel depicts kinetics after the samples were first diluted                         
1:10 in water before being added to the reaction. ‘Orangina Original’ and ‘Monster                         
Original’ include sodium benzoate and benzoic acid, respectively, in their list of                       
ingredients. ‘Monster The Doctor’ lists no benzoates in the ingredients. Water was                       
used in place of the beverage for the negative control. Data depict the mean of three                               
experiments conducted on three different days and error bars represent the standard                       
deviation. Fluorescence intensity y-axis scale was adjusted for the weaker signal                     
dilution experiment to enable adequate visualization of the kinetics. 
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Supplementary Figure 9: Interference of 0.1x and 1x beverages on cell-free                     
reaction with constitutive sfGFP plasmid. Ten-fold dilution of inducing beverage in                     
water greatly reduces their interference in cell-free reactions. 2 µL of either 1x (top                           
panel) or 0.1x (bottom panel) beverages were added to 20 µL cell-free reactions                         
containing 10 nM of the strong constitutive GFP plasmid pBEAST-sfGFP. Fluorescence                     
intensities at four hours were normalized to a negative control containing water instead                         
of the commercial beverage. Data are mean values from three experiments on three                         
different days and error bars represent the standard deviation.  
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Supplementary Figure 10: Hill plot fit of a standard gradient of benzoic acid to                           
calibrate sensor. A standard gradient of benzoic acid concentration was added to our                         
optimized benzoic acid sensor at 37ºC for four hours. The fluorescence intensity values                         
were fit to a Hill plot function in order to convert fluorescence measurements of                           
benzoates in beverages into sample concentration. The data are the mean of three                         
experiments on three different days and error bars represent the standard deviation. 
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Supplementary Figure 11: Interference of human urine on cell-free reaction with                     
constitutive sfGFP plasmid. Ten-fold dilution in urine in the presence of an RNase                         
inhibitor minimizes interference of human urine on cell-free production. Urine samples                     
from six patients (U1-U6) were diluted 1:10 in water and 2 µL were added to 20 µL                                 
cell-free reactions (1% final concentration) containing 10 nM of the strong constitutive                       
GFP plasmid pBEAST-sfGFP and 0.8 U/µL of a murine RNase inhibitor. Fluorescence                       
intensities at four hours were normalized to a negative control containing water instead                         
of urine. Data are mean values from three experiments on three different days and error                             
bars represent the standard deviation. 
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Supplementary Figure 12: Hill plot fit of a standard gradient of hippuric acid to                           
calibrate sensor. A standard gradient of hippuric acid concentration was added to our                         
optimized hippuric acid sensor with 0.8 U/µL of a murine RNase inhibitor at 37ºC for                             
four hours. The fluorescence intensity values were fit to a Hill plot function in order to                               
convert fluorescence measurements of hippuric acid in urine samples into sample                     
concentration. The data are the mean of three experiments on three different days and                           
error bars represent the standard deviation. 
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Supplementary Figure 13: Correlation between cell-free biosensor and LC-MS                 
measurements of endogenous hippuric acid levels in human urine. Quantified                   
cell-free biosensor values of hippuric acid measurement were determined using a Hill                       
plot fit to our standard curve (Supplementary Figure 12) and cell-free data are the                           
mean of three experiments on three different days (error bars represent standard                       
deviation). LC-MS measurements are from a single measurement. R2 value was                     
calculated by a linear regression fit. 
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Supplementary Figure 14: Detection of cocaine spiked into clinical urine samples                     
with sfGFP output module. A standard gradient of cocaine hydrochloride was added                       
with 2 µL of a human urine sample to 20 µL cell-free reactions containing our optimized                               
cocaine biosensor with 0.8 U/µL of a murine RNase inhibitor and incubated at 30ºC for                             
8 hours. Fold change was calculated relative to the 0 µM cocaine inducer. Data are                             
from a single pilot experiment. 
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Supplementary Figure 15: Cell-free reactions accumulate autofluorescent             
products in the GFP channel even in the absence of DNA. Data are from one 20 µL                                 
cell-free reaction containing only buffer, extract, and water incubated at 37ºC for 12                         
hours. 
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Supplementary Figure 16: Use of firefly luciferase as an output module enhances                       
benzoic acid sensor fold change. The firefly luciferase gene was cloned under the                         
PBen promoter and added to 20 µL cell-free reactions at the same plasmid                         
concentrations previously used with sfGFP (TF = 30 nM; Reporter = 100 nM).                         
Reactions were incubated at 37ºC for eight hours and subsequently luciferase activity                       
was measured on a plate reader after addition of 50 µL luciferase assay reagent. Data                             
(purple line) was normalized to the 0 µM benzoic acid concentration and are from a                             
single pilot experiment. Superfolder GFP curve (green line) is from Figure 2c and used                           
as visual comparison. 
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Supplementary Figure 17: Comparison of benzoic acid and cocaine biosensor                   
expression in response to urinary cocaine gradient. A standard gradient of cocaine                       
hydrochloride was added with 2 µL of human urine sample to 20 µL cell-free reactions                             
containing either our optimized benzoic acid sensor or cocaine sensor with 0.8 U/µL                         
RNase inhibitor as in Figure 4d. After incubate at 30ºC for eight hours, the samples                             
were transferred to white 96-well plates and 50 µL of luciferase assay reagent was                           
added. The plates were subsequently read on a plate reader two minutes after adding                           
the reagent and luciferase measurements in arbitrary units (AU) are shown above for                         
both the benzoic acid sensor (top panel) and cocaine sensor (bottom panel). Data are                           
mean values from three experiments on three different days and error bars represent                         
the standard deviation. 

20 



 

 
Supplementary Table 1: Fluorescence results from calibration of TF and reporter                     
plasmids. Values represent those in Figure 2b and are the mean ± standard deviation                           
for three experiments on three different days. 
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Supplementary Table 2: Fluorescence results from calibration of HipO and CocE                     
metabolic transducer plasmids. Values represent those in Figure 3a and are the                       
mean ± standard deviation for three experiments on three different days. 
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 Cell-Free Biosensor Concentration (µg/mL)  LC-MS 

Concentration 

 Replicate 1 Replicate 2 Replicate 3 Mean ± St. Dev. (µg/mL) 

Orangina® Bottle 170.5 143.3 197.8 170.6 ± 22.3 154.23 

Orangina® Can 10.3 3.4 9.6 7.7 ± 3.1 2.86 

Orangina® Zero 16.6 11.8 12.3 13.6 ± 2.2 1.65 

Generic Brand 18.1 13.8 10.3 14.1 ± 3.2 Not detectable 

Monster® Original 304.4 172.5 217.4 231.4 ± 54.8 211.52 

Monster® Absolutely Zero 147.8 139.0 193.9 160.2 ± 24.1 718.97 

Monster® Ultra 172.3 150.9 154.6 159.3 ± 9.3 326.88 

Monster® Ultra Red 191.1 169.0 208.4 189.5 ± 16.1 664.35 

Monster® ' The Doctor' 19.0 15.6 11.0 15.2 ± 3.3 1.61 

Monster® Punch 575.9 157.4 196.3 309.9 ± 188.8 315.60 

 
Supplementary Table 3: Benzoate concentration in commercial beverages               
determined from three replicates of our cell-free biosensor and LC-MS. Values                     
represent those in Figure 4b. Cell-free biosensor replicates are from three experiments                       
performed on three separate days. 
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 Benzoic Acid Sensor Fluorescence (AU) 

Urinary Samples Replicate 1 Replicate 2 Replicate 3 Mean ± St. Dev. 

U1 148 148 144 147±2.31 

U2 155 157 165 159±5.29 

U3 167 193 210 190±21.7 

U4 137 136 129 134±4.36 

U5 150 116 131 132±17.04 

U6 132 118 136 129±9.45 

Negative Control 152 121 134 136±15.6 

 
Supplementary Table 4: Benzoic acid sensor shows minimal activation in                   
response to human urine without HipO metabolic transducer. Replicates are from                     
three experiments performed on three separate days. 
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 Cell-Free Biosensor Hippuric Acid Concentration (µg/mL) LC-MS 

Concentration 

 Replicate 1 Replicate 2 Replicate 3 Mean ± St. Dev. (µg/mL) 

Urine 1 367.1 570.1 800.9 579.4 ± 177.2 368.90 

Urine 2 97.6 167.8 152.2 139.2 ± 30.1 145.98 

Urine 3 218.5 342.7 471.3 344.2 ± 103.2 261.91 

Urine 4 218.5 331.3 394.3 314.7 ± 72.7 305.49 

Urine 5 47.3 72.6 125.1 81.6 ± 32.4 100.47 

Urine 6 697.3 840.1 2142.5 1226.6 ± 650.2 700.91 

 
Supplementary Table 5: Endogenous hippuric acid concentration in human urine                   
samples determined from three replicates of our cell-free biosensor and LC-MS.                     
Values represent those in Figure 4c. Cell-free biosensor replicates are from three                       
experiments performed on three separate days. 
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Supplementary Note 1: SensiPath Metabolic Space Analysis

In order to probe how many biosensors could be engineered using our workflow, we down-
loaded the HMDB database1 as of 25/05/2018. A set of 1445 biomarkers, with a molecular
weight <500 amu, was compiled for which at least one disease was identified (see Supple-
mentary Data 1).

Next, we used the RetroPath algorithm2 embedded in the SensiPath web server.3 RetroPath
findsmetabolic pathways linking analytes (source set) to effectors (sink set), i.e. small molecules
activating or inhibiting transcription factors. Taking as a sink set of 727 effectors taken from a
database we recently released,4 RetroPath was run using 20845 metabolic reaction rules ex-
tracted from MetaNetX.5 We found that 192 out of 1445 biomarkers were effectors and could
thus directly be detected by transcription factors. We also found that 1205 out of 1445 biomark-
ers could be transformed into 392 effectors through ∼80000 one-step pathways. We observed
that several biomarkers could be transformed into the same effector while other biomarkers
could be transformed into different effectors (see Supplementary Data 1). Finally, we found
that ∼25% of biomarkers were shared by at least two diseases. Therefore, while one can de-
velop biosensors and repurpose them for several diseases, biosensors can also be designed
for a panel of biomarkers specific to a given disease. Altogether these results show a great po-
tential for our workflow to engineer many biosensors detecting several pathological biomarkers.

We also probed to which extend our benzoate sensor could be used to detect various
biomarkers. To that end, we computed how many HMDB metabolites could be connected to
benzoate via RetroPath applying reverse reaction rules (computed from MetaNetX) to ben-
zoate. We found that 64 HMDB metabolites could be transformed into benzoate via a one-step
enzymatic transformation (see Supplementary Data 2).
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Supplementary Note 2: Mathematical Model of Cell-Free Biosen-
sors

We built a mathematical model to gain a better understanding of the behavior of our system us-
ing the metabolic transducer module. Our aim was to derive a relatively coarse-grained model
that could recapitulate key behaviors observed in this dataset. The first step was to model
the TF/reporter DNA assay (Supplementary Figure 1). We then analyzed the behaviors we
wanted to reproduce in the hippurate adaptor dataset, which included: 1) increasing concen-
trations of hippurate led to increased signal; 2) at low HipO DNA concentrations, increasing
enzyme DNA concentrations led to higher signal; and 3) at high HipO DNA concentrations, the
system reaches a peak where increasing enzyme DNA concentration leads to lower signal.

Details of the full model derivation are available in Supplementary Note 3 and scripts are
available on Github at https://github.com/brsynth. Summary of the main model features are
given here:

dbenzoate

dt
= enz ∗ kcat ∗ inducer

inducer +KM

dinducer

dt
= −enz ∗ kcat ∗ inducer

inducer +KM

TFactivated = TF ∗ benzoate

benzoate+Kinducer
d

+ 0.0005

ε =
TFactivated

TFactivated +Kactivated
d

for BenR

ε = 1 for constitutive expression
dmRNA

dt
= γ ∗ n ∗ ε x

x+ χ
∗ Ktox

Ktox + tox
∗ RmRNA
RmRNA +KmRNA

− δ ∗mRNA

dprot

dt
= π ∗mRNA ∗ y

y + k
∗ Ktox

Ktox + tox
− λ ∗ prot

where the variables are defined as follows:

kcat,KM , enz Enzyme Michaelis-Menten constants, enzyme concentration

TF, TFactivated Unactivated transcription factor, transcription factor activated by benzoic acid

Kinducer
d ,Kactivated

d Hill activation constant for the TF activation by benzoic acid/ promoter activation by TF

ε Fraction of activated promoter for induced or constitutive promoters

γ, π mRNA and protein production rates

χ, k Affinity of the RNAP/ribosome for the promoter/RBS

x, y Free RNAP and ribosome

tox, RmRNA Accumulated toxic by-product, available resources for mRNA production

The rest of the notation is standard, with three species for mRNA and protein considered: the
enzyme, the transcription factor, and the sfGFP. Spontaneous transformation is also included
in the inducer production rate for cocaine.

Increasing benzoic acid leading to increased signal was expected andwemodeled this using
Michaelis-Menten6 equations for the activation of the transcription factor and of the promoter.
The fact that signal was low at low TF DNA concentration and increased with increasing TF
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DNA concentration meant that increasing enzyme concentration led to increased signal, which
would not happen if all reactions were catalyzed on very fast time scales (i.e. the enzyme con-
centration would not matter). We therefore had to include enzyme kinetics in our model. At high
DNA concentrations, resource competition effects meant that too many resources were diverted
towards enzyme production instead of GFP production, which led to a decrease in signal. We
also decided, as we know these effects exist in cell-free systems, to include resource depletion
and production of toxic byproducts that would inhibit reactions in our model. For enzyme kinet-
ics, we used the Michaelis-Menten equation6 with parameters obtained from Brenda, whereas
we used the framework developed by Gyorgy et al. for modeling resource competition, based
on competition between DNA and mRNA for RNAP and ribosomes, respectively.7 More details
on the methods employed, as well as a full model derivation, are presented in Supplementary
Note 3.

The results obtained for HipO-hippurate heatmap are presented in Supplementary Figure
3. No parameter fitting was performed, and minimal parameter tuning was involved, as most
parameters were taken from or derived from the literature. Constants linked to resource deple-
tion or toxic byproduct production were manually chosen so as to best capture the data, as well
as ribosome or RNAP quantity. This, however, only quantitatively changed the data, but did
not change the data qualitatively when parameters remained in a realistic range. Therefore, we
managed to qualitatively reproduce the three effects we wanted to account for with this model,
supporting our hypothesis regarding the main factors underpinning the biological effects in our
HipO data.

Next, we decided to apply our model to the CocE data. We changed the enzyme kinetic pa-
rameters, as well as transcription and translation rates linked to the length of the gene; however,
this failed to reproduce our experimental data, as significant signal was obtained for CocE DNA
= 0.1 nM (data was very similar to HipO, despite the above-mentioned parameter changes, re-
sults not shown). We hypothesized that this was because the CocE promoter was weaker (∼3x
at four hours, Supplementary Figure 4). This shifted the peak but significant signal was still
obtained for CocE DNA = 0.1 nM. However, thanks to the model, we postulated another cause
due to a weaker translation initiation rate, as we were using different RBSs for the two enzymes.
Using the RBS calculator, which takes context into account, we found that CocE translation initi-
ation rate was predicted to be much slower than HipO initiation rate, which we transcribed in our
model as a weaker affinity of the RBS for ribosomes.8 Results obtained through this strategy
are presented in Supplementary Figure 3. Using this RBS affinity change and the changed
promoter strength, we managed to capture two of the three differences in the HipO and CocE
datasets: signal for low CocE value starts at higher enzyme DNA concentrations (which we
attribute to lower enzyme production due to a weaker promoter and putatively weaker RBS);
and signal at 100 nM is higher as there are fewer resources diverted into unnecessary enzyme
production (or less toxicity and resource exhaustion by unnecessary enzymes). However, we
do not capture quantitative values, which could be due to the fact that measurements were per-
formed in a different set-up or that another component our model is lacking. Moreover, the CocE
experiment was performed at 30°C as it is the optimal temperature for this enzyme. Our mod-
eling assumption was that this impacted only kinetic parameters, which is therefore included in
our model. However, it might also affect the benzoic acid reporter which the model does not
account for.

This shows that with our model, changing only parameters linked to the new enzyme se-
quence, we accurately captured the differences we aimed to capture in the two setups. There-
fore, our model, without any parameter fitting and minimal parameter tuning within reasonable
ranges, achieves satisfying qualitative reproduction of our data. Despite these successes, our
model has limitations.
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We can see that our model does not adequately capture the resource competition or ex-
haustion at enzyme concentration of 100 nM (although there is indeed no signal in our model if
we increase the concentration of the simulated DNA to 300 nM, results not shown). To correct
this limitation, including more resource exhaustion could be the answer. Moreover, although we
only tried to qualitatively capture the data, the ease of explanation of CocE data after prelimi-
nary work on HipO only led us to suggest improvements that could be made to explain the data
quantitatively: including GFP maturation kinetics to become fluorescent, as well as including
parameters from the plate reader. However, complete quantitative modeling seems unrealis-
tic on cell-free systems based on extracts rather than individual components, as a number of
parameters still vary from batch to batch and will therefore hardly be realistically estimated for
predictive modeling of the time course of the data produced on those setups without comple-
mentary experiments on each batch to determine batch-dependent relevant parameters. Qual-
itative predictions seem more relevant in that type of set-up at the moment. Moreover, as long
as no definite hypothesis emerges as to why cell-free systems stop functioning (amino acid or
nucleotide depletion, energy depletion, toxic byproduct accumulation or any other, as well as
any combination of those hypotheses), different models encompassing these hypotheses will
be derived mathematically, and capture some effects in the data, but no definite answer on what
modeling strategy is the best can be found before this question is experimentally answered.

Model Prediction Experimental Demonstration In order to demonstrate that the predic-
tions made by our model were trustworthy, and to test how altering the optimal TF/reporter DNA
concentrations determined in the benzoic acid sensor affects the metabolic hybrid sensors, we
designed a simple experimental verification. The model predicted that increasing the TF DNA
concentration from our optimised concentration (30 nM) to another concentration that also gave
good fold change from our initial TF reporter DNA assay (100 nM) would result in a shift of the
dose-response curve of fluorescence to high transducer DNA concentration. Indeed, the un-
necessary resources consumed to increase TF production would be diverted from the enzyme
production that is necessary for efficient conversion of the inducer to benzoic acid. This effect
is competing with the increased signal that could come from having higher TF levels, but the
model predicts it to be the dominant effect, which was experimentally demonstrated using 1000
µM hippuric acid and varying the HipO concentration in two set ups, with TF concentrations ei-
ther at 30 nM or 100 nM, while keeping the reporter concentration at 100 nM (Supplementary
Figure 5). This verification leads us to have greater confidence in model predictions on effects
linked to resource competition.
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Supplementary Note 3: Mathematical-Model Derivation Appendix

The aim of this Supplementary Note is to present the full derivation of the model presented
in ’Plug-and-Play Metabolic Transducers Expand the Chemical Detection Space of Cell-Free
Biosensors’. We will first derive the full model and then explain our choices of parameters.

1 Mathematical model derivation

We will base our time model on classical models of transcription and translation and Michaelis-
Menten kinetics.6 Resource competition is mostly inspired from Gyorgy et al.,7 except used at
each time step instead of at steady-state. Resource exhaustion accounts for energy depletion
and byproducts secretion. We will first present our assumptions and then expose the model as
such.

1.1 Hypothesis

We will make the following assumptions:
Equilibrium of fast processes compared to transcriptional and translational elongations:

• Binding and unbinding of RNAP to DNA is on a much faster scale than elongation so
considered at equilibrium

• Binding and unbinding of the transcription factor to DNA is on a much faster scale than
elongation so considered at equilibrium

• Binding and unbinding of the inducer to the transcription factor is on a much faster scale
than elongation so considered at equilibrium

• Binding and unbinding of ribosomes to mRNA is on a much faster scale than elongation
so considered at equilibrium

Steady flow of production
We will consider the flow of RNAP and ribosomes to be at steady state. That is, we will neglect
the first minutes of elongation at the start of the process before steady-state flow of production,
consider that the production rate is constant and use effective production rates as explained in
the subsection. Elongation itself is fast but RNAP and ribosomes are shared between processes
and therefore modeling elongation and its impact on the available RNAP and ribosomes is key
to modeling resource competition.

Using the same framework as Gyorgy et al.7 for modeling resource competition, we will
therefore also adopt their notations. For the sake of the reader’s best understanding, we will
nonetheless fully derive the model of resource competition before making further simplifica-
tions, as well as presenting our accounting of resource exhaustion and enzyme kinetics that
are absent from their model.

1.2 Derivation of the resource competition model

The circuits described will consist of two types of modules: constitutively expressed ones (en-
zymes and the BenR transcription factor) and inducible ones (GFP), induced upon the binding
by the active transcription factor u (benzoic acid/BenR complex). The promoter complex bind
is formed by u binding to the empty promoter b∗ind of the gene encoding the protein pind (that
appears in the translation derivation). The binding of the available RNAP x can therefore form
the active transcriptional complex cind, producing the mRNA mind, encoding pind at a rate γind
(encompassing all elongation reactions and accounting for the global translation rate). This
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mRNA decays at a rate δind, and all these processes encompassing transcription steps are
exemplified below:

u+ b∗ind
µ+−−⇀↽−−
µ−

bind, bind + x
κ+−−⇀↽−−
κ−

cind, cind
γind−−→ bind + x+mind and mind

δind−−→ ∅

For the constitutive expression, the model is simpler and is summarized by the following
reactions:

bconst + x
κ+−−⇀↽−−
κ−

cconst, cconst
γconst−−−−→ bconst + x+mconst and mconst

δconst−−−→ ∅

The translation processes are identical for constitutive and inducible promoters, initiated by
the binding of the ribosome y to the ribosome binding site (RBS) of the mRNA m, forming the
transitionally active complex d. We consider that bound mRNA fragments cannot be degraded
by RNases. Protein p is produced at a rate π encompassing elongation and production, and is
degraded at a rate λ. The translation reactions are therefore:

m+ y
k+−−⇀↽−−
k−

d, d
π−→ m+ y + p and p

λ−→ ∅

The corresponding ODE system is given by equations (1) for induced proteins:

dbind
dt

= (µ+ub∗ind − µ−bind)− (κ+xbind − κ−cind) + γcind

dcind
dt

= (κ+xbind − κ−cind)− γcind
dmind

dt
= γcind − δmind − (k+ymind − k−dind) + πdind

ddind
dt

= (k+ymind − k−dind)− πdind
dpind
dt

= πdind − λpind

(1)

and by the following equations (2) for constitutive ones:

dcconst
dt

= (κ+xbconst − κ−cconst)− γcconst
dmconst

dt
= γcconst − δmconst − (k+ymconst − k−dconst) + πdconst

ddconst
dt

= (k+ymconst − k−dconst)− πdconst
dpconst
dt

= πdconst − λpconst

(2)

1.3 RNAP and ribosome demands

1.3.1 Notations

We assume DNA concentration ni is constant for each species. We will introduce some nota-
tions that will allow us to simplify our problem given the assumptions presented in 1.1

κi =
κ−i + γi

κ+i
, ki =

k−i + πi

k+i
, and hi =

γini
δi
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We also introduce µ = µ−

µ+
, and

ε =

u
µ(1 +

x
κ)

1 + u
µ(1 +

x
κ)

As was done in Gyorgy et al.,7 we use ε to describe the fraction of induced promoters for our
inducible gene.

For our BenR biosensor modeling, we used

TF activated = TF ∗ inducer

inducer +Kinducer
d

+ 0.0005

ε =
TF activated

TF activated +Kactivated
d × 1000

The first equation represents transcription factor activation by the inducer, including some
leaky activation, while the second equation represents the activation of the promoter by the
activated transcription factor.

1.3.2 Simplification and resolution

Using the assumptions presented in 1.1, we can consider that

db

dt
= 0

dc

dt
= 0

dd

dt
= 0

(3)

This allows us to neglect binding events and consider the system to be at equilibrium for
binding/unbinding events on time scales inferior to the production and degradation of mRNA and
proteins. Therefore, the RNAP and ribosomes are always split between genes and mRNAs and
can be solved using the same technique as in Gyorgy et al.,7 considering resource conservation.

Using dc
dt = 0, and then db

dt = 0 we obtain:

dc

dt
= 0⇔ (κ+xb− κ−c)− γc = 0

⇔ c =
xbκ+

κ+γ

⇔ c =
xb

κ

(4)

db

dt
= 0⇔ (µ+ub∗ − µ−b)− dc

dt
= 0

⇔ (µ+ub∗ − µ−b) = 0

b∗ =
µ−b

µ+u

(5)

Using DNA conservation, ie: n = c+ b+ b∗, we have:
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n = c+ b+ b∗

=
xb

κ
+ b+

µ−b

µ+u

= (
x

κ
+ 1 +

µ−

µ+u
)b

b =
n

x
κ + 1 + µ−

µ+u

c =
xb

κ

=
x

κ

n
x
κ + 1 + µ−

µ+u

=
xn

κ

1
x
κ + 1 + µ

u

=
xn

κ

u

µ

1

1 + u
µ(1 +

x
κ)

= n
x

κ

x+ κ

x+ κ

u

µ

1

1 + u
µ(1 +

x
κ)

= n
x

x+ κ

x+ κ

κ

u

µ

1

1 + u
µ(1 +

x
κ)

= n
x

x+ κ

u

µ

x+κ
κ

1 + u
µ(1 +

x
κ)

= n
x

x+ κ
ε

(6)

Therefore,
dm
dt = γnε x

x+κ − δm
For constitutive expression, derivation is much simpler, and we easily obtain c = n x

x+κ , or
c = nε x

x+κ with ε = 1, considering all promoters are active. Using the same strategy, considering
dd
dt = 0, we obtain d =

ymf

k , where mf is the free mRNA. Considering that mRNA production
and degradation is constant on the time scale of ribosome binding, and that the total amount
of mRNA is m (both bound and unbound, the product of transcription from the previous steps),
applying the same derivation to m = mf + d instead of n = c+ b leads to d = m y

y+k , and

dp

dt
= πm

y

y + k
− λp

Our time evolution model is therefore
dm

dt
= γnε

x

x+ κ
− δm

dp

dt
= πm

y

y + k
− λp

1.3.3 Repartition between genes and mRNAs

This model allows us to account for resource competition by calculating the repartition of ribo-
somes and RNAP amongst different processes at each time step.
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The explanation will be done for RNAP (x) and is similar for ribosomes (y). We consider the
conservation law for RNAP:

Xtot = x+ cGFP + cenz + cBenR

We look for an integer x minimising the error so that

Xtot ' x+ ε× nGFP
x

x+ κGFP
+ nenz

x

x+ κenz
+ nBenR

x

x+ κBenR

which is the optimal RNAP repartition at this time step.

1.4 Accounting for resource depletion and toxicity

We decided to account for the exhaustion of the cell-free system in two different ways. First,
we consider that there are a limited number of mRNAs that can be produced due to limited nu-
cleotides supply or energy. This is done by multiplying transcription rates by resources

resources+Kresource
d

We do not consider a limit on amino acids as they are supplemented in the cell-free system,
and mRNA production has been shown to stop rapidly in cell-free systems. Each mRNA pro-
duced consumes its length in nucleotides. Moreover, we consider that producing proteins also
accumulates toxic byproducts, which slow down reactions for both translation and transcription,
by multiplying transcription and translation rates by a function of the form Ktox

d

Ktox
d +ToxicProduct

. We
consider that each produced protein contributes to this effect, rather than amino acids, as we
consider toxicity to be due to the fully formed proteins producing by-products or slowing down
the extract. Our aim is to reproduce the exhaustion effect qualitatively.

1.5 Enzymatic steps

For modeling enzymatic steps, i.e. the conversion of the inducer (either cocaine or hippurate)
into benzoic acid, we use Michaelis-Menten kinetics6 :

rate = enzyme ∗ kcat
substrate

substrate+KM

2 Typical range of biochemical parameters

2.0.1 Considerations on cell-free systems

The experimental set-up (cell-free system) allows us to consider nominal DNA concentration
values instead of having to consider plasmid copy number as would have to be done in vivo.
Moreover, the rates will be derived here for in vivo systems and will be divided by 10 for sim-
ulations, as reactions have been shown to be slower in cell-free compared to in vivo9 and an
order of magnitude of difference is suggested in Underwood et al. and Niess et al.,10.11 Final
parameters used for numerical simulations can be found at the end of the Supplemental Note.

2.0.2 Production rates

We will derive all rates as if it were in vivo and divide them by 10 for cell-free modeling.
According to Dennis and Bremer,12 the mRNA chain elongation rate is ≈ 50 nucleotides

per sec. The mRNA production rate γ in minutes is therefore γprotein = 50
lengthprotein

∗ 60. More-
over, the peptide chain elongation rate is ≈ 15 amino acids per sec, which means the protein
production rate π in minutes is therefore πprotein = 15

lengthprotein
∗ 60.
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Protein name Length in
nucleotides

Length in
amino acids γ π

GFP 720 240 4.2 /min 3.75 /min
BenR 954 318 3.35 /min 2.83 /min
HipO 1200 400 2.5 /min 2.25 /min
CocE 1700 560 1.76 /min 1.61 /min

In vivo transcription and translation rates

2.0.3 Degradation rates

Since the mRNA half-life is measured to be about 15 minutes in cell-free systems,13 we use δ =
0.05 /min. For in vivo systems, mRNA half-life is shorter, around 4 min, so we use δ = 0.2 /min.

The protein half-life is approximately 1 hour in vivo.14 As our system is purified from extract,
we consider that proteases are still present and we use λ = 0.0016 /min (in vivo rate divided by
10). Changing it affects time evolution but not the effect of DNA and inducer concentrations at
240 min that were studied in this article (results not shown).

2.0.4 Transcription and translation rates

According to Bernstein et al.,15 there can be a transcription initiation every 5 seconds on a DNA
strand. Using the fact that the mRNA chain elongation rate is ≈ 50 nucleotides per sec, there
are, on the same DNA, at most ω RNAP, with ω = round(

lengthprotein
50∗5 ) + 1. We will rather con-

sider the genes to be present in ω ∗ n numbers and being able to recruit only 1 RNAP.

In the same manner, we have to account for the fact that multiple ribosomes can be trans-
lating the same mRNA strand, but we will assume the average distance between ribosomes
to be around 80 nucleotides. We then have at most χ ribosomes on a strand, where χ =
round(

lengthprotein
80 ) + 1, and we will consider mRNA to be able to bind a single ribosome, with

an effective protein production rate of χ ∗ π for each mRNA.

Protein name Length in
nucleotides ω χ

GFP 720 4 10
BenR 954 5 13
HipO 1200 6 16
CocE 1700 8 22

Number of RNAP/ ribosomes per DNA/ mRNA strand

Protein name χ π Effective in vivo π Effective cell-free π
GFP 10 3.75 37.5 3.75
BenR 13 2.83 36.79 3.679
HipO 16 2.25 36 3.6
CocE 22 1.61 35.42 3.542

Effective translation rates in vivo and in cell-free
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2.0.5 Enzymes’ catalytic constants

For the two enzymes considered, CocE and HipO, the values used from BRENDA are listed
in Table ??.16 The exact values in our cell-free system may differ from the values in BRENDA
as these are often measured in vitro and vary according to the organism the enzyme is taken
from and the organism or cell-free extract it is expressed in. However, we believe they should
still be accurate within an order of magnitude and we expect small changes to have minimal
effect on simulation end results due to their fast kinetics related to the other system components.
Moreover, despite their possible disadvantages, we prefer using literature values when possible
so as to leave a minimum number of parameters free.

Protein name kcat, 1/min KM in µM
HipO 5880 764
CocE 3060 5.7

Enzymes’ catalytic constants

2.0.6 Handling of RBS and DNA binding

Using the same order of magnitude for RNAP binding constants as Gyorgy et al.,7 we used:
κGFP = 100 nM; κHipO = κBenR = 3000 nM, as these are expressed constitutively under the
same promoter. Since CocE was on a promoter that was weaker than that of HipO (See Sup-
plementary Figure 3), we used κCocE = 4500 nM.

Following the same reasoning, we use kGFP = 1 µM, and kBenR = kHipO = 10 µM. Moreover,
using the RBS calculator,17 we found that using gene context and the RBS, initiation of CocE
is slower than initiation of HipO. Knowing that the RBS calculator is more trustworthy for trends
than qualitative values, we implemented that using kCocE = 30 µM, i.e.: less efficient in binding
ribosomes, since initial elongation rate does not appear in our modeling framework. This value
was chosen at it recapitulates our data well.

2.1 Numerical simulations

2.1.1 Parameters

Parameters used for the final simulations are presented at the end of this Supplemental Note.
A constant value of 0.05 is added to account for background on all data points.

3 Computational methods

3.0.1 Software tools

All scripts were done in R (version 3.2.3),18 using RStudio as an integrated development envi-
ronment (version 0.99.903).19 The ODE solver used is ode from the deSolve package (version
1.14).20 For visualization, packages reshape221 and ggplot222 are used.

3.0.2 Availability

Scripts are available on Github at https://github.com/brsynth.
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Parameter Value Unit
κGFP 100 nM
κBenR 3000 nM
κHipO 3000 nM
κCocE 4500 nM
γGFP 0.42 min−1

γBenR 0.335 min−1

γHipO 0.25 min−1

γCocE 0.176 min−1

kGFP 1 M
kBenR 10 M
kHipO 10 M
kCocE 30 M

πGFP 3.75 min−1

πBenR 3.679 min−1

πHipO 3.6 min−1

πCocE 3.542 min−1

lengthmRNAGFP 720 nucleotides
lengthmRNABenR 954 nucleotides
lengthmRNAHipO 1200 nucleotides
lengthmRNACocE 1700 nucleotides

kHipOcat 5880 min−1

kCocEcat 3060 min−1

kHipOM 764 mM
kCocEM 5.7 mM

SpontaneoushydrolisationHipO 0 M
SpontaneoushydrolisationCocE 0.0001 M

ωGFP 4 No unit
ωBenR 5 No unit
ωHipO 6 No unit
ωCocE 8 No unit
Kinducer
d 100 M

Kactivated
d 50 M

δ 0.05 min−1

λ 0.0016 min−1

nGFP 100 nM
nBenR 30 nM
X 30 nM
Y 30 nM
Ktox
d 100 nM

KmRNA
d 10 nucleotides

Initialresource 10000000 nucleotides

Numerical parameters used during simulations
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