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Supplementary text 
 
SI Methods 

Global EMAC model: We used the global ECHAM/MESSy Atmospheric chemistry – Climate 

(EMAC) model, which comprehensively simulates atmospheric chemical and meteorological 

processes and interactions with the oceans and the biosphere (52,53). EMAC was developed at the 

Max Planck Institute for Chemistry in Mainz, building on the ECHAM atmosphere-ocean climate 

model of the Max Planck Institute for Meteorology in Hamburg (54,55), which has been modularized, 

and to which improved submodels and updates of boundary layer, radiation, cloud and convection 

routines have been introduced (56,57,58). The EMAC model development is coordinated within an 

international consortium: see https://www.messy-interface.org. Through this website additional model 

description, references and model output are available, and the software is publicly available through a 

community end-user license agreement. EMAC can be used for historical and present-day calculations 

as well as future projections. It couples atmosphere, ocean and land processes to simulate 

biogeochemical cycles of reactive compounds (59,60). It can be seen as an Earth system chemistry 

model, which can cover a wide range of space and time scales, typically up to decades with 

comprehensive chemistry and up to centuries with simplified chemistry schemes.  

 The model can be applied at various horizontal resolutions (between 0.5° and 2.8° latitude/ 

longitude, i.e. from about 50 km to 250 km grid spacing), and has a vertical range up to 80 km 

altitude, covering the lower and middle atmosphere (61,62). Here we applied EMAC at T63/L31 

spatial resolution, i.e., at a spherical spectral truncation of T63 and a quadratic Gaussian grid spacing 

of about 1.85° latitude and longitude, and 31 hybrid terrain-following pressure levels up to 10 hPa in 

the lower stratosphere. Air quality and climate forcing calculations were performed with prescribed 

sea surface temperatures over a period of 25 years, of which the first five were dismissed as spin-up. 

Subsequently, the coupled atmosphere-ocean version of EMAC was used over 35 years (the first five 
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dismissed as spin-up), with the same comprehensive atmospheric chemistry and aerosol schemes, to 

compute equilibrium climate responses. This setup allows the atmosphere to restore radiative balance 

through heat exchange with the oceans, but does not enable transient climate change simulations based 

on time dependent emission scenarios. Here we pursue two simple scenarios by assuming the phase-

out from fossil fuels and of all anthropogenic pollution sources in order to study the near-term climate 

responses. To differentiate between the effects of short-lived climate pollutants, we first performed 

two simulations in which aerosols from both source categories were removed, and subsequently two in 

which aerosols as well as greenhouse gases were removed.   

 Model setup: We have used EMAC to investigate the combined global impacts of air pollution on 

climate and public health. The various submodels represent tropospheric and lower stratospheric 

processes and their interaction with oceans, land and human influences, and they describe emissions, 

including isotopic composition, radiative processes, atmospheric multiphase chemistry, aerosol and 

deposition mechanisms (63,64,65,66,67,68). In our idealized sensitivity calculations, we removed 

fossil fuel related and all anthropogenic emissions. The latter category does not include the 

anthropogenic fraction of desert dust (13), which would require assumptions on land use change, and 

10% of biomass burning emissions, which are considered natural, i.e., from fires that are ignited by 

lightning and difficult to extinguish (14). The anthropogenic sources include agriculture (e.g. NH3, 

CH4) to illustrate their impact on health and of maximum achievable emission reductions. For CH4 we 

adopted pre-calculated concentration changes based on the tagging of source categories (67). One 

could argue that the instantaneous removal of emissions is not realistic from a future scenario 

perspective, but it demonstrates their large health impacts, while the climate simulations are not 

sensitive to the time period of the phase-out, at least not within this century (see Discussion). The 

health impacts may have some time dependency, as the population size, nutritional and medical care 

conditions can change in time. Therefore, we also present sensitivity calculations for the projected 

population of 2050. 

 EMAC simulates gas-phase and heterogeneous chemistry through the MECCA submodel, which 

accounts for the photochemical oxidation of natural and anthropogenic emissions, including a 

comprehensive account of volatile organic carbon compounds (69). Aerosol microphysics processes 

and gas/aerosol partitioning are simulated with the GMXe submodel (70,71,72). The aerosol size 

distribution is described by seven interacting lognormal modes (four hydrophilic and three 

hydrophobic). The aerosol composition within each mode is uniform (internally mixed), though can 

vary between modes (externally mixed). The hydrophilic size modes encompass the full aerosol size 

spectrum (nucleation, Aitken, accumulation and coarse), whereas the hydrophobic mode does not 

represent nucleation. The inorganic aerosol composition is computed with the ISORROPIA-II 

thermodynamic equilibrium submodel (73). It calculates the gas/liquid/solid equilibrium partitioning 

of inorganic compounds and water. Aeolian dust components can exist in the form of mineral salts in 

the solid phase and ions in the aqueous phase (74,75). The composition and atmospheric evolution of 
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organic aerosol compounds are simulated with the ORACLE submodel, which represents volatility 

classes of organics through their effective saturation concentrations (76). It accounts for primary and 

secondary combustion products from biomass burning, biofuel and fossil fuel use, including their 

chemical oxidation during atmospheric transport, which in turn influences the phase state of the 

particles.  

 Desert dust aerosols: Analogous to the chemical processing of inorganic and organic aerosols, 

atmospheric “ageing” has been introduced for aeolian dust particles (74,77). Especially the uptake of 

nitric acid, but also of other acids, can substantially influence the lifetime and climate properties of 

dust, which is the globally most abundant aerosol type. Neutralization reactions with mineral cations 

change the hygroscopicity of dust aerosols and their ability to act as cloud condensation nuclei (CCN). 

This has consequences for the aerosol optical depth (AOD) through water uptake, i.e., from being dry 

dust particles they become aqueous droplets, which in turn affects optical properties, dry and wet 

deposition processes. In EMAC the role of dust particles in cloud droplet formation is calculated with 

the “unified dust activation” scheme, which considers inherent hydrophilicity from water vapor 

absorption and acquired hygroscopicity from soluble salts formed through chemical ageing (29). We 

find that aged dust increases the cloud droplet number concentration near the source areas (by 

providing additional CCN) and decreases them over polluted areas by providing large CCN that are 

more effective in forming cloud droplets than small pollution aerosols. The dust aerosol radiative 

forcing is dominated by the former effect, which contributes to regional cooling (28,29). Recently, the 

ice nucleation parameterization has been revised to account for dust, black carbon, bioaerosols and 

organics (78).  

 Model evaluation: EMAC model results for the past decades have been extensively tested against 

measurement data of gases and particles from ground-based air quality networks and global 

observations from satellites (61–79). For global and regional evaluation of model simulated ozone we 

refer to Jöckel et al. (52,53) and Yan et al (80), and of AOD and PM2.5 to Pozzer et al. (65,68,79,81). 

Recent model updates of aeolian dust and organic aerosols, including evaluation against measurement 

data, can be found in Klingmüller et al. (75) and Tsimpidi et al. (76), respectively. As an example, Fig. 

S1 shows the satellite-observed and modelled AOD at two wavelengths to distinguish the relatively 

large dust particles (10 µm data) from pollution aerosols (550 nm data). The performance of the 

climate model basic to EMAC has been evaluated by Roeckner et al. (54,82), with updates by Tost et 

al. (56,57) and Ouwersloot et al. (58). Fig. S2 compares modeled with satellite observed rainfall 

patterns. Fig. S3 presents some additional evaluation of our PM2.5 results by comparing with a 

satellite-derived PM2.5 product often used in air quality and public health assessments (5,83). Recent 

Global Burden of Disease (GBD) studies have applied these data (9,84), which combine MODIS 

satellite observations with results from a chemical transport model to provide prior information for the 

AOD retrieval and to relate observed column AOD to PM2.5 (at 35% relative humidity) near the 

surface. Further, Figure S3 shows a direct comparison of model results and AOD observed by 
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AERONET ground stations, including the daily variability at three locations that are regularly affected 

by dust events. In our studies we apply the global EMAC results, because a model allows for 

sensitivity and scenario calculations, so that excess mortality can be attributed to source categories. 

Notwithstanding the use of either satellite-derived or EMAC model simulated data for exposure to 

pollution concentrations, we obtained nearly identical results as the GBD studies for 2010 (4,84) and 

2015 (9,85) (see also next section). A study that evaluated model calculations for Europe at different 

spatial resolutions (20 and 100 km) and against satellite data (10 km) concluded that model 

uncertainties contribute a small part to the overall uncertainty in mortality calculations (86). 

 Global exposure mortality model (GEMM): To estimate public health impacts from air pollution, 

the model simulations have been combined with hazard ratio functions that use annual mean pollution 

concentrations to assess long-term health outcomes, following the approach of Anenberg et al. (87), 

Lim et al. (84), Burnett et al. (88) and Lelieveld et al. (4,85). We implemented the new GEMM of 

Burnett et al. (10) to estimate health risks, leading to substantially higher attributable excess mortality 

compared to previous studies (2,9). Hitherto, e.g., for the Global Burden of Disease (GBD), the 

impacts of very high PM2.5 concentrations based on studies of outdoor air pollution (above those 

observed in countries where epidemiological cohort studies were performed) have been supplemented 

by studies of household pollution in addition to active and second-hand smoking (2,9), from which 

exposures are much larger than outdoor air pollution studies alone. The new GEMM is based on 

studies of outdoor air pollution only, including a study from China, which now cover an extensive 

global exposure range (41 cohorts from 16 countries). Furthermore, the GEMM was also constructed 

for a broad group of mortality causes, incorporating all non-communicable diseases and lower 

respiratory infections (NCD+LRI). The sum of excess mortality predicted by the GEMM for the five 

causes of death examined by the GBD is less than that predicted by the NCD+LRI group, suggesting 

that other causes of death, not included in these five, are related to particle exposure. Data sets used as 

input, such as country level baseline mortality rates (yo) and years of life lost (YLLo) for the different 

disease categories and populations, have been adopted from the WHO Global Health Observatory 

(89), being representative of the year 2015. Population numbers (P) are from the United Nations 

Department of Economic and Social Affairs/Population Division (http://esa.un.org/unpd/wpp).  

 Excess mortality (DM) calculations have been performed using the expression DM = yo·AF·P, in 

which the attributable fraction AF = [R(z) – 1)] / R(z), with R(z) being the hazard ratio (10). R(z) is a 

function of concentration that specifies exposure (dependent on location). The years of life lost are 

calculated with the same expression, substituting yo by YLLo. The value of R(z) is calculated for 

different disease categories such as ischemic heart disease (IHD), chronic obstructive pulmonary 

disease (COPD), lower respiratory tract infections (LRI), cerebrovascular disease (CVD), lung cancer 

(LC), for different age classes above 25 years. We added the previously applied exposure-response 

function for LRIs in children (< 5 years) (85). The new risk estimator of Burnett et al. (10) introduces a 

GEMM for all NCD, which includes IHD, COPD, CVD and LC as well as other, yet undefined 
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categories. Results (i.e., for all NCD plus LRI) are presented in the main text. Tables S1–S2 present 

the different disease categories and results for all countries. The 95% confidence intervals for the 

GEMM results are based on a normal distribution approximation (10), and for the additional LRI in 

children < 5 years on 1,000 realizations of exposure response functions (88). The GEMM describes 

uncertainty based on bootstrap methods that incorporate both sampling and model shape uncertainty, 

described by Burnett et al. (10,90). For O3, which is assumed to affect COPD, R(z) is estimated 

following Jerrett et al. (91), with updated coefficients that include recent cohort studies. Our global 

total estimate of the attributable excess mortality rate of 8.79 (95%CI 7.11–10.41) million per year 

compares to 8.9 (95%CI 7.5–10.3) million per year of Burnett et al. (10), being more than twice as 

high as the estimate of the Global Burden of Disease for 2015 (2,10). By applying 2050 population 

data, we find that the total excess mortality rate is 9.68 (95%CI 7.78 – 11.50) million per year, i.e., 

about 10% higher than for 2015. By removing fossil fuel generated emissions, we find an avoidable 

mortality of 3.61(95%CI 2.96–4.21) in 2015 and 3.52(95%CI 2.88–4.11) in 2050. Removing all 

anthropogenic emissions yields an avoidable rate of 5.55 (95%CI 4.52–6.52) million in 2015, and 5.62 

(95%CI 4.56–6.61) in 2015 (Tables S1 and S2). Hence the total avoidable rates change little between 

the 2015 and 2050 population scenarios. 

 Limitations of mortality estimates: The GEMM estimates how many deaths could be avoided 

per year if the population is exposed to a lower counterfactual level than current, ambient 

concentrations of air pollution. Since separate risk functions are derived for age categories, the GEMM 

additionally incorporates the age structure of the population. When mortality is attributed to a risk 

factor such as air pollution, the relationship is not distinctive but statistical (in the case of car 

accidents, for example, excess mortality relates to individuals who can be identified). To provide a 

context, we complement mortality estimates by how many years of life are lost. It should be 

understood that the methodology used with the GEMM is the same as for the health effects of active 

smoking, obesity, etc. Hence, whatever limitations are relevant for outdoor air pollution, they also 

apply to other risk factors. Although clinical and public-health research has uncovered unambiguous 

connections between air pollution, disease and mortality, even at very low levels of exposure (3,92), 

continued studies are needed to disentangle the causes and effects. For example, the harmfulness of 

different types of particles, individually and in mixtures, is not completely understood (93). The 

GEMM assumes that PM2.5 toxicity does not depend on the source of outdoor air pollution. While 

previous studies of exposure-response formulations assumed counterfactual (i.e., potential outcome) 

uncertainty distributions, in the GEMM this dependency has diminished by directly deriving the shape 

of the exposure-mortality association from very low to high levels of air pollution, being accounted for 

in several of the 41 cohort studies (10). The estimates of mortality from air pollution include 95% 

confidence intervals, which represent parameter uncertainty related to the data used in the calculations. 

However, there can be additional uncertainty from incomplete knowledge, i.e., epistemic uncertainty. 

This includes unaccounted confounding factors, misclassification of health data, or limited 



 6 

representativeness of hazard ratio functions as they rely on data from a small number of countries (16 

countries). The confounder problem can work in two directions, either by over-attributing air pollution 

deaths to disease categories, or by unaccounted air pollution impacts. We emphasize that the GEMM 

follows the conservative practice of GBD and WHO studies, by focusing on risk factors and diseases 

for which there is convincing evidence of a causal relationship (3,10).  
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Supplementary figures 
 

 
 

Supplementary Figure 1. EMAC model calculated and satellite observed aerosol optical depth (AOD) at 550 
nm (left) and 10 µm (right) wavelength. The latter shows aeolian dust related aerosol optical depth. MODIS is 
the Moderate Resolution Imaging Spectroradiometer (NASA) and IASI the Infrared Atmospheric Sounding 
Interferometer (EUMETSAT). 
 

                    
Supplementary Figure 2. EMAC model calculated annual precipitation, and that observed by the Tropical 
Rainfall Measuring Mission (TRMM) satellite.  
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Supplementary Figure 3a. EMAC model calculated and MODIS satellite-derived mean PM2.5 (at 35% relative 
humidity). The outliers (around 4 µg/m3 in MODIS data) in North America are related to forest fires in Canada, 
represented in the global fire emissions database (GFED) but not in the MODIS retrievals.  
 
 

 

       
 
 

Supplementary Figure 3b. EMAC model calculated and AERONET observed aerosol optical depth for stations 
with at least two years of data during the 12 months between 2009 and 2018 (left), and for three dust-affected 
stations in the Middle East and North Africa (right). Some bias might be associated with the 24-hour EMAC 
averages and the cloud-free daytime observations of AERONET.  
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Supplementary Figure 4. Direct (top) and direct + indirect (bottom) radiative forcing of fossil fuel related 
aerosols at the TOA (left) and the BOA (right). Stippling denotes areas where radiative forcings are not 
significant at the 95% confidence level. Note that the direct aerosol effect typically has a higher statistical 
significance than indirect effects, as the latter influence clouds and rain, which are highly variable. 
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Supplementary Figure 5. Direct (top) and direct + indirect (bottom) radiative forcing of all anthropogenic 
aerosols at the TOA (left) and the bottom of the atmosphere (BOA, right). Stippling denotes areas where 
radiative forcings are not significant at the 95% confidence level. Note that the direct aerosol effect typically has 
a higher statistical significance than indirect effects, as the latter influence clouds and rain, being very variable. 
 
 
 
 

               
 
 

Supplementary Figure 6. Excess mortality rate attributed to air pollution.  
Units: annual death rate per area of 1,000 km2.  
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Supplementary Figure 7. Precipitation changes from removing particulate air pollution. Due to fossil fuel 
related (top), and due to all anthropogenic emissions (bottom). Stippling denotes areas where the 
precipitation changes are not significant at the 95% confidence level.  
 
 
 
 
 
Supplementary tables 
 
Table S1. Annual excess mortality rates attributed to air pollution in all countries. Excess deaths for 
disease categories, avoidable excess mortality, population data and unavoidable net warming from the 
phasing out of fossil fuel related and all anthropogenic emissions for air pollutants and greenhouse gases. 
Results are included for 2015 and 2050 population (same air pollution levels). Uncertainty ranges are given 
by the minimum and maximum values. Data are available in an attached excel file.  
 
Table S2. Annual YLL attributed to air pollution in all countries. YLL for disease categories, avoidable 
YLL, population data and unavoidable net warming from the phasing out of fossil fuel related and all 
anthropogenic emissions for air pollutants and greenhouse gases. Results are included for 2015 and 2050 
population (same air pollution levels). Uncertainty ranges are given by the minimum and maximum values. 
Data are available in an attached excel file.  
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