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Methods18

Model for estimating breeding values19

More specifically, the model that is used is given by20

Y = XB + ZG+ E, (1)

where Y is the n×d response variable, X is the n×q design matrix of q×d the21

fixed effects B, Z is a n× q design matrix of the q× d random effects G, and22

E is the n×d matrix of residual effects. The random effects and the residual23

are independently distributed, and have matrix variate distributions (G ∼24

Nq×d(0q×d, K,Σ)and E ∼ Nn×d(0n×d, R,ΣE)) where K is a q× q relationship25

matrix, Σ is a d×d covariance matrix, R is a n×n covariance matrix, ΣE is a26
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d× d covariance matrix. An early reference to this muti-trait model appears27

in [4].28

Multi-objective optimization concepts29

A vector u = (u1, . . . , uk) is said to dominate another vector v = (v1, . . . , vk)30

(written as u � v) if and only if u is partially less than v ,i.e., ∀i ∈ 1, . . . , k,31

ui ≤ vi ∧ ∃i ∈ 1, . . . , k ui < vi. Pareto optimal solutions are those which,32

when evaluated, produce vectors whose performance fi cannot be improved33

without adversely affecting another fj, i 6= j. In a minimization problem, a34

solution x is said to be Pareto optimal if and only if there is no x′ for which35

F (x′) dominates F (x), i.e., there exists no feasible vector x′ which would36

decrease some criterion without causing a simultaneous increase in at least37

one other criterion.38

For a multi-objective problem, F (x), the Pareto Optimal Set, P ∗, is de-39

fined as: P ∗ := {x : ¬∃x′F (x′) � F (x)}.40

The Pareto front PF ∗ is defined as: PF ∗ := {u = F (x)|x ∈ P ∗}.41

Non-dominance ordering and assignment of parental contribution pro-42

portions based on the above ideas are demonstrated with an hypothetical43

example in Figure 1. (a-f). In this figure, genotype L1 is nondominated44
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(so as L12, L15, L9, L11) with respect to GY and GPC since there are no45

other genotypes in this set when replaced with L1 that would not involve46

decrease in at least one of BVs. For example, replacing L1 with L11 gives an47

increase in GY value but a decrease in the GPC (red arrow). Replacing L148

with L9 gives an increase in GPC but a decrease in the GY (black arrow).49

Genotype L4 is dominated by L1, because by replacing it with L1 we can50

increase both BVs. The genotypes in dominance Level 1 are the set of non-51

dominated individuals. The genotypes in dominance Level 2 (red points) are52

obtained as the non-dominated genotypes in the smaller subset obtained by53

removing the genotypes in Level 1. This process is continued until all the54

genotypes are assigned to their dominance levels. The gray star refers to an55

example of an ideal genotype with respect to the set of genotypes. Weights56

can be assigned inversely proportional to the distance from ideal solution.57

(b) Parental proportions are inversely proportional to dominance levels. (c)58

Parental proportions are inversely proportional to squared dominance levels.59

(d) Parental proportions are obtained with respect to the non-dominance60

counts over combinations of traits. L12 is non dominated with respect to61

Grain protein and also when we consider the two traits at the same time, so62

gets a weight proportional to 2. L1 is only non-dominated with respect to63
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two traits at a time, so gets a weight proportional to 1. (e) Is obtained by64

taking the mean of the proportions in (c) and (d). (e) Parental proportions65

inversely proportional to the distances obtained using formula 2 using the66

ideal solution, p = 2 and equal weights for traits. Bar-plots are colored with67

respect to dominance levels.

Figure 1: (a) This is a scatterplot for breeding values (BVs) of grain yield

(GY) and grain protein content (GPC) for 15 genotypes.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(a)

Grain Yield

G
ra

in
 p

ro
te

in
 c

o
n

te
n

t

L9

L11

L12

L1

L15

L5

L13

L7

L4

L6
L8

L14

L10

L2

L3

*
L
9

L
1
1

L
1
2

L
1

L
1
5

L
5

L
1
3

L
7

L
4

L
6

L
8

L
1
4

L
1
0

L
2

L
3

(b)

P
ro

p
o
rt

io
n
s

0.00

0.02

0.04

0.06

0.08

0.10

L
9

L
1
1

L
1
2

L
1

L
1
5

L
5

L
1
3

L
7

L
4

L
6

L
8

L
1
4

L
1
0

L
2

L
3

(c)

P
ro

p
o
rt

io
n
s

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

L
1
1

L
1
2

L
9

L
1

L
1
5

L
5

L
1
3

L
7

L
4

L
6

L
8

L
1
4

L
1
0

L
2

L
3

(d)

P
ro

p
o
rt

io
n
s

0.00

0.05

0.10

0.15

0.20

0.25

L
1
1

L
1
2

L
9

L
1

L
1
5

L
5

L
1
3

L
7

L
4

L
6

L
8

L
1
4

L
1
0

L
2

L
3

(e)

P
ro

p
o
rt

io
n
s

0.00

0.05

0.10

0.15

L
9

L
1
1

L
1
2

L
1

L
1
5

L
5

L
1
3

L
7

L
4

L
6

L
8

L
1
4

L
1
0

L
2

L
3

(f)

P
ro

p
o
rt

io
n
s

0.00

0.02

0.04

0.06

0.08

0.10

0.12

68

5



Multi-objective optimization techniques69

In general, it is not possible to find an analytic expression of the line or70

surface that contains the Pareto optimal solutions. Several techniques are71

used to find representative points on the Pareto frontier:72

Scalarization (Linear combination)73

If a solution x to the general multi-objective problem is non inferior,74

then there exist wl = 0, l = 1, 2, . . . , k (wr is strictly positive for some75

r = 1, 2, . . . , k), and λi = 0, i = 1, 2, . . . ,m, such that:76

k∑
l=1

wllδfl(x)−
m∑
i=1

λiδgi(x) = 0.

This condition is named Kuhn-Tucker Condition (KTC) and is necessary77

for a non-inferior solution. When all of the fl(x) are concave and x be-78

longs to a convex set, they are sufficient as well. Since KTC is sufficient79

for non-inferiority, non-inferior solutions might be found by solving a scalar80

optimization problem in which the objective function is a weighted sum of81

the components of the original vector-valued function. That is, the solution82

to the problem:
∑k

i=1wif(x), where wi ≥ 0 for all i and strictly positive for83

at least one objective, is usually non inferior. Then on inferior set and the84

set of non-inferior solutions can be generated by varying the weights wi in85
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the objective function.86

The reduction of the problem to a single-objective function means to87

make all alternatives comparable with a preference framework that becomes88

a total order. Hence wi values choice is very important to achieve the final89

decision and, for this reason, value choice is made by the decision maker.90

However, the decision maker, in order to choose the coefficients, must have91

a clear perception of how this choice effects all the functions with respect to92

each other.93

The main advantages of this method are its simplicity (in implementation94

and use) and its efficiency (computationally speaking). Its main disadvan-95

tage is the difficulty to determine the appropriate weight coefficients to be96

used when enough information about the problem is not available (this is an97

important concern, particularly in real-world applications). Also, a proper98

scaling of the objectives requires a considerable amount of extra knowledge99

about the problem. To obtain this information could be a very expensive100

process. A more serious drawback of this approach, is that it cannot be used101

to generate certain portions of the Pareto front when the conditions of KTC102

are not satisfied, regardless of the weights combination used. Nevertheless,103

aggregating functions could be very useful to get a preliminary sketch of104
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the Pareto front of a certain problem or to provide prior information to be105

exploited by another approach.106

Other scalarization methods include Lp-norm, Chebyshev and the single-107

objective product formulation. For each of these scalarizations, a charac-108

terization of the Pareto set can be obtained by varying the scalarization109

parameters and solving many single-objective optimization problems. Ide-110

ally, the points returned by the scalarized problems should be sufficiently111

spread out in the efficient frontier.112

The ε-constraint method113

Besides the scalarization by linear combination approach, the ε-constraint114

method is probably the best known technique to solve multi-objective opti-115

mization problems. There is no aggregation of criteria, instead only one of116

the original objectives is minimized while the others are transformed to con-117

straints. The idea was introduced by [2]. Through this approach among p118

objective function only one is kept as such, the other p−1 are transformed in119

constraints fixing threshold values εk (with k = 1, . . . , p, k 6= j) over them (if120

functions must be minimized). Therefore, the problem: minF (x) is substi-121

tuted by the ε-constraint problem: minfj(x) fk(x) ≤ εk, k = 1, . . . , p, k 6= j.122

The main disadvantage of this approach is its (potentially high) computa-123
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tional cost, also due to the preliminary individuation of εi values.124

Finding non-dominated solutions125

Several algorithms exist for finding the non-dominated set in from a larger126

set. Popular Kung algorithm ([5]) involves first sorting the population in de-127

scending order in accordance to first objective function. Afterwards, the pop-128

ulation is recursively partitioned as top (T) and bottom (B) sub-populations.129

As top half (T) is better in objective in comparison to bottom half (B) in130

first objective, so we check the bottom half for domination with top half.131

The solution of B which are not dominated by solutions of T are merged132

with members of T to form merged population M. Another algorithm is the133

Jun Du Algorithm ([3]).134

Selecting a ”good” solution on the frontier surface135

Ideal solution concept and global criterion:136

Let x∗i be a vector which optimizes the ith objective function fi(x) for i =137

1, 2, . . . , k. Then the vector [f(x∗1), f(x∗2), . . . , f(x∗k)]′ is ideal for an multi-138

objective problem and is consequently called the ideal vector.139

The global criterion method aims to minimize a function (global criterion)140

which is a measure of how close the DM can get to the ideal vector. A measure141
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of closeness to the ideal solution is a family of Lp-metrics defined as follows:142

Lp(F ) =

[
k+1∑
l=1

∣∣∣∣f(x∗1)− f(x)

f(x∗1)

∣∣∣∣p
]1/p

.

If the functions values are normalized to the range [0, 1] , then the above143

formula becomes144

Lp(F ) =

[
k+1∑
l=1

|1− f(x)|p
]1/p

.

Finally, if weights are attached to the functions f1(x), f1(x), . . . , fk+1(x) a145

weighted version can be written as146

Lw
p (F ) =

[
k+1∑
l=1

wl |1− f(x)|p
]1/p

. (2)

In the remaining of this manuscript, we have used p = 2 which coincides with147

the Euclidean distance.148

Ideal Solution for GEBVs149

A simple estimator, say maxfi, for the ideal solution f(x∗i ), for trait i in150

a certain breeding population is the maximum observed value for that trait.151

It is also possible to estimate this quantity by calculating the maximal esti-152

mated genomic value using the marker effects estimates. We use the former153

approach in the remaining of this article. When calculating the distance from154

the ideal solution, the objective function values were scaled to the range [0, 1]155
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using the transformation156

f ∗(x) =
fi(x)−minfi
maxfi −minfi

,

for trait i; and minfi is the estimate for the worst value of the trait i, it is157

calculated in the same fashion as maxfi.158

Other multi-trait breeding approaches159

Supplementary Figure 5 displays the parental contribution proportions ob-160

tained by non-dominance counts for 100 lines with the highest proportions161

for the improving yield and protein in the four environments.162

Supplementary Figures 8 and 9 display the individuals that would be163

identified by the classical multi-trait breeding schemes culling, tandem and164

index selection for the wheat and barley datasets. These can be contrasted165

with the Figures 2 a and b and also with the Figure 4 and Supplementary166

Figure 4. Note that among the classical methods index selection will give167

the closest results to the multi-objective optimized breeding methods.168

Multi-objective training population design169

Two examples with different sets of selection of training populations related170

optimality criteria where we display Pareto fronts for training populations of171
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Figure 2: This figure represents the non-dominance ordering of the individ-

uals in the barley dataset for three traits. Barley data: Dominance ordering

based on three traits, 13 levels of dominance. The GEBVs for height, grain

yield and protein from barley data are plotted with the dominance ordering

of these individuals indicated by the lines of different color.
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Figure 3: Pareto optimal solutions for parental contributions (Barley data)

obtained by solving the optimization problem giving in Equation (1) for im-

proving grain yield (GY) and grain protein content (GPC) while controlling

coancestry, i.e, we assume we want to maximize GY, GPC and the negative

of inbreeding. The redness of the points indicates closeness to ideal solutions

as calculated by the formula in Supplementary Equation (2).

Grain Proteiny

-Inbreeding

Grain Yieldx

size 100 (selected from the remaining genotypes in the wheat dataset after172

reserving a random sample of genotypes as a target population). Some exam-173

ples of optimality criteria include determinant optimality criterion (minimizes174

the determinant of the covariance matrix of the model coefficient estimates175
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Figure 4: Three ’good’ solutions on the barley frontier curve obtained from

Supplementary Figure 3. Red points indicated the individuals that have

non-zero parental proportions. The sizes of the points are proportional to

the magnitude of the parental contributions. The figures on the right side,

represent the same information but on the first two principal components of

the genotyping marker space.)
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Figure 5: Barley data: parental contribution proportions obtained by non-

dominance counts for 100 lines with the highest proportions for the improving

yield in four environments.
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Figure 6: Barley data: The dimensions correspond to negative of inbreed-

ing, and average gains based on GEBVs for grain yield (GY), height and

grain protein content (GPC). Each point on the 3 dimensional scatterplots

correspond to a Pareto optimal solution for parental contributions. Blueness

of the points measure the closeness to the ideal solution as calculated by

Equation (2).

for a principal components regression model based on the markers; genomic176

distance based criteria such as mean or the minimum distances among geno-177

types in the training set, mean or maximum distance to the target set of178

genotypes. In the examples below, determinant optimality criterion was179
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Figure 7: Barley data: Dominance ordering based on yield in 4 environments

(dry-irrigated × high-low nitrogen). The environment specific GEBVs for

grain yield for barley data are plotted with the dominance ordering of these

individuals indicated by the lines of different color.

calculated using the first 50 principal components of the marker matrix as180

suggested in the R package STPGA [1] and the distance based criteria were181

calculated using the Euclidean distance matrix calculated using the marker182

matrix. The multi-objective optimization problem is setup such that we are183

seeking solutions (lists of training sets of size 100) to minimize these different184

criteria.185
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Figure 8: Wheat data: Other multi-trait breeding approaches
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Figure 9: Barley data: Other multi-trait breeding approaches

−3 −2 −1 0 1 2

−
4

−
3

−
2

−
1

0
1

2

yield

g
ra

in
_

p
ro

te
in

 T1

 T1  T1 T1 T1 T1 T1

 T1
 T1 T1 T1  T1
 T1

 T1 T1 T1

 T1
 T1 T1 T1 T1

 T1

 T1

 T1 T1

 T1

 T1
 T1

 T1 T1

 T2 T2
 T2  T2  T2

 T2 T2

 T2

 T2

 T2

 T2

 T2
 T2 T2 T2

 T2
 T2 T2 T2

 T2

 T2

 T2

 T2
 T2

 T2  T2
 T2

 T2

 T2
 T2

   I    I   I
   I

   I   I    I   I   I    I    I   I

   I
   I    I   I
   I   I

   I
   I

   I   I   I   I
   I

   I

   I
   I   I   I   I   I

   I

   I   I   I   I    I
   I   I   I   I

   I   I   I

   I

   I
   I

   I
   I

   I

   I

   I

   I   I

   I   I

   I

   I

   I

   I

   I    I
   I

   I   I    I
   I

   I   I
   I

   I

    C
    C

    C

    C

    C     C
    C     C     C

    C    C    C

    C
    C

    C
    C

    C    C     C    C
    C

    C

    C
    C     C    C

    C    C

    C

    C

    C
    C

    C

    C
    C

    C     C

    C     C    C
    C    C    C

    C    C
    C
    C     C

    C    C    C    C
    C

    C
    C     C    C    C    C    C    C

    C

    C
    C    C

    C
    C

    C
    C    C    C    C

    C

    C
    C    C    C    C    C    C     C    C    C    C

    C    C
    C

    C
    C    C

    C
    C    C    C    C

    C
    C

    C    C    C    C

    C

    C
    C    C    C    C    C

    C

    C    C    C    C
    C

    C
    C    C     C    C    C    C    C

    C
    C    C    C    C

    C
    C     C     C

    C
    C    C

    C    C    C
    C    C

    C
    C    C
    C

    C

    C
    C

    C

    C

    C

    C

    C

    C

    C     C
    C

    C

    C

    C

    C    C    C

    C

    C

    C    C

    C

    C

    C

    C

    C

    C

    C

    C    C
    C

    C
    C

    C     C
    C

    C

    C    C

    C

    C

    C
    C

    C
    C     C

    C

    C

19



Figure 10: Barley data: Four dimensional Pareto front represented in two

dimensional plots. The dimensions correspond to negative of inbreeding,

and average gains based on genomically estimated breeding values for yield,

height and protein content. Each point on the scatterplots correspond to a

Pareto optimal solution for parental contributions. Blueness of the points

measure the closeness to the ideal solution.
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Figure 11: Barley data: SOM plot for barley data for GEBVs over three

traits, yield, protein content and height. In this example, the figure with

the title ”Mapping” displays the mapping of the genotypes into clusters that

are obtained using SOM analysis. These clusters are displayed in a two

dimensional grid and the topology preserving mapping property means that

closely located clusters contain genotypes with similar properties in terms of

the three traits. The three dimensional dendrogram shows the closeness of

these clusters in the SOM space. The change in the average values of these

three traits can be observed from the ”SOM Plot”. In addition the surface

plots display the change in the individual traits along the mapping directions

of the ”Mapping” plot.

Mapping

yld ht prt

SOM Plot

 0
1

0
2

0
3

0
4

0

x

y

x

y
y
ld

YLD

x

y
h
t

HT

x

y
p
rt

PRT

21



Figure 12: Simulated data: Gain, Usefulness, Coancestry: Genomic

mating approach is also a multiobjective optimized breeding approach. The

frontier surface in the figure represents the tradeoff between the measures of

gain, usefulness, coancestry for pareto optimal mating plans.
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Figure 13: Simulated data: Gain, Usefulness, Coancestry: The top

left figure ”Observations overview” is a representation of all the solutions on

the Pareto frontier in Supplementary Figure 12 using the mapping of these

solutions into clusters that are obtained using SOM analysis. These clusters

are displayed in a two dimensional grid and the topology preserving mapping

property means that closely located clusters contain solutions with similar

properties in terms of gain, usefulness, and coancestry. The remaining graphs

are showing how each measure behaves individually on the two SOM features

that correspond to the dimensions of the ”Observations overview”.
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Figure 14: Self-Organizing Maps plot for barley data for parental proportions

over three traits, grain yield, grain protein content and height and negative of

inbreeding. This is another representation of the fourth dimensional Pareto

surface in Supplementary Figure 6. The dimension x and y are found by the

SOM algorithm to preserve the distances measured by the four dimensions

of the frontier curve. The ”Mapping” shows solutions on the frontier curve

clustered with respect to x and y units (SOM dimensions), the ”SOM Plot”

gives the average values of the four dimensions in each cluster, the three di-

mensional surfaces show individual response surfaces for the four dimensions

with respect to SOM dimensions.
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(a) (b)

Figure 15: MOO selection of training populations for Wheat data: A random subset of

50 genotypes were selected as target population. For training sets of size 100 selected from

the remainder genotypes after removing the target set. The brown circles in the graphs

represent criteria values for the 1000 initial solutions where the colored triangles represent

criteria values for solutions on the Pareto front. The solution which has the shortest

distance to the ideal solution (the solution formed by combining the best solutions for

each of the criteria taken individually) is marked by a black
⊗

symbol. (a) Optimization

Problem 1: Look for solutions that minimize DOPT criterion, negative mean genetic

distance in the training population and mean genetic distance of training to target. (b)

Optimization Problem 2: Look for solutions that minimize DOPT criterion, negative of

minimum genetic distance between pairs of individuals in the training population and

maximum genetic distance of individuals in training set to individuals in the target set.
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