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Supplementary Information Text 
Participants: In total, we tested 393 healthy participants with normal or corrected-to-normal 
visual acuity. Sixty-five participants (19 males, 46 females; mean age: 21.5; age range: 18 – 38 
years) took part in Experiment 1 in a lab environment. Participants were assigned to different 
conditions randomly, resulting in 32 participants for the fully-informed condition and 33 for the 
inferred condition. Participants in Experiment 2, 3a and 3b were tested online through a website 
that we developed. For Experiment 2, two-hundred and three participants (74 males, 129 females, 
2 others; mean age: 21.5; age range: 18 – 37 years) were assigned to 3 different conditions 
randomly: 51 participants rated clips only in the fully-informed condition; 50 participants rated 
clips only in the character-only condition; 102 participants rated half of the video clips in the 
context-only condition and the other half of the videos in the blur-only condition (on average 51 
participants for each condition). For Experiment 3a and 3b, seventy-five participants were 
assigned to three conditions randomly (25 each for the fully-informed condition, the character-
only condition and the context-only condition).  

Stimuli: All 47 video clips used in our experiments were randomly gathered from online video-
sharing website (YouTube) based on the following criteria: 1) showing live action but not 
animation or monologue; 2) the emotions/affect of the characters should vary across time. These 
videos portrayed a wide range of social situations (e.g. roadway interactions, interviews, 
farewells, competition, weddings, etc). There was no data collected on the videos prior to 
selection. The sets of video clips used in different experiments do not overlap. In Experiment 1, 
we used 2,844 seconds of 13 video clips from various Hollywood movies that show two main 
characters interacting with each other had a resolution of 1920 x 1080 and frame rate of 29.97 
frames per second. Another 1,214 seconds of 12 video clips from various Hollywood movies 
were used in Experiment 2. These videos could show two or more than two main characters 
interacting. In Experiment 3a, we used a total 613 seconds of 9 video clips (8 from Hollywood 
movies and 1 from a documentary). They all show a single target character alone with no 
interpersonal interaction. In Experiment 3b, we used a total of 922 seconds of 13 video clips that 
are non-Hollywood movies, either from home videos or documentaries.  

Participants reported how familiar they were with each video clip by selecting a point on 
a 0-10 continuous scale. The video clips were relatively novel to our participants: the mean self-
report familiarity measure across all trials and all participants was quite low (mean: 1.4, SD: 1.4, 
Range: 0.15 – 5.9). Whether participants had seen the movie or not and how familiar they were 
with each video clip did not affect the amount of unique variance explained by context (p > 0.05 
by splitting the data into two groups by familiarity and testing the difference between groups 
using a permutation test).  

To mask out a chosen character, we used video editing software (Adobe Premiere Pro 
CC) to apply a Gaussian-blurred mask on the face and body of that character frame by frame. We 
feathered the mask edges to create a contrast modulated envelope, which seamlessly transitions 
the mask boundary into the video background. The mask was highly blurred so that every detail 
of the target character was completely invisible. In Experiment 1, all video clips depicted two 
characters interacting with each other and either of the two characters could be the target and 
therefore one or the other was masked out. For the videos in Experiment 2, 3a and 3b, one 
character was chosen as the target and masked out to create video clips for the context-only 
condition. These masks were then inverted to mask out all contextual background leaving only 
the target character visible to create video clips for the character-only condition.  
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In Experiment 1, the processed video clips were presented at full size on a 15-inch Macbook Pro 
monitor running Matlab and Psychtoolbox (1, 2). Participants sat in a darkened psychophysical 
experimental booth with a viewing distance of 40 cm. The monitor had a resolution of 1440 x 900 
and 60 Hz refresh rate. In Experiment 2, 3a and 3b, the processed video clips were presented 
within a custom website using an embedded YouTube player. Participants completed the 
experiment in a non-lab environment. All videos were preloaded prior to the trial to ensure 
smooth playback.   
Methods: Participants first viewed a printed version of the valence-arousal affect rating grid 
with valence and arousal dimensions depicted. Example words were shown at different locations 
on the grid, according to the ratings provided by Bradley and Lang (1999). Observers were 
instructed to familiarize themselves with the dimensions and example word locations before 
proceeding to the next step. Text indicating the direction of the valence and arousal dimensions 
were placed on the grid any time during the experiment. Participants were instructed to track and 
rate the affect of a visible or invisible target character and move a mouse pointer continuously in 
real-time to different locations inside the affect rating grid to represent the affect they thought the 
target character was experiencing. Although we used naturalistic videos, observers in our 
experiment setting were observing people interacting with others or with the environment. All 
participants completed at least one 2-min practice trial before starting the main experiments. The 
edited video clips were presented in a random order. Before starting a trial, an example frame 
from the video with the face and body of the target character was shown on screen and 
participants were told to track and rate the affect of the specified character but not any other 
character. Each trial lasted from 58 seconds to 178 seconds. At the end of each trial, participants 
were told the name and year of the movie from which the video clip was chosen, and were asked 
to report whether they had seen that movie before. They were also asked to report how familiar 
they were with the movie and the video clip itself by selecting a point on a 0-10 continuous scale, 
and how much they liked the video clip. During the experiment, we assessed whether subjects 
were non-responsive (potentially due to lapsing or other reasons) by calculating the longest 
duration that the participant kept the mouse pointer in any single location. If the duration was 
longer than 10 seconds, the participant was reminded to pay more attention in future trials. In all 
other trials, the participant was given positive feedback. Procedures for Experiment 2 were 
similar to those in Experiment 1, except that self-reported familiarity and likeness scores were 
collected using a 0-10 discrete likert scale instead of a continuous one. 

Data preprocessing. For all analyses, the continuous rating data were binned into intervals of 
100 ms (10 Hz). To ensure the quality of the continuous data, we calculated the longest duration 
each observer had fixed the mouse pointer in a single stationary location in every trial, and we 
excluded trials where that duration exceeded 2 standard deviations. This excluded trials where the 
mouse was physically stationary for greater than ~20 sec, and resulted in the removal of 6.8% of 
the data. The exclusion of trials in the analysis did not change the significance of the effects 
reported. We standardized ratings within each participant by subtracting the mean and dividing by 
the standard deviation of each participant’s ratings. 

Test-retest reliability of continuous ratings. To test whether our continuous rating method 
provides consistent and stable ratings from one test administration to the next one, we asked a 
separate group of 50 participants to rate the same clip twice. The second rating was 
approximately 1 hour after the first rating of the clip in the fully-informed condition in 
Experiment 2. The mean Fisher z transformed Pearson correlation coefficients between the initial 
ratings and the repeated ratings were 0.65 for valence (bootstrapped 95% CI: 0.62 - 0.67) and 
0.56 for arousal (bootstrapped 95% CI: 0.53 - 0.59). These second-time ratings were not used in 
any other analysis in this manuscript. These results confirm that our continuous rating method 
was robust across multiple administrations.  
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Split-half correlation. Besides single-subject Pearson correlation, we also used split-half 
correlation to assess the agreement between subjects rating the same video clip. In split-half 
correlation, inferred affect ratings provided by different subjects on each video clip were split into 
two halves, and the averages obtained from ratings by half of the participants were correlated 
with the averages obtained from ratings by the other half. Across Experiments 1 and 2, we found 
high between-subject agreement in the inferred affect ratings of the invisible character (see Fig. 
S2).  

Permutation test. Because our method used continuous affect ratings collected from viewing 
dynamic videos, there is inevitable temporal dependency in the ratings. To evaluate statistical 
significance, we chose not to use parametric tests (ANOVA and t-test) because they make certain 
assumptions about the data and its distribution, which would often not hold true for our 
continuous rating data. Furthermore, we opted not to use time series methods such as ARIMA to 
assess similarity of ratings between conditions because these techniques require stationarity of the 
data. Our data was not stationary as examined by Kwiatkowski–Phillips–Schmidt–Shin test of 
stationarity (3) and could not be transformed to be stationary. Given the aforementioned reasons, 
we decided to use non-parametric resampling and Monte Carlo permutation methods to generate 
null distributions of various statistics used in our study; for example, we shuffled the trial labels 
of whole continuous ratings while preserving the temporal structure in each continuous sequence 
of ratings. This permutation method preserves all of the temporal structure (dependency or non-
stationarity) inherent to continuous ratings but not any video clip-specific information.  

We used Monte Carlo permutation tests to evaluate the statistical significance of single-
subject correlations (between-subject agreement), split-half correlations (between-subject 
agreement), Pearson correlations between mean inferred ratings and mean fully-informed ratings 
(IAT accuracy), and partial correlations between mean inferred ratings and mean fully-informed 
ratings of the target character when controlling for mean fully-informed ratings of the partner 
character. The movie clips used in the present study were of various lengths, ranging from 35 
seconds to 3 minutes, which could cause problems when averaging or calculating statistics based 
on continuous ratings from different clips. To deal with this problem, we divided all continuous 
ratings into 30-seconds data chunks corresponding to different clip periods and calculated 
statistics for each data chunk separately in permutation tests.  

To examine the statistical significance of single-subject correlation, we first calculated 
the empirical single-subject correlation values by calculating the pairwise correlation coefficient 
between pairs of affect ratings from different subjects judging the same clip. These correlation 
values were then averaged across clip periods to obtain an empirical single-subject correlation 
value. The null distributions were generated by shuffling the video clip labels of continuous 
ratings within each participant and then recalculating the mean single-subject pairwise correlation 
coefficient across all pairs of affect ratings from different participants as described above. All 
averaged correlations were computed by first applying Fisher Z-transformation on all individual 
correlations, averaging the transformed values, and then transforming the mean back to Pearson’s 
r. Two-tailed p values were calculated by computing the proportion of permuted mean single-
subject Pearson correlation coefficients in the null distributions with an absolute value larger than 
or equal to the absolute value of the empirical mean single-subject Pearson correlation 
coefficient.  

To examine the statistical significance of split-half correlation, we first randomly split 
ratings by different participants for each clip period into two halves and then calculated 
correlation coefficients between averaged ratings of the two halves. This process was repeated 
1000 times for each clip period and the resulting 1000 split-half correlation coefficients were 
Fisher z transformed and averaged for each clip period. We then averaged all split-half 
correlation coefficients across clip periods to obtain an empirical split-half correlation value. The 
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null distributions were generated by shuffling the video clip labels of continuous ratings provided 
by each participant for each clip period and then recalculating mean split-half Pearson correlation 
coefficient across all clip periods as described above. The procedures of averaging across 
correlations and calculating p values are similar to those used in single-subject correlation 
described above.  

The Monte Carlo permutation and significance testing for Pearson correlation and partial 
correlation was similar to those used in single-subject correlation described earlier: we shuffled 
the clip labels of the mean ratings averaged across all participants for each clip. Therefore, the 
permuted Pearson correlations were calculated between the mean fully-informed ratings and the 
mean inferred ratings from random clips. The permuted partial correlations were calculated 
between the inferred ratings and the fully-informed ratings from random clips, while controlling 
for the fully-informed ratings of the partner character within the same clip as the inferred ratings. 

Linear regression analysis. In Experiment 2, 3a and 3b, we used linear regression models to 
estimate the proportion of unique variance explained only by the context. The full model was 
constructed by using both the character-only affect ratings and the context-only affect ratings to 
predict the fully-informed affect ratings of the visible target. A second character-based model was 
created by using only the character-only ratings to predict the fully-informed ratings of the target. 
The proportion of unique variance explained only by the context was calculated by subtracting 
the variance explained by the character-based model from the total amount of variance explained 
by the full model. 

To test whether a non-linear model fit our data better, we compared three regression 
models with increasing non-linearity and quantified how well the models fitted the data. Model 1 
is a linear model; Model 2 is Model 1 added with an interaction term between context-only and 
character-only variables. Model 3 is Model 2 added with 2-degree polynomial terms of context-
only and character-only variables. We quantified how well the models fit the data by calculating 
the adjusted R-squared, which control for the number of parameters (the degree of freedom in the 
model). Adding the interaction terms increased the mean adjusted R-squared from 92% (Model 1) 
to 93.4% (Model 2) and adding the polynomial terms increased it to 94.3% (Model 3). These are 
very modest improvements; adding non-linear terms did not significantly increase the goodness 
of fit (p > 0.5), and most of the variance has already been explained by a simple linear model.  
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Fig. S1.  (a) Distribution of raw fully-informed ratings across the valence-arousal space (data 
collapsed across Exp 1 and 2). Colors represent the log 10-transformed value of counts within 
each interval. Affective words have been placed at locations within this space, representing their 
approximate valence and arousal ratings from Bradley & Lang (1999). (b-e) Qualitative 
comparison between the distributions of the target characters’ affect and those of the 
corresponding partner characters in the same scene. When the target characters’ fully-informed 
affect ratings are within the range of the dashed rectangle, the distribution of the corresponding 
partner characters’ fully-informed affect ratings were not confined within a certain region or in a 
certain pattern. The affect of the partner character do not linearly or simply project onto the affect 
of the target character. They interact in a non-linear, complex way that might be explained in part 
by contextual information. That the target and partner characters did not always covary in affect 
helps explain why tracking the partner was not a good proxy for recognizing target character 
affect (Fig. 2). Ratings were binned into 0.02 intervals and the total number of data points was 
counted within each 0.02 interval. For visualization, the heatmaps were filtered by a 2-D 
Gaussian smoothing kernel with a standard deviation of 0.08.  
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Fig. S2. Between-subject agreement of inferred ratings (when characters were masked and 
invisible) evaluated by split-half correlation and intraclass correlation. (a&c) In split-half 
correlation, inferred affect ratings provided by different subjects on each video clip were split into 
two halves, and the averages obtained from ratings by half of the participants were correlated 
with the averages obtained from ratings by the other half. (b&d) Intraclass correlation is a 
common method to assess the conformity of quantitative measurements made by different 
observers. The total amount of variance in ratings can be divided into variance between subjects 
and variance between items (time points). Intraclass correlation evaluates between-subject 
agreement by measuring the proportion of total variance that is between items but not between 
subjects. Error bars represent bootstrapped 95% confidence interval (CI).  
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Fig. S3. (a) Mean partial correlations (separately for valence and arousal) between inferred affect 
ratings of the invisible target and fully-informed affect ratings of the visible target, when 
controlling for fully-informed affect ratings of the visible partner. (b, e, g) Between-subject 
agreement of context-only (inferred) affect ratings evaluated by normalized single-subject 
correlations separately for valence and arousal. (c, f, h) Inferential affective tracking (IAT) 
accuracy evaluated by mean Pearson correlation coefficients between context-only (inferred) 
affect ratings of the invisible target character and fully-informed affect ratings of the visible target 
for valence and arousal. (d) Mean partial correlations between context-only affect ratings and 
fully-informed affect ratings of the target character, when controlling for the character-only affect 
ratings of the target character. Error bars represent bootstrapped 95% confidence interval (CI).   
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Fig. S4. Contextual information explains significant unique variance in estimating fully-informed 
affect. (a) The absolute error of Model 1, which uses mean character-only ratings to estimate 
mean fully-informed affect ratings of the target characters. Essentially, this model tests the role of 
the face and body of the target character. Videos were concatenated and data were collapsed 
across dimensions of valence and arousal. (b) The absolute error of Model 2, which uses a linear 
combination of mean character-only ratings and mean context-only ratings to estimate mean 
fully-informed affect ratings of the target characters. Essentially, this model tests the role of both 
context and character specific information in predicting affect ratings. (c) The reduction in 
prediction error by adding mean context-only ratings to the regression model, calculated by the 
difference in the absolute error between Model 1 and Model 2. Larger values on the ordinate 
indicate more improvement with the context. Essentially, this shows how much improvement 
there is in the model fit by including the context. (d) The benefits of having additional contextual 
information span the 2D valence and arousal affect space. The color shows the reduction in 
prediction error by adding additional mean context-only ratings to the regression model, the same 
as y-axis in (c). Data were binned into 0.2 intervals. (e) The mean benefit of having additional 
contextual information, the same y-axis as in (c) and (d), in frames containing facial expressions 
of various emotion categories. We used the Microsoft Azure Emotion API, based on state-of-the 
art computer vision models (4), to detect frames containing facial expressions of different 
emotion categories, including anger, contempt, disgust, fear, happiness, neutral, sadness and 
surprise. We then calculated the mean reduction in prediction error by adding additional mean 
context-only valence ratings to the regression model across frames labeled as the same emotion 
category. This analysis was done on data collapsed across Experiment 1 and 2. Error bars 
represent bootstrapped 95% confidence interval.  
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Fig. S5. Affect perceived from only contextual information is nearly as accurate as affect 
perceived from facial and bodily information. (a) The prediction (absolute) error of using context-
only ratings to estimate fully-informed affect ratings of the target characters (indicated by the 
intensity of the red color; black indicates no model error). Data from different subjects and 
different videos are stacked together, such that each line indicates a different subject and video. 
Valence and arousal data were averaged. (b) The prediction (absolute) error of using character-
only ratings to estimate fully-informed affect ratings (indicated by the intensity of the green color; 
black indicates no model error). Note that the intensity of the red color is similar and as broad as 
the coverage of the green color, showing that the proportion of variance explained by the context 
is about as high as the variance explained by the face and body. This analysis was done on data 
collapsed across Experiment 1 and 2. 
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Fig. S6. Proportion of unique variance in the fully-informed affect ratings that could only be 
explained by context-only affect ratings (in red) versus character-only affect ratings (in green). 
Yellow bar and pie show the proportion of variance shared between context-only and character-
only ratings. (a) Results for Experiment 3a with video clips that show only one target character 
and no partner character. (b) Results for Experiment 3b with video clips from documentaries and 
home videos, not Hollywood movies. Error bars represent bootstrapped 95% confidence interval 
(CI) 
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