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Supplementary Information Text 

Methods 

Temporal Pattern Discrimination Task (TPDT) 

The TPDT used here has been described before (1). Briefly, two monkeys (Macaca 

mulatta) were trained to report whether the temporal structure of two vibrotactile stimuli 

(P1 and P2) of equal mean frequency (5 Hz) were the same (P2 = P1) or different (P2 ≠ 

P1; Fig. 1A). Monkeys performed the task in blocks of trials in which the two stimulus 

patterns had a fixed mean frequency of 5Hz. The right arm, hand and fingers were held 

comfortably but firmly through the experiments. The left hand operated an immovable key 

(elbow at ~90°) and two push buttons in front of the animal, 25 cm away from the shoulder 

and at eye level. The centers of the buttons were located 7 and 10.5 cm to the left of the 

midsagittal plane. Stimuli were delivered to the skin of one digit from the distal segment 

of the right, restrained hand via a computer-controlled stimulator (2 mm round tip, BME 

Systems, Baltimore, MD). The initial skin indentation was 500µm (probe down event, “pd” 

in Fig. 1A). Vibrotactile stimuli consisted of trains of short mechanical pulses; each of 

those pulses consisted of a single-cycle sinusoid lasting 20ms. Time is always referenced 

to first stimulus onset (0 s corresponds to the start of P.  In a trial, P1 and P2 were delivered 

consecutively to the glabrous skin of one fingertip, separated by a fixed inter-stimulus 

delay period of 2 s (from 1 to 3s in Fig. 1A). Each stimulus could be one of two possible 

patterns: a pattern of grouped pulses (upper trace of Fig. 1A; we will call it “G”) or a pattern 

of extended pulses (lower trace of Fig. 1A, which will be “E”). Thus, in total there were 

four possible P1-P2 combinations, that we called classes: G-G (class 1, c1), G-E (class 2, 

c2), E-G (class 3, c3) and E-E (class 4, c4). These were presented in pseudo-random order 

to the monkeys across trials. The monkeys were asked to report whether P2 = P1 (match: 

combinations E-E and G-G) or P2 ≠ P1 (non-match: combinations E-G and G-E) after a 

fixed delay period of 2 s (from 4s to 6 s in Fig. 1A) between the end of P2 and the 

mechanical probe up from the skin (probe up event, “pu” in Fig. 1A). The “pu” was the go 

signal that triggered the animal's release of the key (“ku” in Fig. 1A). The monkey indicated 

their decision by pressing one of two push buttons with the left hand (“pb” in Fig. 1A, 



 
 

3 
 

lateral push button for P2 = P1, medial push button for P2≠P1). Because the two stimulus 

patterns had equal mean frequency over their full duration (1 s), the decision had to be 

based on comparison of their temporal structure. The animals were rewarded for correct 

decisions with a drop of liquid. 

 

Light Control Task (LCT) 

During this task, events proceeded exactly as described above and in Fig. 1A, except that 

when the probe touched the skin, one of the two push buttons was illuminated, indicating 

the correct choice (Fig. 5A). The light was turned off when the probe lifted off from the 

skin, triggering the hand/arm movement. The monkey was rewarded for pressing the 

previously illuminated button. Thus, stimuli and arm movements were identical to those in 

the active task but were cued by visual stimuli. The same mean stimulus frequency (5 Hz) 

used in the TPDT was delivered to the fingertip in the LCT.  

 

Task Design and Performance 

The TPDT is not a simple variation of the vibrotactile frequency discrimination task 

(VFDT, [2]). Some cognitive demands and the basic structure of the tasks are similar: both 

require attention to two separate vibrotactile stimuli (TPDT: P1, P2; VFDT: f1, f2), 

working memory and a comparison to reach the decision report. Nevertheless, the TPDT 

requires a very different transformation of the stimuli. Since they only differ by their 

temporal structure, any computation must be restricted to the internal structure to identify, 

categorize and discriminate the stimulus patterns (1). Additionally, the comparison process 

is significantly different between the two tasks. Whereas the VFDT can be solved by 

computing a difference between the parametric representation of the stimulus frequencies 

to indicate whether f1 > f2 or f1 <f 2, the TPDT offers no equivalent solution (in any trial 

P1 and P2 always have the same mean frequency). The TDPT demands a match (P2 = P1) 

vs. non-match decision (P2 ≠ P1). Thus, the comparison employs categorical 

representations of the stimulus patterns. 
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We quantified the average performance and its standard deviation across DPC recording 

sessions (85.8%). Even though each animal was trained between two and three years, this 

task was difficult enough not to allow 100% performance; this reflects the very high 

cognitive demands of the TPDT. To provide some context, the average training period to 

achieve similar performance levels for the VFDT was about six to eight months (2); for the 

vibrotactile detection task (3), the average time was two months. After training in the 

TPDT, the monkeys saturated their average performance around 85%; the performance 

was statistically the same for each class (1). Notably, repetition of the task during recording 

sessions did not improve performance. However, the performance for the LCT was 

consistently 100%; this reflects that this guided task was not cognitively demanding, which 

was part of the intended design. As a final observation, the animals were first trained in the 

LCT, and then gradually introduced to the TPDT. During the recording sessions in DPC 

(Fig. 1B), animals switched between performing the TPDT and the LCT. 

 

Recordings 

Neuronal recordings were obtained with an array of seven independent movable 

microelectrodes (2-3 MΩ; [2]) inserted into the DPC (Fig. 1B), contralateral (left 

hemisphere) or ipsilateral (right hemisphere) to the stimulated hand. We collected neuronal 

data in blocks of trials using different mean frequencies (1), but here for the analysis 

described below we will focus on the neuronal responses with the stimulus set illustrated 

in Fig. 1A (5 Hz); usually 20 trials per stimulus pair (c1; c2; c3; c4) per sesion. We remark 

that the recorded neuronal activity using block of trials (sets) with other mean frequencies 

(3, 6, 7, 10 and 15Hz) was collected after using both 5 Hz (n=1574) and light control sets 

(n=462). Hence, the number of neurons recorded under different mean frequencies were 

much fewer (n~200, [1]). Additionally, even fewer neurons were measured using at least 

three different mean frequency sets (n~50). Therefore, we restricted our temporal analysis 

to the neuron’s responses recorded with the 5Hz stimulus set. 

 Recordings sites changed from session to session and the locations of the penetrations 

were used to construct surface maps of all the penetrations in DPC. This was done by 
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marking the edges of the small chamber (7 mm in diameter) placed above DPC. Recording 

of DPC neurons was done in the same manner in the TPDT and LCT. 

 

Datasets 

We recorded 1574 DPC neurons using the TPDT stimulus set with 5 Hz mean frequency. 

Additionally, we have a dataset of n=462 neurons that were tested in both the LCT and in 

TPDT using the 5Hz mean frequency set. These neurons were used to compare temporal 

and coding signals between the cognitive demanding TPDT and the non-demanding LCT.  

For each neuron of the datasets (n=1574 and n=462), we calculated a time-dependent firing 

rate per trial using a 200 ms sliding window displaced every 50 ms, beginning 1 s before 

stimulus pattern P1 until the end of the trial (1.5 s after the push button press). It is 

important to keep in mind that each dataset is defined by four dimensions: N, number of 

neurons; C, stimulus conditions (classes, always 4); T, time (from -1 to 7.5s, always 170 

bins); K, number of hit trials (for each class). Furthermore, we constructed a similar dataset 

with error trials for the 5 Hz TPDT stimulus set. Each recorded neuron had on average 2.5 

error trials for a given class. A remarkable characteristic of this task design is the low 

number of stimulus condition (four classes), which were equally demanding for the subject. 

This design allowed us to have, on average, 17.5 hit trials (and 2.5 error trials) per stimulus 

class for each studied neuron. 

 

Population Analysis 

Single DPC neurons displayed a large repertoire of neuronal responses associated with one 

or several components of the TPDT (Fig. S1). Here, we focus our analysis in the temporal 

neuronal population signals. For each neuron, we averaged per class the time-dependent 

firing rate of hit trials (c1, c2, c3 or c4). Using the peri-stimulus time histogram (PSTH) of 

each neuron, we constructed pseudo-simultaneous population responses by combining 

neural data mostly recorded separately. For each time and class, the population response is 

defined by an N-dimensional vector in which each component represents the firing rate 

from a different neuron. This means that including all the recorded neurons (n=1574), we 
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obtained a 1574-dimensional firing rate vector that depended on the time and class 

(�̅�ሺ𝑡, 𝑐ሻ). The population firing rates averaged over all hit trials (�̅�ሺ𝑡ሻ) was an N-

dimensional vector that measures the mean response for each neuron (𝑟ሺ𝑡ሻሻ as a function 

of time. For the LCT, the control condition, the population response was a 462-dimensional 

firing rate vector. 

In the next equations, we employed the following notation: �̅�ሺ𝑡ሻ is the firing rate average 

over all hit trials at each time bin (joining the four classes, c1-c4), �̅�ሺ𝑡, 𝑐ሻ is the firing rate 

average per class (grouping trials according to each of the four classes), �̅�ሺ𝑡, 𝑃1ሻ is the 

firing rate average per P1 stimuli (splitting trials according to P1-identity), �̅�ሺ𝑡, 𝑃2ሻ is the 

firing rate average per P2 stimuli (separating trials according to P2-identity) and �̅�ሺ𝑡, 𝐷𝑒𝑐ሻ 

is the firing rate average per decision (dividing trials according to decision). To further 

explain this measure, the 𝑖 component, 𝑟ሺ𝑡ሻ, represents the firing rate average of neuron 𝑖 

at time 𝑡, across all trials. Similarly, 𝑟ሺ𝑡, 𝐷𝑒𝑐ሻ represent the firing rate average of neuron 

𝑖 at time 𝑡 across trials with the same decision outcome (P2=P1 or P2≠P1). 

 

Instantaneous Coding Variances across the Population 

At each time point, the population instantaneous coding variance (VarCOD, Figs. 1C and 

4B, blue trace) was computed as the quadratic square sum of the firing rate fluctuations 

among classes and neurons: 

𝑉𝑎𝑟ைሺ𝑡ሻ ൌ ଵ

ே

ଵ

ସ
∑ ∑ ሺ𝑟ሺ𝑡, 𝑐ሻ െ 𝑟ሺ𝑡ሻሻଶସ

ୀଵ
ே
ୀଵ              (Eq. S1) 

This metric, normalized per neuron, measures the population's variation of firing rate 

between classes at each time bin. With this definition, variation will be due to any class-

related change in the population activity and also due to any residual noise.  

To evaluate the influence of each kind of coding, we extended this metric to calculate the 

instantaneous variance associated to each specific task parameter. At each time bin, the 

population instantaneous P1 variance (VarP1, Figs. 1C and 5B, cyan trace) was computed 

as the quadratic square sum of the firing rate fluctuations among P1 identity and neurons: 

𝑉𝑎𝑟ଵሺ𝑡ሻ ൌ ଵ

ே

ଵ

ଶ
∑ ∑ ሺ𝑟ሺ𝑡, 𝑃1ሻ െ 𝑟ሺ𝑡ሻሻଶଶ

ଵୀଵ
ே
ୀଵ             (Eq. S2) 
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Analogously, the population instantaneous P2 variance (VarP2, Figs. 1C and 5B, light green 

trace) measures the firing rate fluctuations among P2 identity and neurons: 

𝑉𝑎𝑟ଶሺ𝑡ሻ ൌ ଵ

ே

ଵ

ଶ
∑ ∑ ሺ𝑟ሺ𝑡, 𝑃2ሻ െ 𝑟ሺ𝑡ሻሻଶଶ

ଶୀଵ
ே
ୀଵ               (Eq. S3) 

The population instantaneous decision variance (VarDec, Figs. 1C and 5B, black trace) 

measures the firing rate fluctuations among decision identity and neurons: 

𝑉𝑎𝑟ሺ𝑡ሻ ൌ ଵ

ே

ଵ

ଶ
∑ ∑ ሺ𝑟ሺ𝑡, 𝐷𝑒𝑐ሻ െ 𝑟ሺ𝑡ሻሻଶଶ

ாୀଵ
ே
ୀଵ       (Eq. S4) 

The value of VarCod during the period immediately before P1 onset represented the inherent 

residual noise in the firing rate estimates (~2[sp/s]); to be interpreted as a degree of 

population coding, VarCod should be higher than this resting state variance (basal variance). 

The same reasoning applies to the other specific variances.  

 

Instantaneous Temporal Variances across the Population 

At each time point, the population instantaneous temporal variance (𝑉𝑎𝑟 , Fig. 1D, Fig. 

5C and Fig. 8A) with respect to the mean firing rate, was computed as the quadratic square 

sum between the mean firing rate for each time bin (𝑟ሺ𝑡ሻ) and the mean firing rate across 

the whole trial 𝑟 (from -1s to 7.5s) among neurons: 

𝑉𝑎𝑟 ሺ𝑡ሻ ൌ ଵ

ே
∑ ൫𝑟ሺ𝑡ሻ െ 𝑟൯

ଶே
ୀଵ                    (Eq. S5) 

Additionally, the population instantaneous temporal fluctuation with respect to their basal 

response (𝐹𝑙𝑢𝑐், Figs. S2A and S7B, green trace) was computed as the quadratic 

square sum between the mean firing rate for each time bin (𝑟ሺ𝑡ሻ) and the mean basal firing 

rate 𝑟௦
  (from -1s to 0s) among neurons: 

𝐹𝑙𝑢𝑐்ሺ𝑡ሻ ൌ ଵ

ே
∑ ൫𝑟ሺ𝑡ሻ െ 𝑟௦

 ൯
ଶே

ୀଵ                      (Eq. S6) 

𝐹𝑙𝑢𝑐் quantifies at each time point the temporal difference between the mean firing 

response and the basal activity, averaged across DPC neurons.  

Except for the analysis shown in Fig. S2 and S7, in the remaining figures we computed the 

temporal variance of each neuron with respect to their mean firing rate (Eq. S5, VarTemp). 
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Analogous results were found using ri or 𝑟௦
  as reference (compare Fig. 1 with Fig. S2 

and Figs. 7 and 8 with Fig. S7). 

 

Single Neuron Variances  

The single neuron coding variance (𝑆𝑁𝑉𝑎𝑟ௗ
 ) was calculated for each neuron i as the 

quadratic square sum over time of its firing rate fluctuations among classes: 

𝑆𝑁𝑉𝑎𝑟ௗ
 ൌ ଵ

்
∑ ∑ ሺ𝑟ሺ𝑡, 𝑐ሻ െ 𝑟ሺ𝑡ሻሻଶସ

ୀଵ
்
௧ୀ                        (Eq. S7) 

For each individual neuron, 𝑆𝑁𝑉𝑎𝑟ௗ
  combines variance over classes and time bins. 

Additionally, we calculate the single neuron temporal fluctuation with respect to its mean 

firing rate (𝑆𝑁𝑉𝑎𝑟 
 ). This value computes for each neuron i the quadratic square sum 

over time between the mean firing rate for each time bin (𝑟ሺ𝑡ሻ) and the mean firing rate 

across the trial ri (from -1s to 7.5s): 

𝑆𝑁𝑉𝑎𝑟 
 ൌ ଵ

்
∑ ሺ𝑟ሺ𝑡ሻ െ 𝑟ሻଶ்

௧ୀ                                (Eq. S8) 

𝑆𝑁𝑉𝑎𝑟 
  computes the temporal variance integrated over the 170-time bins from -1s to 

7.5s. In Fig. S2 and S7 we calculated the single neuron temporal variance (𝑆𝑁𝐹𝑙𝑢𝑐்
 ), 

with respect to the mean basal firing rate 𝑟௦
  (from -1s to 0s): 

𝑆𝑁𝐹𝑙𝑢𝑐்
 ൌ ଵ

்
∑ ሺ𝑟ሺ𝑡ሻ െ 𝑟௦

 ሻଶ்
௧ୀ                     (Eq. S9) 

Note the difference between these three metrics and those presented in the previous section. 

Instantaneous population variances average over neurons for each time bin; the metrics 

here (single neuron coding or temporal variances) average over time bins for each neuron. 

 

Latency Variances 

For each neuron, we calculated two different latency variances (Fig. 2): a latency of 

temporal variance (LatTemp) and a latency of coding variance (LatCod). They correspond to 

the time at which the stimulus-driven temporal or coding variance (during P1, from 0s to 

1s) becomes statistically different with respect to its basal values. Individual trials variance 
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distributions were generated at each time point using a time window of 200 ms sliding 

steps of 1 ms during P1 and were compared against the variance distributions obtained 

during the basal period (200 ms before P1 onset) using the receiver operating characteristic 

(ROC; [4]). The first-time window of at least 5 consecutive bins at which the area under 

the ROC curve (AUROC value) was significantly different from 0.5 (permutation test, p < 

0.05) was considered as the latency variance. Furthermore, the time at which the temporal 

latency variance departs from its basal values coincides with the response latency (1). In 

addition, the coding latency variance is in concordance with the emergence of significant 

coding in individual neurons (1). 

 

Principal Component Analysis (PCA)  

The main aim of PCA is to find a new coordinate system in which the data can be 

represented in a more succinct and compact manner. In other words, the idea is to define a 

low-dimensional subspace that captures most of the variance of the high-dimensional 

neural space. A noteworthy feature of PCA analysis is its connection to Hebbian synaptic 

learning, which has been explored by other researchers (5, 6). Here, we provide an 

abbreviated technical description. To characterize how the population activity covaries 

across classes as function of time, we performed PCA (Figs. S4 and S6) over classes (c1, 

c2, c3 or c4) where we combined variance over classes and time (from -1s to 7.5s). PCA 

yields a new coordinate system for the N-dimensional data, in which the first coordinate 

accounts for as much of the variance of the neural population. The second coordinate 

accounts for as much of the remaining variance, and so on; however, each subsequent axis 

is restricted to be orthogonal to all previous axes. To obtain the new coordinate system, the 

covariance matrix of the N-dimensional data must be diagonalized. The firing rate 

covariance matrix summarizes the second-order statistics of the neuronal data. It was 

obtained averaging over time bins, t, and classes, c: 

 𝐶 ൌ ଵ

்ିଵ
∑ ∑ ሺ𝑟ሺ𝑡, 𝑐ሻ െ 𝑟ሺ𝑡ሻሻሺ𝑟ሺ𝑡, 𝑐ሻ െ 𝑟ሺ𝑡ሻሻସ

ୀଵ
௧ୀ.ହ
௧ୀିଵ              (Eq. S10) 

where T denotes the number of time bins and C is the number of classes (4 in our task), 

ri(t,c) denotes the trial-averaged firing rate of the neuron i, under class c, at time t, and 
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𝑟ሺ𝑡ሻ is the firing rate average of neuron i across classes at time t. In Fig. S4, PCs were 

calculated for TPDT (n=1574); in Fig. S6, PCs were calculated for TPDT and LCT, with 

the subpopulation of neurons recorded in both (n=462). The diagonalization of the 

covariance matrix, C=UDUT, yields a new coordinate system given by the columns of the 

matrix U. We refer to the columns of U as the principal components (PCs). On the other 

hand, D is a diagonal matrix of positive values. The diagonal elements of D give the 

amounts of population activity variance captured by the corresponding PCs. We then 

ordered the PCs depending on this amount of variance captured. The projection of the N-

dimensional data onto the kth PC is given by: 

𝑃𝐶ሺ𝑡, 𝑐ሻ ൌ ∑ 𝑈
 . ሺ𝑟ሺ𝑡, 𝑐ሻ െ 𝑟ሺ𝑡ሻሻே

ୀଵ                     (Eq. S11) 

where 𝑈
  is the i element of the k PC (Uk). Therefore, the PCs are linear readouts of the 

population activity; in other words, they are linear combinations of the firing rates of the 

individual neurons. Thus, the contribution of each neuron to a given PCk is given by the ith 

element of Uk. These PCs can be thought of as a low-dimensional description of the 

population activity in this coding subspace.  

 

Temporal Demixed Principal Component Analysis (dPCA)  

The algorithmic details and mathematical justification for this method were outlined 

previously (7, 8). The method has a supervised and unsupervised part. In brief, dPCA 

decomposes the neural activity by different chosen task variables to compute marginalized 

covariance matrices (this is the supervised part, similar to choosing the variables to fit a 

linear model). Afterwards, it carries out a principal component-like analysis over those 

matrices (this is completely unsupervised). In this work, we only marginalized the 

population activity (𝑋ത) with respect to time (𝑋௧തതത). To calculate the marginalization average, 

we use the N-dimensional population activity:  

𝑋௧തതത ൌ �̅�ሺ𝑡ሻ െ �̅�                                               (Eq. S12) 

�̅� is a vector with the mean firing rate over the whole task (from -1s to 7.5s), �̅�ሺ𝑡ሻ is the 

firing rate average over all hit trials at each time bin (joining the four classes, c1-c4). Thus, 

the i component, ri(t), represents the firing rate average of neuron i at time t, across all 
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trials. Once time marginalization is performed, dPCA finds separate decoder and encoder 

matrices for 𝑋௧തതത, by minimizing with reduced-ranked regression the term: 

𝐿௧ ൌ ‖𝑋௧തതത െ F௧D௧𝑋ത‖ଶ                          (Eq. S13) 

where 𝑋ത is the centered whole population data matrix (i.e. the average activity of each 

neuron is 0). The solution of this problem can be obtained analytically in terms of singular 

value decompositions (7). Each temporal component of Dt can be ordered by the amount 

of explained variance. The most prominent decoding axis is called the 1st demixed 

temporal principal component (1st temp-dPC). To avoid dPCA overfitting, we introduced 

a regularization term and performed cross-validation to choose its value. 

To obtain Figs. 4A and 7D, we projected the N-dimensional data for a given class (�̅�ሺ𝑡, 𝑐ሻ) 

onto the five most prominent temporal decoding axes (k). These projections were given by: 

  𝑑𝑃𝐶
௧ሺ𝑡, 𝑐ሻ ൌ ∑ 𝐷,௧

 ሺ𝑟ሺ𝑡, 𝑐ሻ െ 𝑟ሺ𝑡ሻሻே
ୀଵ          (Eq. S14) 

where 𝑑𝑃𝐶,௧
  is the i-th component of the k-th most relevant temporal demixed axis. In 

Figs. 4A and 7D we used dPCA to identify the population temporal signals that explain 

most variance of the whole task time-marginalized covariance matrix (𝑋௧തതത).  

 

Trial Variability in Temporal Components 

To further study the single trial variability on each temporal decoding axis we separated 

the data into training and testing sets (7). On each iteration, we randomly chose one trial 

from each neuron for each class, defining a single trial population activity 𝑋௧௦௧. The 

remaining trials were averaged to form a training population activity 𝑋௧పതതതതതതതത. We 

constructed training matrices with temporal marginalized population activities (Fig. 8C). 

Note that 𝑋௧௦௧ and 𝑋௧పതതതതതതതത have the same dimensions (Nx(TxC), C=4 classes).  

Next, we calculate temporal dPCA on the corresponding 𝑋௧పതതതതതതതത to obtain the different 

decoding axes. We then projected 𝑋௧௦௧ onto these temporal axes. We repeated this 

procedure 1000 times. With all the iterations we obtained the mean value (wider line) and 

standard deviation (SD, colored shading) at each time bin for each class. On Fig. 8C, we 

displayed the mean and SD of all the projections.  
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Error Trial Variability in Temporal Components 

We extended the analysis of single hit trial variability to error trials. We remark that each 

recorded neuron had on average 2.5 error trials for a given class. In this case, we used the 

temporal axes calculated with dPCA using the hit trials' whole activity (𝑋ത). Analogously, 

we now randomly chose one error trial per iteration for each neuron in each class. This 

built a single error trial population activity 𝑋. In contrast to the previous procedure 

(for hits), 𝑋௧పതതതതതതതത  is always just 𝑋ത. The rest was done in the same manner. On Fig. 8D, we 

displayed the mean and SD of all the error trial projections.  

In Fig. 8A-B and S7A-B we show VarTemp (Eq. S5) and 𝑆𝑁𝑉𝑎𝑟 
  (Eq. S8) for errors; 

the procedure to calculate them is same as described before. In this panels, we used the 

n=547 neurons with at least 3 errors in each class (12 errors in total).   

 

Explained Variance, Noise, and Dimensionality 

The fraction of explained variance for each temporal decoder (𝐹௧, Eq. S13, [7]) is: 

𝑅ଶ ൌ
‖ത‖మି‖തିிത‖మ

‖ത‖మ                                              (Eq. S15) 

We used this equation to compute the fraction of variance explained by each temporal dPC. 

Along the text, we refer to this fraction as the explained total variance (ETV); these are the 

percentages reported in Figs. 4, 7 and S6. It should be noted that 𝑋ത includes the activity of 

the whole task.  

Further, there are two other matrices on which we perform variance calculations: 𝑋ෘ and 

𝑋௦. They are related to each other, and to the 𝑋ത described previously, by:  

𝑋ෘ ൌ 𝑋ത  𝑋௦                                            (Eq. S16) 

The full neural activity matrix 𝑋ෘ contains K=14 hit trials per class and neuron (n=1574). 

The value of K was selected to be the minimum number of trials present for all neurons 

across all classes. Thus, dimensions of 𝑋ෘ are Nx(TxCxK). Note that 𝑋ത in Eq. S16, is the 

same as described above but with their NxCxT unique values repeated by the number of 

trials K (7). For neurons that were recorded on the same session, we attempted to select the 
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same K trials for all of them. However, we obtained similar results when we did a 

completely random selection of the K trials.  

In order to estimate the total variance (PSTH + noise variance) explained by each temporal 

decoding axis (ESNV: explained signal + noise variance), it was necessary to replace 𝑋ത by 

𝑋ෘ in Eq. S15. These values are plotted for each component (dPCs or PCs) in Fig. 4B 

(TPDT), 7B (LCT) and S6 (TPDT and LCT). The cumulative fraction of total variance 

explained by the first q components was calculated using the same formula.   

The percentage of variance related to trial variability could be estimated as: ሺ‖𝑋௦‖ଶ/ 

ฮ𝑋ෘฮ
ଶ

ሻ. The red dotted lines in Figs. 4B and 7B were obtained as its complement: (1 െ

‖𝑋௦‖ଶ/ ฮ𝑋ෘฮ
ଶ
); they represent an estimate of the task related variance. Additionally, we 

estimated the percentage of noise variance explained by each decoding axis using a 

variation of Eq. S15:  

𝑅௦
ଶ ൌ

‖ೞ‖మି‖ೞିிೞ‖మ

‖ෘ‖మ                             (Eq. S17) 

This noise projection variance used the same decoder components as the signal + noise 

calculation. The value of 𝑅௦
ଶ  for the projections of the first decoding PCs are shown in 

Figs. 3B (TPDT, grey line), 6B (LCT) and S6 (TPDT and LCT). Using this measure, we 

estimated the percentage of noise variance explained by each decoder. In the TPDT, 12 

components are at least 50% above this value. On the other hand, in the LCT, only 6 

components are above. This gave us an estimate of the dimensions of the temporal and 

coding dynamics (9). 

Given the experimental protocol, these noise variance calculations are the best approach to 

estimate its real value. However, the variability that we attributed to "noise" could have 

been associated with other processes, which are not the scope of this study (10). 
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Fig. S6. Principal Components calculated from the DPC neuronal population during the TPDT and 

LCT. Related to Fig. 7. In this figure we restricted our analysis to the population of n=462 neurons that were 

recorded both in the temporal pattern discrimination task (TPDT) and light control task (LCT). Principal 

component analysis (PCA) was applied to the covariance matrices obtained for the whole duration (from -1 to 

7.5s), for both tasks (TPDT and LCT). The population activity, sorted by class identity, was projected onto each 

principal axis. Components were ordered according to their explained total variance [ETV, Eq. S15]. (A) TPDT 

(n=462). First five principal components (PCs): 1st PC, ETV 22.8%; 2nd PC, ETV 14.3%; 3rd PC, ETV 10.9%; 

4th PC, ETV 12.1%; 5th PC, ETV 9.8. (B) LCT (n=462). First five principal components (PCs): 1st PC, ETV 

30.7%; 2nd PC, ETV 19.6%; 3rd PC, ETV 10.8%; 4th PC, ETV 6.5%; 5th PC, ETV 4.3%. (C-D) Show signal + 

noise variance (ESNV) for principal components during TPDT (golden) or LCT (orange) using the same group 
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The number of significant principal components above noise was 11 during TPDT and 6 during LCT. The 

dimension of the network's dynamic increased during task demand. 
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