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Supporting Information Text

SI Materials and Methods
Strains, fruiting protocols and nucleic acid extraction. For fruiting Coprinopsis cinerea strain #326

(A43mut B43mut pab 1-1) an agar disk (5 mm in diameter) was placed on the center of YMG/T agar
media (4 g yeast extract, 10 g malt extract, 4 g glucose, 10 g agar media with 100 mg tryptophane
added after cooling(1)) at 37 °C for five days in the dark. When the colonies reached the 1-2 mm
distance from the edge of Petri dishes they were placed into 25 °C for one week in a 12 hrs light/12 hrs
dark cycle for fruiting. Fruiting body stages were defined following standard conventions(2). Exact
alignment of developmental stages across species was impossible, but we made an attempt to define
functionally putatively homogeneous stages to follow the general notation of mushroom
developmental stages as closely as possible in each species. Nevertheless, the array of sample types
differed from species to species, due to the morphological diversity of fruiting bodies or limitations in
dissectability. In Coprinopsis, vegetative mycelium, hyphal knot, stage 1 and stage 2 primordia, young
fruiting body cap, gills and stipe, fruiting body cap and stipe were harvested for RNA extraction. The
hyphal knot stage was defined as an up to 0.5 mm diameter condensed hyphal aggregate. Stage 1
primordia were defined as up to 2 mm tall shaft like structures, while stage 2 primordia up to 4 mm
tall fruiting body initials with visible differentiation of cap and stipe initials. Young fruiting bodies
were up to 15 mm tall with a slightly elongated stipe and immature basidia. Fruiting bodies had fully
extended stipes and caps, being in an early autolytic phase.

Before fruiting, Schizophyllum commune the H4-8a and H4-8b monokaryons(3) were grown
on MM medium according to Dons et. al.(4). After dikaryon formation an agar plug (5 mm) was
placed on the center of fresh MM medium at 30 °C for five days in the dark, then it was placed at 25
°C for 10 days in a 12/12 hrs light/dark cycle (cool white F18w/840), upside down. Dikaryotic
vegetative mycelium, stage 1 and 2 primordia, young fruiting body and fruiting body stages were
harvested for RNA-seq. We defined stage 1 primordia as up to 2 mm fruiting body initials, stage 2
primordia as 3-4 mm tall initials with an apical pit on the top, the young fruiting body as a 5-7 mm tall
cup-like structure with visible pseudolamellae inside, while fully expanded ones were considered
fruiting body.

Vegetative mycelia of Lentinus tigrinus RLP-9953-sp were maintained on MEA (20 g malt
extract, 0.5 g yeast extract, 15 g agar for 1L). For fruiting a mycelial plug was placed (5 mm diameter)
on modified sawdust-rice bran medium(5) (1 part wheat bran and 2 parts aspen sawdust wetted to 65%
moisture for 100 ml in a 250 ml beaker). The culture was incubated for 21 days at 30 °C in the dark,
then placed in a moist growth chamber at 25 °C in a 12/12 hour light/dark cycle. Vegetative mycelia,
stage 1 primordia, stage 2 primordia cap and stipe, young fruiting body cap and stipe and fruiting body
cap and stipe tissues were harvested for RNA-Seq. Stage 1 primordium was defined as a 5-20 mm tall
white stalk-structure without any differentiation of a cap initial, stage 2 primordium was defined as a
15 — 25 mm tall stalk-like structure with a brown apical pigmentation (cap initial), young fruiting body
had and up to 5 mm wide brown cap initial with just barely visible gills on the bottom, growing on a
30-40 mm tall stipe, fruiting body was 50-70 mm tall, with fully flattened (but not funnel-shaped) cap.

Phanerochaete chrysosporium RP-78 was fruited on YMPG media (10 g glucose, 10 g malt
extract, 2 g peptone, 2 g yeast extract, 1 g asparagine, 2 g KH,PO,4, 1 g MgSO,4 x 7 H,0, 20 g agar for
1L with 1 mg thiamine added after cooling) covered with cellophane for 7 days at 37 °C in the dark,
then placed in a moist growth chamber at 25 °C in an area with dimmed ambient light conditions,
following the recommendations of Jill Gaskell (US Forest Products Laboratory, Washington, D. C.,
USA). Vegetative mycelium, young fruiting body and fruiting body stages were harvested for RNA
extraction. Young fruiting body stage was defined as fruiting body initials that forms a compact mat
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well-delimited from the surrounding vegetative mycelium, while the fruiting bodies were harvested
just after they started releasing spores (visible on the lids of Petri dishes).

Rickenella mellea SZMC22713 was cultured on Fries Agar(6) for harvesting vegetative
mycelium for RNA and DNA extraction. DNA for genome sequencing was extracted using the Blood
& Cell Culture DNA Maxi Kit (Qiagen) from 300 mg finely ground mycelium powder according to
the manufacturer’s instructions. The internal transcribed spacer region was PCR amplified and
sequenced to verify strain identity. For RNA-Seq, fruiting bodies were collected in November 2016
from Kistelek, Hungary (approx. coordinates: 46.546309, 19.954507). Stage 1 primordium was
defined as an approximately 1 mm tall, shaft-like, pear-shaped structure, without any visible cap
initial, stage 2 primordium was described as a 2-3 mm tall structure with a small cap initial, young
fruiting body was defined by the 5-15 mm tall structure with a 1-2 mm wide cap, and the fruiting body
was characterized by a fully expanded cap on the top of a 20-32 mm tall stipe, from the same colony.

Data for Armillaria ostoyae C18/19 were taken from our previous study(7), with the following
stages defined: vegetative mycelium, stage 1 primordium, stage 2 primordium cap and stipe, young
fruiting body cap and stipe, and fruiting body cap, stipe and gills.

For RNA extraction all samples were immediately placed on liquid nitrogen after harvesting
and stored at -80 °C until use. Frozen tissues were weighed and 10-20 mg of C. cinerea, S. commune,
P. chrysosporium and R. mellea and 50-75 mg of L. tigrinus were transferred to a pre-chilled mortar
and ground to a fine powder using liquid nitrogen. We extracted RNA of C. cinerea, S. commune, P.
chrysosporium and R. mellea using the Quick-RNA™ Miniprep (Zymo Research), or the RNeasy
Midi Kit (QIAGEN) for L. tigrinus. Both of the kits were used according to the manufacturer’s
instructions.

De novo draft genome for Rickenella mellea. The genome and transcriptome of Rickenella
mellea were sequenced using Illumina platform. The genomes were sequenced as pairs of [llumina
standard and Nextera long mate-pair (LMP) libraries. For the Illumina Regular Fragment library, 100
ng of DNA was sheared to 300 bp using the Covaris LE220 and size selected using SPRI beads
(Beckman Coulter). The fragments were treated with end-repair, A-tailing, and ligation of Illumina
compatible adapters (IDT, Inc) using the KAPA-Illumina library creation kit (KAPA biosystems).

For the Illumina Regular Long-mate Pair library (LMP), 5 ug of DNA was sheared using the
Covaris g-TUBE(TM) and gel size selected for 4 kb. The sheared DNA was treated with end repair
and ligated with biotinylated adapters containing /oxP. The adapter ligated DNA fragments were
circularized via recombination by a Cre excision reaction (NEB). The circularized DNA templates
were then randomly sheared using the Covaris LE220 (Covaris). The sheared fragments were treated
with end repair and A-tailing using the KAPA-Illumina library creation kit (KAPA biosystems)
followed by immobilization of mate pair fragments on streptavidin beads (Invitrogen). Illumina
compatible adapters (IDT, Inc) were ligated to the mate pair fragments and 8 cycles of PCR was used
to enrich for the final library (KAPA Biosystems).

Stranded ¢cDNA libraries were generated using the Illumina Truseq Stranded RNA LT Kkit.
mRNA was purified from 1 pg of total RNA using magnetic beads containing poly-T oligos. mRNA
was fragmented and reversed transcribed using random hexamers and SSII (Invitrogen) followed by
second strand synthesis. The fragmented cDNA was treated with end-pair, A-tailing, adapter ligation,
and 8 cycles of PCR.

The prepared libraries were quantified using KAPA Biosystem's next-generation sequencing
library qPCR kit and run on a Roche LightCycler 480 real-time PCR instrument. The quantified
libraries were then multiplexed with other libraries, and the pool of libraries was then prepared for
sequencing on the Illumina HiSeq sequencing platform utilizing a TruSeq paired-end cluster kit, v4,



and Illumina's cBot instrument to generate a clustered flow cell for sequencing. Sequencing of the
flow cell was performed on the Illumina HiSeq2500 sequencer using HiSeq TruSeq SBS sequencing
kits, v4, following a 2x150 indexed run recipe (2x100bp for LMP).

Genomic reads from both libraries were QC filtered for artifact/process contamination and
assembled together with AllPathsLG v. R49403(8). Illumina reads of stranded RNA-seq data were
used as input for de novo assembly of RNA contigs, assembled into consensus sequences using
Rnnotator (v. 3.4)(9). Both genomes were annotated using the JGI Annotation Pipeline and made
available via the JGI fungal portal MycoCosm(10). Genome assemblies and annotation were also
deposited at DDBJ/EMBL/GenBank under the accession QMKR00000000.

RNA-Seq. Whole transcriptome sequencing was performed using the TrueSeq RNA Library
Preparation Kit v2 (Illumina) according to the manufacturer’s instructions. Briefly, RNA quality and
quantity measurements were performed using RNA ScreenTape and Reagents on TapeStation (all
from Agilent) and Qubit (ThermoFisher); only high quality (RIN >8.0) total RNA samples were
processed. Next, RNA was DNasel (ThermoFisher) treated and the mRNA was purified and
fragmented. First strand cDNA synthesis was performed using SuperScript II (ThermoFisher)
followed by second strand cDNA synthesis, end repair, 3’-end adenylation, adapter ligation and PCR
amplification. All of the purification steps were performed using AmPureXP Beads (Backman
Coulter). Final libraries were quality checked using D1000 ScreenTape and Reagents on TapeStation
(all from Agilent). Concentration of each library was determined using either the QPCR Quantification
Kit for Illumina (Agilent) or the KAPA Library Quantification Kit for [llumina (KAPA Biosystems).
Sequencing was performed on Illumina instruments using the HiSeq SBS Kit v4 250 cycles kit
(Illumina) or the NextSeq 500/550 High Output Kit v2 300 cycles (Illumina) generating >20 million
clusters for each sample.

Bioinformatic analyses of RNA-Seq data. RNA-Seq analyses were carried out as reported
earlier(7). Paired-end Illumina (HiSeq, NextSeq) reads were quality trimmed using the CLC Genomics
Workbench tool version 9.5.2 (CLC Bio/Qiagen) removing ambiguous nucleotides as well as any low
quality read end parts. Quality cutoff value (error probability) was set to 0.05, corresponding to a
Phred score of 13. Trimmed reads containing at least 40 bases were mapped using the RNA-Seq
Analysis 2.1 package in CLC requiring at least 80% sequence identity over at least 80% of the read
lengths; strand specificity was omitted. List of reference sequences is provided as Supplementary
Table 1. Reads with less than 30 equally scoring mapping positions were mapped to all possible
locations while reads with more than 30 potential mapping positions were considered as uninformative
repeat reads and were removed from the analysis.

“Total gene read” RNA-Seq count data was imported from CLC into R version 3.0.2. Genes
were filtered based on their expression levels keeping only those features that were detected by at least
five mapped reads in at least 25% of the samples included in the study. Subsequently,
“calcNormFactors” from “edgeR” version 3.4.2(11) was used to perform data scaling based on the
“trimmed mean of M-values” (TMM) method(12). Log transformation was carried out by the “voom”
function of the “limma” package version 3.18.13(13). Linear modeling, empirical Bayes moderation as
well as the calculation of differentially expressed genes were carried out using “limma”. Genes
showing at least four-fold gene expression change with an FDR value below 0.05 were considered as
significant. Multi-dimensional scaling (“plotMDS” function in edgeR) was applied to visually
summarize gene expression profiles revealing similarities between samples. In addition, unsupervised
cluster analysis with Euclidean distance calculation and complete-linkage clustering was carried out
on the normalized data using “heatmap.2” function from R package “gplots”.



Identification of developmentally regulated genes. We considered genes with a Fragments Per
Kilobase Million (FPKM) value >1 to have a non-zero expression. Because differentially expressed
genes can only be defined in pairwise comparisons of samples and thus didn’t suit our developmental
series data, we opted to use the concept of developmentally regulated gene. These were defined as any
gene showing an over four-fold change in expression between any two developmental stages or tissue
types and a maximum expression level of FPKM > 4 in at least one developmental stage. Comparisons
between tissue types were only performed within the respective developmental stage. We
distinguished developmentally regulated genes that showed over four-fold upregulation at fruiting
body initiation (‘FB-init’ genes) and those that show over four-fold expression dynamics (up- or
downregulation) across the range of fruiting body stages (‘FB development genes’, i.e. vegetative
mycelium excluded). Note that this strategy excludes genes showing highest expression in vegetative
mycelium and no dynamics later on, to remove genes with a significant downregulation at the onset of
fruiting body development (e.g. those involved in nutrient acquisition by the mycelium).

Comparative genomic approaches. To obtain characteristic InterPro domain signatures of
Agaricomycetes, we assembled a dataset comprising genomes of 201 species; ranging from unicellular
yeasts to filamentous and complex multicellular fungi. InterProScan version 5.24-63.0 was used to
perform IPR searches. The 201 species were categorized into two major groups; mushroom-forming
fungi (113 species) and all other fungi (88 species, 1 Cryptomycota, 2 Microsporidia, 2
Neocallimastigomycota, 3 Chytridiomycota, 2 Blastocladiomycota, 14 Zygomycota, 1
Glomeromycota, 38 Ascomycota, 20 non-fruiting body forming Basidiomycota). The enrichment of
IPR domains was tested using Fisher's exact test and corrected for multiple testing by the Benjamini-
Hochberg method in R (R core team 2016). P<0.01 was considered significant. Significantly
overrepresented IPR domains were characterized by Gene Ontology Terms using IPR2GO.

An all-versus-all protein BLAST was performed for the six species (4. ostoyae, C. cinerea, S.
commune, L. tigrinus, P. chrysosporium, R. mellea) and for the 201-species dataset using mpiBLAST
(v.1.6.0, e-value < 1e-5, alignment length/query length > 0.5, alignment length/hit length > 0.5) with
default parameters. Clustering was done using Markov Cluster with an inflation parameter of 2.0(14).

Reconstruction of alternative splicing patterns. We reconstructed patterns of alternative
splicing using the RNA-Seq data for all six species. To this end, we used region-restricted
probabilistic modelling (RRPM)(15) to discover alternative transcripts, as described by Gehrmann et
al.. Briefly, the genome was split at gene boundaries into fragments, then all RNA-Seq reads were
aligned to these fragments with STAR v2.5.3a(16), in two rounds. The first round of read alignment
was run to produce a novel splice junction database, which was used to improve mapping in the
second round. Using the BAM file from this alignment, Cufflinks v2.2.1(17) was run in RABT mode
to predict novel transcripts. To restore the context, these sets of transcripts were projected back onto
the original annotation. The resulting annotation file was filtered to remove predicted transcripts with
no detectable expression (FPKM = 0) or did not have reads supporting its splice junctions. We
performed read alignment using STAR again with the same two round method and the new, corrected
annotation file and used the Cufflinks suite to estimate the expression level for each transcript. We
then aligned reads of each RNA-Seq replicate separately to the genome with updated gene annotation.
This resulted in an expression profile for each alternatively spliced transcript, in every developmental
stage. We subsequently identified developmentally regulated transcripts using the same functions as
described above for genes. For splicing event discovery, we used the ASpli(18) R package where we
used the most significant transcript (the most abundant transcript through the developmental stages) as
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the reference for event discovery. Custom scripts were used to extract stage and tissue-type specificity
and distribution of spliced genes and splicing events.

Phylostratigraphic analysis. To examine the evolutionary origin of developmentally regulated
genes in each species, a phylostatigraphic analysis was performed (19). First, we assembled a database
containing genomes covering the evolutionary route from the most recent common ancestor of cellular
organisms to the respective species, by complementing the database of Drost et al.(20). Fungal,
microsporidia and plant genomes were removed from this database and substituted by 416 fungal
genomes (all published), including 382 belonging to the Dikarya and 116 to the Agaricomycetes. In
addition, 6 microsporidia, 59 plant and 6 Opisthokonta(21) genomes were added, resulting in a
database of 4,483 genomes. The database was divided into age categories (‘phylostrata’) based on the
tree available at Mycocosm(10) and the eukaryotic tree published by Torruella et al.(21). The oldest
phylostratum consisted of bacteria and archaea. Whole proteomes of Coprinopsis cinerea, Armillaria
ostoyae, Schizophyllum commune, Lentinus tigrinus, Phanerochaete chrysosporium and Rickenella
mellea were blasted against this database using mpiblast 1.6.0(22) with default settings. Blast hits
were filtered with an E-value cut-off of 1x10 and a query coverage cut-off of 80%. After filtering, the
age of each gene was defined as the node of the tree representing the last common ancestor of the
species sharing homologs of the gene, at the specified blast cutoff.

To infer what Agaricomycete-specific genes are preferentially developmentally regulated, we
analyzed the enrichment of annotation terms among developmentally regulated genes specific to
Agaricomycetes compared to developmentally regulated genes whose origin predates the
Agaricomycetes. To this end, we divided the phylostratigraphy profiles into two groups,
corresponding to genes that originated before and those that originated after the origin of mushroom-
forming fungi (Phylostratum 18). We tested for significant enrichment of IPR domains (evalue < 1e-5)
in developmentally regulated genes that originated within the Agaricomycetes, relative to the other
group of more ancient developmentally regulated genes using Fisher’s exact test (P < 0.05).

Analyses of gene duplication/loss histories. The evolutionary history of 292 clusters containing
developmentally regulated genes from 5 or 6 species was analyzed using the COMPARE pipeline
(23). As a control we chose 290 clusters containing the same 5 or 6 species but developmentally
regulated genes from none or one species, to compare the dynamics of shared developmentally
regulated genes to genome-wide gene family dynamics. Predicted protein sequences of 74 fungal
genomes representing the major clades of the kingdom fungi were clustered using MCL as described
above. Multiple sequence alignments were obtained by using MAFFT 7.407 (mafft-l-ins-i) (24). A
species tree was inferred based on 230 clusters of single copy orthologues present in at least half of the
species using the PTHREADS version of RAXML 8.1.2 (25) under the PROTGAMMAWAG model.
We performed ML bootstrapping with 100 bootstrap replicates using the rapid hill climbing algorithm
and a partitioned model. For developmentally regulated families, ambiguously aligned sites were
trimmed using TrimAl 1.2 (26) and gene trees were estimated in RAXML 8.1.2 (25) under the
PROTGAMMAWAG model of protein evolution with 100 ML bootstrap as above. The gene tree —
species tree reconciliation analyses were conducted using Notung 2.9 (27) with the edge weight
threshold set to 70%. COMPARE was run as described previously(28) and duplications/losses mapped
onto the species tree.

CAZyme annotation. Genes encoding putative carbohydrate-active enzymes were annotated using
the CAZy pipeline. BLAST and Hmmer searches were conducted against sequence libraries and
HMM



profiles in the CAZy database(29) (http://www.cazy.org). Positive hits were validated manually and
assigned a family and subfamily classification across Glycoside Hydrolase (GH), Carbohydrate
Esterase (CE), Glycoside Transferase (GT), Polysaccharide Lyase (PL), Carbohydrate-Binding
Module (CBM) and Auxiliary redox enzyme (AA) classes of the CAZy system(30). Activities were
determined by BLAST searches against biochemically characterized subsets of the CAZy database.

Coexpression analysis. Developmentally regulated genes in each species were clustered into co-
expression modules based on their expression dynamics by using the clustering method implemented
in Short Time-series Expression Miner (STEM v. 1.3.11)(31,32). Default parameters were used,
except minimum absolute expression change, which was set to 4. Functional annotations of modules
were obtained by GO enrichment analyses in TopGO (see below). For a higher-level grouping of co-
expression modules, we defined six categories corresponding to early and late expressed genes, cap,
stipe and gill specific genes and a mixed category. Coexpression modules were placed in one of these
categories if more than half of the module’s members had the same tissue- or stage-specific expression
peaks. Modules without stage or tissue specificity were grouped in the mixed category. The early
expressed category included coexpression modules with expression peaks in H, P1 or P2 stages, while
late module category consisted of modules with young fruiting body and fruiting body stage specific
expression peaks. We functionally annotated the modules and higher categories using InterPro Scan
v5.24-63.0.

To visualize the kinase expression network across various kinase groups and developmental
stages, a co-expression network was generated using Cytoscape v3.6.1 based on pairwise Pearson
correlation coefficients for kinase expression patterns in Coprinopsis cinerea. Pairwise Pearson
correlations coefficients for each kinase gene pair were calculated and for the appropriate visualization
a 0.825 cut-off was applied for network construction.

Functional annotations, GO and InterPro enrichment. Gene Ontology (GO) enrichment
analyses were carried out for developmentally regulated genes. For this, we annotated genes with GO
terms based on their InterPro domain contents. Analyses were performed using Fisher's exact test with
threshold P<0.05 in the R package topGO. The parameter algorithm weighted01 was chosen.
Heatmaps were created using the heatmap.2 function of the R package ‘gplots’. Unsupervised cluster
analysis with Pearson's distance calculation and averaged-linkage clustering was carried out on the
FPKM values, and heatmaps was visualised using z-score normalization on the rows via the heatmap.2
function.

Prediction of glycosylphosphatidylinositol anchored proteins (GPI-Ap) for the six species was
performed using the portable version of Pred-GPI(33). From the proteins with a predicted GPI-anchor,
we excluded ones which had no extracellular signal sequence, as assessed by SignalP version 4.1(34).
Prediction of Small Secreted Proteins (SSP) for the six species was performed using a modified
version of the bioinformatic pipeline of Pellegrin et al.(35). Proteins shorter than 300 amino acids
were subjected to signal peptide prediction in SignalP (version 4.1) with the option “eukaryotic”.
Extracellular localisation of these proteins was checked with WoLFPsort version 0.2(36) using the
option “fungi”. Proteins containing transmembrane helix not overlapping with the signal peptide were
also excluded. Prediction of transmembrane helices was performed with TMHMM (version 2.0)(37).
Finally, proteins containing a KDEL motif (Lys-Asp-Glu-Leu) in the C-terminal region (prosite
accession “PS00014”) responsible for retention in the endoplasmic reticulum (ER) lumen, were
identified using PS-SCAN (http://www.hpa-bioinfotools.org.uk/cgi-bin/ps_scan/ps _scanCGlI.pl ) and

excluded.



We identified transcription factors based on the presence of InterPro domains with sequence-
specific DNA-binding activity retrieved from literature data(38, 39) and manual curation of the
Interpro-database. Annotated genes were then filtered based on their domain architecture in order to
discard genes encoding DNA-binding proteins with functions other than transcription regulation (such
as DNA-repair, DNA-replication, translation, meiosis).

We extracted the putative kinase genes from the 6 species based on their InterPro domain
composition, and manually curated the classical kinases by excluding domains which correspond to
metabolism related kinases and other non-classical protein kinases. The set of proteins having kinase
related domains (Dataset S12) were subjected to BLAST searches (BLAST 2.7.1+, E-value 0.001)
against the kinome of Coprinopsis cinerea(40) downloaded from Kinbase (www.kinase.com). The
best hits for the six species were classified into eukaryotic protein kinase (¢PK) and atypical protein
kinases (aPK) and their families and subfamilies as described in the hierarchical kinase classification
system(41).

Supplementary Note 1.

Co-expression clustering results. To address the question whether co-expressed genes responsible
for developmental reprogramming during fruiting body formation can be identified, we performed
STEM analysis. The number of co-expression modules was in strong correlation with the
morphological complexity of fruiting bodies and the number of stages sampled: the more stages and
tissue types a species had, the more co-expression modules were found. We categorized co-expression
modules into 6 higher-ranked developmental categories, which we denote early, late, cap, stipe, gills
and mixed modules. All or subsets of these were distinguished in each species, depending on the
complexity of their fruiting bodies.

We distinguished 9 developmental stages and tissue types in C. cinerea and A. ostoyae both of
which produce the most complex fruiting bodies among the six species. Coprinopsis cinerea had the
largest number of developmentally regulated genes (7,475), which grouped into 40 co-expression
modules and were classified into 6 modules (Table S1), while in A. ostoyae we found 4,417
developmentally regulated genes that grouped into 38 co-expression profiles and were categorized into
6 modules. In L. tigrinus we identified 8 developmental stages and tissue types and 1,862
developmentally regulated genes, which clustered into 30 co-expression modules and were classified
into 5 modules. We determined 6 developmental stages and 6,427 developmentally regulated genes in
R. mellea that grouped into 29 co-expression modules and were classified into 5 modules. In S.
commune, which produces a simplified fruiting body without stipe, we distinguished only 5
developmental stages and found 2,000 developmentally regulated genes grouped into 27 co-expression
modules and classified into 3 modules. Finally, in the corticioid P. chrysosporium we identified 3
developmental stages with altogether 753 developmentally regulated genes that were clustered into 11
co-expression profiles and categorized into 3 modules.

To determine the biological relevance of the co-expression profiles of each developmental
module we performed GO enrichment analysis. Interestingly, expression maxima in the early module
were not restricted to one stage but were spread out across multiple early stages. The GO terms
enriched in the co-expression profiles of the early module included terms like constituent of cell wall,
lipid metabolism, transmembrane transport, oxidation-reduction process, iron ion binding and
transcription factor activity (Database S7). The enrichment of the functional terms oxidation-reduction
processes and cell wall remodeling is consistent with the observations of the reduction of chitin
contents in the hyphal knots compared to the vegetative hyphae(2,42). The importance of transcription
factor activity during the early steps of fruiting body formation has been proven in C. cinerea (43)
and S. commune (3).



The late developmental module includes genes with expression peaks in young fruiting body
and fruiting body which were enriched in GO terms related to lipid metabolism, signaling,
transmembrane transport, oxidation-reduction process, translation, tubulin, protease, isocitrate lyase,
malate dehydrogenase, glutamate dehydrogenase and glutamate N-acetyltransferase (Database S13).
These activities suggest an active role of the glyoxalate cycle, gluconeogenesis, and tricarboxylic acid
pathways during late fruiting body development (2,44). Additionally, we found an overrepresentation
of enzymes involved in the mobilization of glycogen reserves and nitrogen metabolism in Coprinopsis
and Armillaria, both reported to have a role during cap expansion and stipe elongation (45). The
enrichment of proteases has been reported from late stages in fruiting bodies of C. cinerea and
Agaricus bisporus and the distantly related Cordyceps sinensis (2,46,47).

During the development of different tissue types, we found tissue-specific patterns of the
overrepresented GO terms. The cap module includes genes with expression peaks both at pileal flesh
and in the mixed tissue of pileal flesh and hymenium, from those species where these could not be
separated. This category was enriched in replication, structural constituent of ribosome, amino acid
transport, oxidation-reduction process, carbohydrate metabolism, cyanate metabolism, and glycogen
phosphorylation related terms (Database S13). Some of these may be connected to the cellular uptake
of water during cap expansion (2,45). The enrichment of cyanate metabolism related terms during cap
development may be related to arginine biosynthesis that assist in a number of catalytic steps. The role
of cyanate metabolism has been reported in the fruiting body formation and maturation of Sordaria
macrospor (48,49), but has not been described in connection with the fruiting body development of
Agaricomycetes so far. The gill module contains genes with expression peaks at the hymenium of
Coprinopsis and Armillaria. This category was enriched in GO terms related to translation and
ribosome biogenesis, which is the indicator of active protein synthesis (Database S13) that is
consistent with the fact that this tissue hosts basidium and spore formation. The stipe module included
genes with stipe specific expression peaks. This category was enriched in terms related to
transmembrane transport, oxidation-reduction, constituent of cell wall, amino acid transmembrane
transport, carbohydrate metabolism, and iron ion binding. The mixed module included genes without
tissue or stage preference, therefore, this category was enriched in GO terms related to diverse
processes (Database S13).

Shared functional signal in developmental modules across species. To gain a better insight into the
biological processes underlying the development of different tissue types and developmental stages,
we performed functional annotation by InterPro domains on the developmental modules in a species-
wise manner and filtered out the domains shared by the majority of species. Each of the six species
had early, late and mixed module categories. In these cases, the domain lists of 5- and 6-ways
intersections were included in the analysis. Caps and stipes were distinguished in four species, while
gills in two species. Therefore, the domain lists of 4-, 3-way intersection of cap modules and 2-ways
intersections of stipe modules were included in the analysis.

In the early modules we found several domains shared by 5 or 6 species, such as dynamin, P-
type ATPase, DEAD/DEAH box helicase, Pumilio RNA-binding, cytochrome P450, histone domains,
cupin, and hydrophobin (Database S8) which are known to play a role in active membrane transport
(50, 51), RNA metabolis (52), post-transcriptional regulation of gene expression (53), regulation of
transcription, and hypothetically in cell adhesion (54).

In the late module category, aquaporin and thaumatin domains were shared by 5 or 6 species
(Database S8). Aquaporins might be responsible for the transcellular water transport between adjacent
cells that satisfy the increased demand of cellular water permeability of the developing fruiting body
(55). Thaumatins have diverse functions, which are either related to their antifungal activity through



binding or hydrolyzing B-1,3-glucans of fungal cell walls, or play a role during maturation and
senescence through some still unknown endogenous processes (56,57).

In the cap development module, cytochrome p450, glycoside hydrolase families, F-box,
leucine-rich repeat, lectin, Zn(2)-C6 fungal-type DNA-binding, Homeobox, helicase and cyclin
domains were shared by 3 or 4 species, which may play a role during carbohydrate metabolism, cell-
cycle regulation, regulation of transcription, targeted protein degradation and oxidation-reduction
processes (Database S14). These are consistent with the observations that the activity of glucosidase,
protease and chitinase increase during the cap expansion in C. cinerea (2,45).

The cytochrome P450, F-box, leucine-rich repeat, BTB/POZ, protein kinase, major facilitator
superfamily, glycoside hydrolases, carboxylesterase, glucose-methanol-cholin oxidoreductase, amino
acid transporters, Armadillo-type fold, Homeobox and Zn(2)-C6 fungal-type DNA-binding protein
domains were found in the stipe modules of 3 or 4 species (Database S14). These domains can be
found in proteins playing a role in amino acid and carbohydrate transport, carbohydrate metabolism,
regulation of transcription, targeted protein degradation, chromatin remodeling and signal
transduction. Previous studies reported the role of chitin synthesis and cell wall remodeling during
stipe formation, and the accumulation of glycogen at the base of stipe initial during early
developmental steps, and the accumulation of trehalose and polyols as osmolytes during stipe
elongation (2,45,58,59).

The gill module contains translation elongation factor EFTu-like, DNA mismatch repair
protein MutS, transcription factor GTP binding and CBF/NF-Y/archaeal histone domains, ribosomal
proteins (L7Ae, L30e, S12e, S26e, L12), protein argonaute, amino acid/polyamine transporter,
glycoside hydrolase family 16 and 47, sugar transporter, hydrophobin, F-box, leucine-rich repeat,
RING-type zinc finger and ubiquitin domains that are reported to be involved in processes such as
DNA repair and replication, translation, ribosome biogenesis and targeted protein degradation.

The identification of modules of genes uniquely co-expressed in different stages and tissue-
types gives a better insight into the fruiting body development of mushrooms. Based on these, we
suggest that cell wall remodeling, carbohydrate and amino acid transport, targeted protein degradation
and protein kinases may play a role in the development of the fruiting body. In addition to these, the
post-transcriptional regulation of gene expression (Pumilio family proteins) can play an important role
in the early steps of fruiting body formation as well. In the future, co-expression clustering and species
and development module based assessments may shed the light on the molecular processes underlying
fungal development in detail.
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Table S1. Number of developmentally regulated genes, developmental stages, co-expression

modules and the higher-ranked developmental categories of the six species.

Coprinopsis
Armillaria
Lentinus
Rickenella
Schizophyllum
Phanerochaete

Dev.reg.

Genes

7475
4417
1862
6427
2000

753

Dev. Stages

W L N X O O

Coexp.
Modules

40
38
30
29
27
11

Dev.
Categories

W W L L &N &
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Table S2. Conserved developmentally regulated (CAZyme) families and associated modules

Family Activity Putative FCW Conservati ~ Reports of role in Expansion in
role/substrate on development Agaricomycete
]
AAl 1 Laccase crosslinking 5 (P.chr.) Several reports 7.2x10°%°
AA3 1 Cellobiose dehydrogenase chitin 5 (L.tig) Temp&Eggert 1990 9.6x106
AA3 2/3 Glucose oxidase, aryl alcohol oxidase H,0,; generation 6 This study <107
AAS5 172 Glyoxal oxidase, galactose oxidase H,0, generation 6 This study 2.2x107
AA9 Lytic polysaccharide monooxygenase chitin 6 This study 5.6x10
CBM1 Cellulose/chitin binding chitin 5 (S.com.) This study n.s.
CBM12 Chitin binding chitin 5 (P.chr.) Sakamoto et al 2017 n.s.
CBM50 Chitin binding chitin 5(S.com.)  This study 1.7x10!
CE4 Chitooligosaccharide deacetylase Chitin / chitosan 6 This study 6.4x10™""!
CES8 Pectin methylesterase unknown 5 (C.cin.) This study n.s.
GH1 4 B-glucosidase glucan 6 This study n.s.
GH3 5 Exo0-B-1,3-glucanase glucan 5 (A.ost.) This study n.s.
GHS5 7 Endo-B-1,4-mannanase mannose 6 This study 4.9x107
GHS5 15 Endo-B-1,6-glucanase glucan 5 (S.com.) This study 2.7x10%
GHS5 49, Endo-B-1,6-glucanase, exo-p-1,3-glucanase  glucan 6 Sakamoto et al 2017 1.3x10°
GH5_9
GHo6 Exo0-B-1,4-glucanase, cellobiohydrolase glucan 5 (S.com.) This study n.s.
GH12 1 Endo-B-1,4-glucanase glucan 5 (A.ost.) This study 2.6x10°
GH16 Endo-B-1,3-1,4-glucanase glucan 6 Sakamoto et al 2017 1.2x107%¢
GH16 2 Endo-B-1,3-glucanase, endo-p-1,3-1,4- glucan 5 (L.tig) This study 1.2x107%¢
glucanase
GH17 Endo-B-1,3-glucanosyltransferase glucan 6 This study n.s.
GH18 Chitinase chitin 5 (L.tig) This study 3.6x107°
GHI18 5 Chitinase chitin 6 This study 3.6x107°
GH30 3 Endo-B-1,6-glucosidase glucan 6 Sakamoto et al 2017 2.7x10™
GH71 Endo-B-1,3-glucanase glucan 5 (P.chr.) This study 1.6x107
GH79 1 B-glucuronidase unknown 4 (P.chr. This study 1.7x10™2
S.com.)
GH92 -1,3-mannosidase mannose 5 (S.com.) This study 2.1x107'8
GH128 Endo-B-1,3-glucanase glucan 5 (P.chr.) Sakamoto et al 2017, n.s.
2011
GH152 B-1,3-glucanase, thaumatin glucan 6 This study 2.0x107™"®
PL5 Alginate lyase 2 6 This study 9.17x10°%
PL14-like  Alginate lyase-like 2 6 This study 8.5x10"
Expansins Cellulose/chitin loosening chitin 6 Sipos et al 2017 1.5x10*
Kre9/Knhl  Glucan remodeling glucan 6 Szeto et al 2007 1.5x10%

Only families that are developmentally regulated in 5 or 6 species are shown (except GH79).

Conservation of the developmental regulation is given as the number of species in which a given
family is developmentally regulated followed by the name(s) of species in which ther ewere no

developmentally regulated members. Gene family expansion in the Agaricomycetes was tested by a
Fisher exact test, and considered significant at P < 0.05. For the Kre9/Knh1 family, P-value refers to

the overrepresentation of the corresponding InterPro domain.
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Fig. S1. Circular bar plot of RNA-Seq read mapping statistics for six species of Agaricomycetes. Bars
are divided into properly mapped reads (yellow) and unmapped fragments (purple). Numbers are
given in million read pairs. Abbreviations as follows: ‘FB_S’ fruiting body stipe; ‘FB_L’ fruiting body
lamellae; ‘FB_C’ fruiting body cap; ‘YFB_S’ fruiting body stipe; ‘YFB_L’ fruiting body lamellae;
‘YFB_C’ fruiting body cap; ‘P2’ stage 2 primordium; ‘P1’ stage 1 primordium; ‘H’ secondary hyphal
knot; ‘VM’ vegetative mycelium.
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Fig. S2. Graphical representation of the number of significantly differentially expressed genes (DEG)
among developmental stages and tissue types of six species of Agaricomycetes. Abbreviations: ‘VM’
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Fig. S4. Heatmap of developmentally regulated genes of Coprinopsis cinerea, with co-expression
modules marked by expression profile logos. The number within the logo indicated the genes
belonging to the module, the number next to it is the module ID. Only modules containing >50 genes
are shown. Blocks of smaller modules are indicated by black line next to the heatmap. On the right, a
co-expression network based on pairwise Pearson correlation coefficients of developmental gene
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Fig. S5. Heatmap of developmentally regulated genes of Armillaria ostoyae, with co-expression
modules marked by expression profile logos. The number within the logo indicated the genes

belonging to the module, the number next to it is the module ID. Only modules containing >50 genes
are shown. Blocks of smaller modules are indicated by black line next to the heatmap. On the right, a

co-expression network based on pairwise Pearson correlation coefficients of developmental gene
expression is presented. Genes are colored by the genes’ expression maxima. Abbreviations as
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Fig. S7. Heatmap of developmentally regulated genes of Lentinus tigrinus, with co-expression
modules marked by expression profile logos. The number within the logo indicated the genes
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Schizophyllum commune
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Fig. S8. Heatmap of developmentally regulated genes of Schizophyllum commune, with co-expression
modules marked by expression profile logos. The number within the logo indicated the genes
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Phanerochaete chrysosporium
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Fig. S9. Heatmap of developmentally regulated genes of Phanerochaete chrysosporium, with co-
expression modules marked by expression profile logos. The number within the logo indicated the

genes belonging to the module, the number next to it is the module ID. Only modules containing >50

genes are shown. Blocks of smaller modules are indicated by black line next to the heatmap.

Abbreviations as follows: ‘“VM’ vegetative mycelium; ‘YFB’ young fruiting body, ‘FB’ fruiting body.
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Fig. S13. Developmental regulation of primary carbohydrate metabolism in Coprinopsis cinerea (top)
and the heatmap of primary carbohydrate metabolism related protein-encoding gene exprassion in the
six species (bottom). Red and green font represent up- and downregulated genes, respectively.
Abbreviations: ‘VM’ vegetative mycelium; ‘H’ secondary hyphal knot; ‘P1’ stage 1 primordium; ‘P2’
stage 2 primordium; ‘YFB’ young fruiting body, ‘FB’ fruiting body; ¢ CL’ cap and lamellae; © S’
stipe; ¢ L’ lamellae.
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Fig. S14. Heatmaps of developmentally regulated GPI-anchored protein-encoding gene expression in
six species of Agaricomycetes. Abbreviations: ‘“VM’ vegetative mycelium; ‘H’ secondary hyphal knot;
‘P1’ stage 1 primordium; ‘P2’ stage 2 primordium; ‘YFB’ young fruiting body, ‘FB’ fruiting body;

¢ CL’ cap and lamellae; ¢ S’ stipe; < L’ lamellae.
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Fig. S15. Heatmaps of developmentally regulated SSP-encoding gene expression in six species of

Lentinus tigrinus
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Agaricomycetes. Abbreviations: ‘VM’ vegetative mycelium; ‘H’ secondary hyphal knot; ‘P1’ stage 1
primordium; ‘P2’ stage 2 primordium; ‘YFB’ young fruiting body, ‘FB’ fruiting body; * CL’ cap and

lamellae; © S’ stipe; ¢ L’ lamellae.
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Fig. S16. Functional annotation of all (green bars), developmentally regulated (yellow bars) and
conserved (in 5 or 6 species) developmentally regulated (blue bars) small secreted proteins across six
species of Agaricomycetes.
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Fig. S17. Heatmaps of developmentally regulated F-box protein encoding gene expression in six
species of Agaricomycetes. Abbreviations: ‘“VM’ vegetative mycelium; ‘H’ secondary hyphal knot;
‘P1’ stage 1 primordium; ‘P2’ stage 2 primordium; ‘YFB’ young fruiting body, ‘FB’ fruiting body;
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Fig. S18. Heatmaps of developmentally regulated RING-type Zinc finger domain containing gene
expression in six species of Agaricomycetes. Abbreviations: ‘VM’ vegetative mycelium; ‘H’
secondary hyphal knot; ‘P1° stage 1 primordium; ‘P2’ stage 2 primordium; ‘YFB’ young fruiting
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Fig. S19. Heatmaps of developmentally regulated BTB-POZ domain containing gene expression in six

species of Agaricomycetes. Abbreviations: ‘“VM’ vegetative mycelium; ‘H’ secondary hyphal knot;
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Fig. S20. (a) The context of gene duplications of F-box proteins in the genomes of six analyzed

species. (b) Genomic context of F-box gene proliferation in six species of Agaricomycetes. Solid lines
within the circus plot and indicated protein IDs mark F-box genes and developmentally regulated F-

box genes, respectively.
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Fig. S21. Heatmaps of developmentally regulated transcription factor gene expression in six species of
Agaricomycetes. Transcription factor family assignment is indicated in the protein IDs. Abbreviations:
‘VM’ vegetative mycelium; ‘H’ secondary hyphal knot; ‘P1’ stage 1 primordium; ‘P2’ stage 2
primordium; ‘YFB’ young fruiting body, ‘FB’ fruiting body; * CL’ cap and lamellae; ‘S’ stipe; * L’
lamellae.
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Fig. S22. Heatmaps of developmentally regulated transcription factor gene expression in six species of
Agaricomycetes. Transcription factor family assignment is indicated in the protein IDs. Abbreviations:
‘VM’ vegetative mycelium; ‘P1° stage 1 primordium; ‘P2’ stage 2 primordium; ‘YFB’ young fruiting

body, ‘FB’ fruiting body;

¢ CL’ cap and lamellae;

¢ S’ stipe;

¢ L’ lamellae.
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Fig. S23. Heatmaps of developmentally regulated kinases in six species of Agaricomycetes. Protein
ID-s are colored by classification. Abbreviations: ‘VM’ vegetative mycelium; ‘H’ secondary hyphal
knot; ‘P1’ stage 1 primordium; ‘P2’ stage 2 primordium; ‘YFB’ young fruiting body, ‘FB’ fruiting
body; ¢ CL’ cap and lamellae; ©_S’ stipe; ‘L’ lamellae.
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Fig. S24. Heatmaps of developmentally regulated kinases in six species of Agaricomycetes. Protein
ID-s are colored by classification. Abbreviations: ‘“VM’ vegetative mycelium; ‘P1° stage 1
primordium; ‘P2’ stage 2 primordium; ‘YFB’ young fruiting body, ‘FB’ fruiting body; * CL’ cap and
lamellae; © S’ stipe; ¢ L’ lamellae.
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Armillaria ostoyae

Rickenella mellea

Lentinus tigrinus

Schizophyllum commune

Fig S25. Kinase co-expression networks based on pairwise Pearson correlation coefficients of gene
expression. Genes are colored by the gene expression maxima (left) or kinase classification (right).
The developmentally regulated genes are colored, and non-developmentally regulated ones are shown
by transparent rectangles.
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Fig. S26. Conservation and expression patterns of putative defense-related genes in six
Agaricomycetes. In silico reconstructed tertiary structure of a developmentally regulated thaumatin-
like protein shows an acidic cleft formed by three amino acids (red) characteristic of antimicrobial
thaumatins.
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Fig. S27. Phylogenetic distribution and expression patterns of lectin-like families in six
Agaricomycetes. Left panel shows the gene repertoire split by classificiation, whereas the right panel
shows the composition of developmentally regulated lectin repertoires. Pie chart size proportional to
the number of genes.
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forming fungi. For each species, phylostratum 1 represents the oldest gene age category (shared by all
cellular organisms) while the rightmost phylostratum represents the youngest (representing species-
specific genes). Green bars show the number of developmentally regulated genes per phylostratum,

dashed lines show the percentage of developmentally regulated genes within each phylostratum.

Phylostrata 12 and 18 represent the emergence of Dikarya and Agaricomycetes respectively (marked
by asterisk).
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Fig. S29. Analysis of gene duplication/loss in 292 gene families containing developmentally regulated

genes of 5 or 6 species (left tree) and in 290 clusters containing no or only one developmentally

regulated genes (right tree). Inferred net changes to gene family size (blue circle: expansion, red
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circles: contraction) are shown for all nodes (except of terminals). The species names in green are the
fungi forming complex multicellular structures during the development.
Additional data table S1 (Dataset S1.xlsx)

RNA-Seq read mapping statistics for six species of Agaricomycetes.
Additional data table S2 (Dataset S2.xlsx)

Expression patterns of literature reported developmental genes of Coprinopsis. Regulation means
Developmentally Regulated (DR) or not (NDR) based on our dataset.

Additional data table S3 (Dataset S3.xlsx)

IPR Enrichment analysis

Additional data table S4 (Dataset S4.xlsx)

The list and fruiting body types of 201 fungal genomes

Additional data table S5 (Dataset S5.xlsx)

Developmentally regulated genes of six Agaricomycetes.

Additional data table S6 (Dataset S6.xlsx)

Gene Ontology (GO) terms enrichment for the developmentally regulated genes of the six species.
Additional data table S7 (Dataset S7.xlsx)

Co-expression profile-wise GO enrichment.

Additional data table S8 (Dataset S8.xlsx)

Phylostratygraphy based IPR enrichment for the six species.

Additional data table S9 (Dataset S9.xlsx)

Alternative splicing events of the six species.

Additional data table S10 (Dataset S10.xlsx)

Developmentally regulated genes containing clusters.

Additional data table S11 (Dataset S11.xlsx)

Functional annotation of the developmentally regulated genes containing clusters.
Additional data table S12 (Dataset S12.xlsx)

The kinomes of the six species
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