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 4 

Estimation of mixture model parameters 5 

To investigate whether certain genes expressed in tumors exhibited distinct, clearly 6 

separable clusters of gene expression values, a 2-component Gaussian mixture model was fit to 7 

each gene across the 110 data points. These mixture models were applied separately for gene 8 

expression values from both tumors and adjacent normal samples. For each gene within each 9 

group (either tumor or adjacent normal), 4 parameters – namely, the mean of the Gaussian with 10 

the lower (µL) and higher (µH) mean, the proportion of samples under the Gaussian with the 11 

smaller of the two means (π), and a common standard deviation (σ) – were estimated using 12 

maximum likelihood through the well-established method of expectation maximization1 (Figure 13 

1B). The variance of the mixture model was set to be equal between the two Gaussians to 14 

stabilize the expectation maximization procedure. Each parameter includes an additional letter 15 

subscript (“T” or “N”) to denote whether the parameter refers to the model describing the tumor 16 

(T) or adjacent normal (N) expression data. 17 

 18 

Selection and filtration of genes 19 

To remove genes with extreme outliers and to allow for sufficient statistical power for 20 

downstream analysis, genes with a proportion of low-expression modal membership between 0.2 21 

> πT & πN > 0.8 were selected. Additional filtering of genes was performed as described in 22 

Figure 1B. To identify and rank genes whose expression values defined a distinct subgroup of 23 
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tumors that overexpressed the gene relative to normal tissue, two statistics was derived from the 24 

mixture model parameters. The first, termed the selectivity index (SI), was used to screen 25 

candidate genes with an overexpressed subgroup of tumors and was defined as follows: 26 
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where ݊ is the number of paired samples with gene expression values (here, ݊ ൌ  ௜ is the 28ݔ ,(110

log2(TPM+1) expression value of the ݅௧௛ adjacent normal sample, and 
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 is the boundary, 29 

or point of equal probability, between the low and high expression modes of the Gaussians that 30 

describe the tumor data. The SI is applied separately to each gene and ranges between 0 and 1, 31 

with values closer to 1 indicative of genes that have a subpopulation of samples that are clearly 32 

distinct and separable based on the expression values from tumors for a given gene. The SI is 33 

unique in that it selects genes that define distinct clusters of tumor samples based on expression 34 

values that are separate from and greater than their adjacent normal counterparts as well as from 35 

other tumor samples. After visually inspecting the distribution of SI values for all genes (Figure 36 

1A) a conservative SI cutoff of 0.99 was selected.  37 

The second statistic that was developed was termed the oncomix score. The oncomix 38 

score is calculated as a function of the SI (see Equation 1) and the ∆ߤு, ,௅ߤ∆ ,ேߪ  parameters, 39 ்ߪ

as shown below: 40 
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where ∆µH = µHT - µHN and is the difference between the means of the high expression groups of 42 

the mRNA values from tumor (µHT) and adjacent normal tissue (µHN). This term, when large, 43 

indicates greater separation between the high expression modes of the tumor and adjacent normal 44 

populations and would contribute to a larger and more favorable oncomix score. The difference 45 
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between the low expression groups of the tumor (µLT) and adjacent normal samples (µLN) was 46 

calculated as ∆μ୐ (µLT - µLN). This term, when small, indicates a minimal difference between the 47 

low expression modes of the tumor and adjacent normal populations and results in a larger 48 

oncomix score. The oncomix score is penalized by the variance of each mixture model 49 

 with larger variances resulting in lower scores. This is because mixture models with 50 ,(்ߪ	&	ேߪ)

large variances reflect an underlying spread in the distribution and provide evidence against the 51 

existence of two distinct clusters of tumor expression data, and of a single cluster of normal 52 

tissue data. 53 

Identification of a subset of existing oncogenes that are overexpressed in a subset of tumors 54 

While oncomix was primarily intended to discover novel oncogenes, it was also 55 

imperative to evaluate whether our method could recover any well-established oncogenes. To do 56 

this, all Tier 1 oncogenes were used from the Cancer Gene Census (CGC) database (196 57 

genes)2,3, a collection of genes with mutations that are causally associated with cancer derived 58 

from all tumor types. Of the 196 Tier 1 oncogenes from the CGC, twelve genes (6.1%) had an SI 59 

> 0.99 and an oncomix score > 0 (Supplementary Figure 1). The gene expression distributions 60 

of these twelve genes in the matched tumor-normal samples from the TCGA breast cancer 61 

patients showed that most of these distributions contained a subset of tumors that overexpressed 62 

the given gene relative to normal tissue (Supplementary Figure 1). Of these twelve genes, five 63 

(HOXA13, TAL2, SOX2, HOXD13, and SALL4) are transcription factors that help govern 64 

embryonic mammalian development and are transcriptionally silent in most adult tissues4-7 65 

(Supplementary Figure 14). We conclude that our approach successfully identified a small 66 

subset of known oncogenes whose function may be mediated through gene overexpression. 67 

Power analysis 68 
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 Oncomix provides a way for users to rank oncogene candidates within a cancer dataset 69 

based on patterns of gene expression between tumor and adjacent normal tissue. Because 70 

oncomix is not based on hypothesis testing, deriving exact power calculations for this approach 71 

is non-standard and difficult. To work around this, we conducted a simulation study to estimate 72 

the power of the oncomix approach based on the design parameters used in our study. Here, the 73 

null hypothesis is defined as there being no significant difference in the oncomix score of the top 74 

5 ranked oncogene candidates relative to the rest of the 134 genes that passed the initial filters 75 

(0.2 > πT & πN > 0.8, selectivity index > 0.99). Power is defined as the probability of rejecting 76 

the null hypothesis when the null hypothesis is incorrect. Therefore, the alternative hypothesis is 77 

that the oncomix scores of the top 5 ranked oncogene candidates are significantly higher than 78 

those genes not ranking in the top 5.  79 

 Oncomix scores were simulated by assuming that 4 main parameters (SI, ∆μH, ∆μL, σN, 80 

σT) comprising the oncomix score from the two groups (top 5 genes versus bottom 134 genes) 81 

were drawn from two separate multivariate Gaussian distributions. A 5th parameter, the SI, was 82 

simulated using a bootstrap approach due to the narrow support and non-Gaussianity of this 83 

parameter. Parameters for these distributions were estimated from the observed data and were fit 84 

using the mvrnorm function in the MASS library in R8. With a sample size of 110 adjacent 85 

normal and tumor samples, and at an alpha level of 1.91x10-6 (student’s 1-sided t-test), the power 86 

to correctly reject the null hypothesis is 0.723 (out of 1000 simulations) (Supplementary Figure 87 

2). 88 

 89 

 The oncogene candidates identified by oncomix represent a unique set of genes that are not 90 

reliably detectable by existing approaches. 91 
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For an oncogene candidate to be detected by oncomix, a gene must exhibit a specific 92 

expression profile that demonstrates overexpression in a subgroup of cancer patients (Figure 93 

1B). To test whether genes identified by oncomix could be identified by existing approaches, we 94 

compared our results with those obtained by two other methods to find potential tumor 95 

regulators. Limma is a widely-used method to identify differentially-expressed (DE) genes 96 

through a regularized Student’s two sample t-test and assumes the presence of a single mode of 97 

expression. None of the genes identified by oncomix fell within the top 2% of genes ranked by 98 

limma (Supplementary Table 1 and Methods). In addition, benchmarking was performed 99 

against mCOPA, a method that ranks a subset of genes based on meeting a fold change threshold 100 

between pre-specified percentiles from expression profiles in tumor and normal samples7. 101 

mCOPA ranked only one out of our five identified OCs, even after pre-specifying three different 102 

percentiles (see Methods). The genes that were highly ranked by these methods are shown in 103 

Supplementary Figure 3 (compare with Figure 2B). We conclude that our method detects 104 

unique genes with established roles in oncogenesis and metastasis for a subset of patients, and 105 

that these genes are not detectable using existing DE methods that compare tumor and adjacent 106 

normal samples.   107 

 108 

Supplemental molecular and clinical datasets 109 

All supplemental data were downloaded from GDC servers using the 110 

GenomicDataCommons and TCGAbiolinks R packages (see Supplementary File 2, section 111 

“Summary of Data sources” for details on downloaded files). 75% (82/110) of tumor samples in 112 

this study also had DNA methylation data processed on Illumina 450k arrays that was obtained 113 

from the same tumor. The FDb.InfiniumMethylation.hg19 R package was used to obtain 450k 114 
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CpG coordinates for hg19, which were mapped to hg38 using the rtracklayer R package9,10. DNA 115 

CpG methylation loci beta values were obtained from Illumina 450k arrays (see Supplementary 116 

Figure 4). For the logistic regression analysis, only those CpG methylation loci from the 117 

TSS1500 to the 3’ UTR within each respective oncogene candidate were used. The 118 

TxDb.Hsapiens.UCSC.hg38.knownGene R package was used to obtain the genomic coordinates 119 

for each oncogene candidate11. Log2 mean segment copy number values for CNV obtained from 120 

an Affymetrix 6.0 SNP array were utilized. Clinical data was numerically codified or scaled to 121 

within a range of 0-1, and the molecular subtype was inferred from the log2(TPM+1) mRNA 122 

expression data from each tumor using the AIMS algorithm12. 123 

All 66 transcription factor and histone ChIP-seq data from MCF7 cells with 2 biological 124 

or technical replicates was downloaded from ENCODE servers using the ‘rutils’ tool in April 125 

2017. All downloaded data was aligned to hg38, and peaks were called using standard ENCODE 126 

processing pipelines13,14. Of the 66 ENCODE data sets, 14 (three transcription factors and 11 127 

histones) overlapped with at least one CpG site within the CBX2 locus. From these 14 ChIP-seq 128 

data sets, seven ChIP-seq experiments were manually selected based on their established 129 

association with transcriptional regulation14.  130 

 131 

  132 
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 133 

Gene 
symbol 

Function (NCBI 
gene summary) 

Chromo-
some 

Oncomix 
score/ 
Rank 

Limma Rank  
(out of 7,388 
upregulated 
genes) 

mCOPA 
Rank 
(out of 2,152 
ranked 
genes) 

EPYC  

Member of the 
small leucine-rich 
repeat 
proteoglycan 
family 

12q21.33 1.84 / 1 279 NA 

NELL2 
Neural epidermal 
growth factor-like 
like protein 2 

12q12 1.64 / 2 2264 NA 

CBX2 

Member of 
polycomb 
repressive 
complex 

17q25.3 1.48 / 3 756 NA 

SLC24A2  

Member of 
calcium/cation 
antiporter 
superfamily of 
transport proteins 

9p22.1-
p21.3 

1.40 / 4 149 NA 

LAG3 
Lymphocyte-
activation protein 
3 

12p13.31 1.28 / 5 3077 1076 

Supplementary Table 1. List of oncogene candidate function and comparison with current 134 
differential expression approaches. Each oncogene candidate is represented by a row. Columns 135 

indicate the molecular features or function of each gene. A rank-based comparison between the 136 

oncomix score, limma’s p-value, and mCOPA’s fold change is shown. Genes with a selectivity 137 

index > 0.99 were ranked according to the oncomix score. A limma rank of 1 is assigned to the 138 

gene that was most differentially expressed (ie has the lowest p-value) between tumors and 139 

adjacent normal samples, and a limma rank of 7,388 is the lowest possible rank and indicates the 140 

gene that was least differentially upregulated in tumors relative to normal tissue. mCOPA 141 

identified 2,152 genes that contained overexpressed outliers after selecting genes that had at least 142 

a log2(fold change) > 2 between tumor and normal samples at the 70th, 80th, or 90th percentile. 143 

Genes were ranked according to log2(fold change). NA indicates that the gene was not selected 144 

by mCOPA. 145 

 146 

  147 
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 148 

Oncogene 
Candidate 

Upregulated 
genes 

Downregulated 
genes 

EPYC  4 0 
NELL2 0 0 
CBX2 73 17 

SLC24A2  241 1 
LAG3 105 2 

 149 

Supplementary Table 2. Summary of differentially expressed genes in breast tumors that 150 
overexpress oncogene candidate mRNA Each oncogene candidate is represented as a row. The 151 

number of upregulated and downregulated genes are relative to tumors that overexpress the 152 

oncogene candidate. Differential expression was performed using limma with log2(Fold Change) 153 

> 1 & q-value < 0.0001 as cutoffs.   154 

  155 

 156 

  157 
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 158 

Oncogene 
Candidate 

Geneset                                        q value  
Odds 
Ratio 

Odds Ratio 
95% CI   

CBX2         hallmark g2m checkpoint          2.20E-30 54 31-91 
CBX2         hallmark e2f targets                      1.30E-25 44 25-75 

SLC24A2   
hallmark epithelial 
mesenchymal transition         1.30E-59 37 26-53 

Supplementary Table 3. Gene set enrichment from upregulated genes in breast tumors that 159 
overexpress a given OC. Two OCs had significant enriched pathways following gene set 160 

enrichment performed using Fisher’s exact test. Pathways are shown as rows. Pathways that have 161 

an odds ratio with a lower bound 95% CI > 20 and a Benjamini-Hochberg adjusted q-value < 162 

1x10-20 are shown and are ranked, from top to bottom, by decreasing odds ratio within each OC.  163 

  164 
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Supplementary Table 4. Significantly differentially expressed and upregulated genes within 165 

the Hallmark G2/M checkpoint pathway for tumors that overexpress CBX2. Each gene is 166 

listed as a row, and a description is provided for each gene from the Hugo Gene Nomenclature 167 

Committee (HGNC), along with the log2(Fold Change), Benjamini-Hochberg adjusted q value, 168 

and chromosomal location. The genes are listed from top to bottom in order of chromosomal 169 

location. All genes listed have a log2(Fold Change) > 1 & q-value < 0.0001. 170 

 171 

HGNC 
symbol Description 

log2(Fold 
Change) q value Chromosome 

KIF2C kinesin family member 2C 1.55 1.30E-06 1p34.1 
RAD54L RAD54 like 1.26 5.80E-06 1p34.1 
CDC20 cell division cycle 20 1.63 9.30E-06 1p34.2 
E2F2 E2F transcription factor 2 1.14 9.14E-05 1p36.12 
EXO1 exonuclease 1 1.3 6.97E-05 1q43 
CENPA centromere protein A 1.59 7.00E-07 2p23.3 

BUB1 
BUB1 mitotic checkpoint 
serine/threonine kinase 1.35 6.30E-06 2q13 

CENPE centromere protein E 1.09 6.48E-05 4q24 
CCNA2 cyclin A2 1.29 5.55E-05 4q27 
MAD2L1 mitotic arrest deficient 2 like 1 1 8.91E-05 4q27 
TTK TTK protein kinase 1.29 1.06E-05 6q14.1 

EZH2 
enhancer of zeste 2 polycomb 
repressive complex 2 subunit 1.01 1.26E-05 7q36.1 

CDK1 cyclin dependent kinase 1 1.17 7.80E-05 10q21.2 
TROAP trophinin associated protein 1.35 1.07E-05 12q13.12 

ESPL1 
extra spindle pole bodies like 1, 
separase 1.17 3.66E-05 12q13.13 

PLK1 polo like kinase 1 1.42 1.37E-05 16p12.2 

ORC6 
origin recognition complex 
subunit 6 1.08 2.86E-05 16q11.2 

SLC7A5 solute carrier family 7 member 5 1.63 6.07E-05 16q24.2 

BIRC5 
baculoviral IAP repeat containing 
5 1.65 1.30E-06 17q25.3 

NDC80 
NDC80, kinetochore complex 
component 1.18 5.77E-05 18p11.32 

CDC25B cell division cycle 25B 1.14 2.86E-05 20p13 

TPX2 
TPX2, microtubule nucleation 
factor 1.44 1.14E-05 20q11.21 

E2F1 E2F transcription factor 1 1.27 3.27E-05 20q11.22 
MYBL2 MYB proto-oncogene like 2 2.06 1.30E-06 20q13.12 

UBE2C 
ubiquitin conjugating enzyme E2 
C 1.64 1.58E-05 20q13.12 

AURKA aurora kinase A 1.42 3.10E-06 20q13.2 
CDC45 cell division cycle 45 1.25 4.00E-05 22q11.21 
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 176 

 177 

 178 

Supplementary Figure 1. Oncogenes from the Cancer Gene Census can be detected using 179 
oncomix. A) The distribution of selectivity indices across 196 oncogenes from the CGC is 180 

shown. B) Distribution of oncomix scores for the same 196 oncogenes separated by their 181 

selectivity index. Dark red bars indicate the genes that have a selectivity index greater than 0.99 182 

(N=15). C) Superimposed histograms of expression values from tumor (teal) and adjacent 183 

normal (red) samples for the 12 oncogenes with oncomix score greater than 0 and a selectivity 184 

index greater than 0.99. The best fitting mixture model is shown for each selected gene. The 185 

HUGO gene symbol for each gene is displayed for each histogram. The y-axis represents density 186 

and the x-axis represents log2(TPM + 1) reads. Tumor samples are shown in teal, and adjacent 187 

normal breast tissue is shown in orange. Abbreviations: TPM = Transcripts Per Million reads. 188 

 189 

 190 

 191 

  192 
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 193 

Supplementary Figure 2. Power analysis based on simulations of observed oncomix 194 
parameter values. The x-axis shows the p-value (log10 scale), and the y-axis represents the 195 

power. Each black point represents the power along a grid of p-values between 1x10-6 and 0.05 196 

with each step of size 1x10-6. The vertical red line represents the observed p-value (1.91x10-6 197 

(Student’s 1-sided t-test) in this study, and the blue line represents a p-value of 0.05. 198 

 199 

 200 

 201 
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 202 
Supplementary Figure 3. Comparison of the distributions from the 5 top genes (out of 203 
16,156) identified from 2 different types of differential expression approaches. The 204 
distributions of log2-transformed transcripts per million reads for 110 tumor (teal) and adjacent 205 

normal (red) samples are shown along the x-axis. The y-axis represents density. (Top Row) 206 

Differential expression analysis between tumor and adjacent normal samples using limma, a 207 

technique that performs a two-sample t-test. The top 5 genes with the lowest p-value among 208 

16,156 genes are shown, and genes are shown from left to right by progressively increasing p-209 

value. (Bottom row) The top 5 genes derived from mCOPA analysis of tumor and adjacent 210 

normal samples with the highest log2 fold change between the 80th percentile for tumor and 211 

adjacent normal samples are shown. Log2 fold change was calculated based on COPA-212 

transformed expression values, which are not shown here. 213 

  214 
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 215 

216 
Supplementary Figure 4. Overview of study design and schematic of molecular and 217 

clinicopathologic data matrix organization. All data were downloaded from the Genomic Data 218 

Commons/Cancer Genome Atlas (TCGA) and were organized into distinct matrices based on the 219 

type of data (RNA sequencing, DNA methylation, genomic copy number, and clinicopathologic 220 

information). Representative examples of TCGA patient IDs (rows) and of the 4 distinct data 221 

types (columns) are shown. Patients were selected using the following 2 criteria: 1) no prior 222 

chemotherapeutic treatment for invasive breast carcinoma, and 2) the presence of RNA 223 

sequencing data from both tumor and adjacent normal tissue. The values of the entries for each 224 

of the 4 matrices are shown below each respective matrix, along with the dimension of each 225 

matrix. Individual probes or genes were filtered according to the criteria indicated in the ‘filter’ 226 

row. Code for organization of data matrices is available on Github. Where appropriate, matching 227 

annotation files (not shown) were created using UCSC genome annotations (hg38) for 228 

transcription start and end sites, DNA methylation loci, and SNP locations. Abbreviations: 229 

MSCN = Mean segment copy number; TPM = Transcripts per Million mapped reads. 230 

 231 

  232 

 233 

  234 



16 
 

 235 

Supplementary Figure 5. Procedure for fitting a multiple logistic regression model via 236 

coefficient-penalized maximum likelihood estimation. The procedure with cross validation 237 

was implemented using the R package glmnet. Area under the curve (AUC) was implemented 238 

using the AUC package. Implementation details are available in Supplementary file 2. (1) The 239 

first step is to define the objective function – in this case, the negative binomial log-likelihood – 240 

and to define an approximation/optimization method – in this case, coordinate descent. (2-4) 241 

Next, the value of lambda, a term that penalizes model coefficients, is selected by training an 242 

array of models across a grid of lambda values and selecting the model with the fewest number 243 

of terms within 1 standard error of the model with the lowest misclassification error using leave-244 

one-out cross validation. (5) The Area Under the Curve (AUC) is calculated for each model by 245 

testing the ability of each model to correctly predict the outcome (either baseline or 246 

overexpressed) given a set of input variables (e.g. DNA methylation β values at intragenic CpG 247 

loci).  248 

 249 

  250 
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251 
Supplementary Figure 6. Colocalization of histones and transcription factors with CpG 252 
sites that predict overexpression of CBX2. (Top) Paired boxplots showing the CpG 253 

methylation beta values, which range between 0-1, at each of 28 individual CpG loci for tumors 254 

that express baseline levels of or overexpress CBX2. (Middle) Each row of the black-and-white 255 

matrix represents 1 of 7 different ChIP-seq experiments from MCF7 cells in which a direct 256 

overlap (black squares) between a CpG site and a ChIP-seq peak was identified. These 7 ChIP-257 

seq experiments were manually selected for purposes of interpretability from 14 ChIP-seq 258 

experiments that overlapped with the CBX2 locus. The chromatin type or transcription factor is 259 

listed along the left-hand side of the matrix, and major chromatin features, such as enhancers 260 

(Enh.), promoters (Pro.), and repressive (Repr.) marks, are indicated in large text. Each of the 28 261 

columns represents a different CpG locus within the gene body of the CBX2 gene (defined as the 262 

beginning of the TSS1500 to the end of the 3’ UTR). The model coefficient with the largest 263 

absolute value is shown adjacent to the rightmost thin black line. (Bottom) The two thin black 264 

lines demarcate the position of the 4 CpG sites within intron 2 and indicate the physical position 265 

of these intronic CpG sites within the CBX2 locus. Additional regions within the CBX2 gene 266 

(length = 11,352 bases, including the TSS1500) are annotated in the gene model, which was 267 

obtained from the UCSC genome browser. Asterisks represent q values from a Wilcoxon rank-268 

sum test between the beta values at each of the 28 loci. *** = q < 0.0001, ** = q < 0.001, * = q < 269 

0.01. 270 

 271 



18 
 

 272 
Supplementary Figure 7. Expression of CBX2 across the 5 distinct subtypes of breast 273 
carcinoma. The 110 tumors used in this study were grouped into 5 molecular subtypes, inferred 274 

using the AIMS algorithm on the gene expression data derived from each tumor, and are shown 275 

along the x axis. The subtypes are ordered from least to most aggressive, moving from left to 276 

right. The proportion of tumors that overexpressed CBX2 within each subtype are shown in dark 277 

blue, while tumors that express baseline levels of CBX2 are shown in light blue. The proportion 278 

of tumors that overexpress CBX2 correlates with the aggressiveness of the tumor subtype. A two-279 

sided multinomial exact test was used to check for the enrichment of tumors that overexpress 280 

CBX2 within the five breast tumor subtypes (p = 1.149 x 10-7). Post hoc statistics were calculated 281 

using Fisher’s exact test (results shown as asterisks above each bar) and were adjusted for 282 

multiple comparisons using the Benjamini-Hochberg method. Abbreviations: n.s. = not 283 

significant, * = p < 0.05, *** = p < 0.001.  284 

  285 
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 286 

Supplementary Figure 8. Association between high-impact cancer-associated mutations 287 
and the overexpression of oncogene candidates. Each column represents one of 5 oncogene 288 

candidates, and each row represents a mutation in a known oncogene or tumor suppressor.  289 

Fisher’s exact test was performed for each relationship, and an odds ratio and p-value were 290 

obtained when possible. Blue indicates that overexpression of the OC and the presence of a 291 

mutation were likely to co-occur in the same individual, while red indicates that overexpression 292 

of the OC and oncogenic mutations were mutually exclusive. The frequency of these mutations 293 

in the 50 individuals who harbored them are shown as a bar graph. Dark grey boxes indicate the 294 

inability to compute an odds ratio due to the presence of a 0 value in an element of the 2x2 295 

contingency table.  296 

 297 

 298 
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 299 
Supplementary Figure 9. Expression of CBX2 across 53 healthy adult human tissues. Figure 300 

was generated from the GTEx website (https://www.gtexportal.org/home/) by searching for the 301 

gene CBX2. Grey arrows, from left to right, indicate expression in mammary tissue, prostate, and 302 

testes. Blue boxplots represent expression values from males, and red boxplots represent 303 

expression values from females. The entire GTEx dataset of 53 tissues, shown here for CBX2, 304 

includes expression values generated from 8,555 individual samples, which were obtained from 305 

544 donors. 306 

 307 

  308 
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 309 

Supplementary Figure 10. The top five oncogene candidates identified by oncomix using 310 
RNA-sequencing data from lung adenocarcinoma and adjacent normal lung tissue. A) The 311 

distribution of the oncomix scores is colored by a selectivity index (SI) set at 0.99. Larger 312 

oncomix scores correspond to genes that more closely resemble the profile of a theoretical 313 

oncogene candidate. B) Superimposed histograms of expression values from tumor (teal) and 314 

adjacent normal (red) samples for the 5 genes with the highest oncomix score and a selectivity 315 

index greater than 0.99. The best fitting mixture model is shown for each selected gene. The 316 

HUGO gene symbol for each gene is displayed for each histogram. A theoretical model for an 317 

ideal oncogene candidate is shown in the upper left and includes some of the summary statistics 318 

that were used to compute the oncomix score. The y-axis represents density and the x-axis 319 

represents log2(TPM + 1) reads. Abbreviations: T = primary breast tumor, N = adjacent normal 320 

breast tissue, TPM = Transcripts Per Million reads. 321 

  322 
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 323 

Supplementary Figure 11. The top five oncogene candidates identified by oncomix using 324 

RNA-sequencing data from endometrial carcinoma and adjacent normal endometrial 325 
tissue. A) The distribution of the oncomix scores is colored by a selectivity index (SI) set at 0.99. 326 

Larger oncomix scores correspond to genes that more closely resemble the profile of a 327 

theoretical oncogene candidate. B) Superimposed histograms of expression values from tumor 328 

(teal) and adjacent normal (red) samples for the 5 genes with the highest oncomix score and a 329 

selectivity index greater than 0.99. The best fitting mixture model is shown for each selected 330 

gene. The HUGO gene symbol for each gene is displayed for each histogram. A theoretical 331 

model for an ideal oncogene candidate is shown in the upper left and includes some of the 332 

summary statistics that were used to compute the oncomix score. The y-axis represents density 333 

and the x-axis represents log2(TPM + 1) reads. Abbreviations: T = primary breast tumor, N = 334 

adjacent normal breast tissue, TPM = Transcripts Per Million reads. 335 

  336 
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 337 

Supplementary Figure 12. The top five oncogene candidates identified by oncomix using 338 

RNA-sequencing data from prostate adenocarcinoma and adjacent normal prostate tissue. 339 
A) The distribution of the oncomix scores is colored by a selectivity index (SI) set at 0.99. 340 

Larger oncomix scores correspond to genes that more closely resemble the profile of a 341 

theoretical oncogene candidate. B) Superimposed histograms of expression values from tumor 342 

(teal) and adjacent normal (red) samples for the 5 genes with the highest oncomix score and a 343 

selectivity index greater than 0.99. The best fitting mixture model is shown for each selected 344 

gene. The HUGO gene symbol for each gene is displayed for each histogram. A theoretical 345 

model for an ideal oncogene candidate is shown in the upper left and includes some of the 346 

summary statistics that were used to compute the oncomix score. The y-axis represents density 347 

and the x-axis represents log2(TPM + 1) reads. Abbreviations: T = primary breast tumor, N = 348 

adjacent normal breast tissue, TPM = Transcripts Per Million reads. 349 

  350 
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 351 

Supplementary Figure 13. Expression profiles of CBX2 in four distinct tumor types and in 352 
adjacent normal tissue. The number of samples from each tumor type are shown. Rankings for 353 

each dataset are among the genes that passed filters applied to the original breast cancer dataset 354 

(0.2 > πT & πN > 0.8, selectivity index > 0.99). OS = oncomix score. 355 

 356 

  357 
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 358 

Supplementary Figure 14. Expression of oncogenes from the Cancer Gene Census within 359 
normal adult tissue. A) Each point in this violin plot represents a gene, and each gene was 360 

grouped on the x-axis according to whether it was identified by oncomix. The y-axis represents 361 

the percentage of tissues in GTEx that have a TPM > 1 for the gene. Prior studies have used a 362 

threshold of 1 TPM to classify a gene as expressed or not15. P-value was calculated using 363 

student’s t-test (two-sided). B) Each column in the heatmap represents one of the 12 known 364 

oncogenes identified by oncomix, and each row represents a tissue collected in GTEx. Each cell 365 

in the heatmap represents a binary version of the median transcripts per million (TPM) value for 366 

a gene across all tissues obtained from the GTEx database. The asterisks indicate genes that are 367 

associated with mammalian embryogenesis in the literature as of March 2018 (see main text for 368 

references). 369 
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