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Supporting Information (SI)11

1. CEF splitting of the J=7/2 Hund’s rule multiplet of YbRu2Ge212

The Hund’s rule groundstate multiplet of the Yb3+ ion, which is characterized by a total angular momentum number J=7/2, is13

split by the crystal electric field (CEF) according to the effective Hamiltonian:14

HCEF = B0
2O

0
2 +B0

4O
0
4 +B2

4O
4
4 +B0

6O
0
6 +B4

6O
4
6 [1]15

Where Oml are the conventional Steven’s operators (1) and Bml are coefficients to be determined. The resulting energy16

spectrum comprises 4 Kramers doublets (two doublets with Γ6 symmetry, and two doublets with Γ7 symmetry) and has been17

characterized by a combination of inelastic neutron scattering (2) and thermodynamic probes (3). The tentative spectrum of18

states proposed by Jeevan in (4) is Γ6 at 91meV, Γ7 at 32 meV, Γ7 at 0.9 meV, and Γ6 at 0 meV (ground state), illustrated in19

Fig. S1. This is the spectrum that we use to calculate the low-temperature quadrupole strain susceptibility, as described in the20

main text and below in Section S3. Although this is just a proposed spectrum, changing the balance of states that comprise21

the CEF Γ6 groundstate and Γ7 first excited state will affect the quadrupole moment, and will cause the 4f charge density22

to acquire a more pronounced 4-fold rotational symmetry, but does not change the functional form of the quadrupole strain23

susceptibility shown in equations 2 and 3 in the main text.24

Fig. S1. YbRu2Ge2 CEF spectrum Spin-orbit coupling determines the ground state electronic mulitplet to have J=7/2, which is split by the surrounding crystalline potential to
have 4 doublets, the lowest two in energy forming a quasi-quartet split by roughly 10K.

2. X-ray diffraction data for YbRu2Ge225

Low temperature, high-resolution, X-ray diffraction measurements were performed on beamline A2 at CHESS (Cornell High26

Energy Synchrotron Source). Splitting of the (6 0 0) Bragg peak was observed below 10.2K, with the new peaks indicative27

of an orthorhombic structural distortion with a B1g (x2-y2) symmetry, the associated domain structure of which results in28

4 separate peaks along the (1 1 0) and (1 -1 0) directions (5). Representative data are shown in Figures S2 and S3, taken29

at 12.2 K (above TQ) and 6.6 K (below TQ) respectively. A line cut along the (1 1 0) direction for both data sets is shown30

in Figure S4. The data in Figure S3 and S4 for T < TQ reveal the persistence of the central tetragonal peak, albeit with31

a reduced intensity, implying that some part of the illuminated volume of the crystal remains in the tetragonal state upon32

cooling through TQ. Since the phase transition is characterized via heat capacity measurements to be continuous (3), this33

observation implies heterogeneity of either the sample temperature or of the critical temperature TQ. Thermodynamic and34

transport measurements indicate a maximum spread of critical temperatures of approximately 0.5 K but at least in principle35

local strains due to sample mounting for the measurement can plausibly affect the critical temperature leading to a larger36

variation. Additional measurements would be necessary to characterize how rapidly TQ is affected by homogeneous strains of37

various symmetries in order to assess whether this is the origin of the effect. To best account for this when determining the38

orthorhombic order parameter (shown in Figure 3 of the main paper), we obtained the position of the first moment of counts39

along the (1 1 0) direction (above a background threshold), that were clearly not part of the original tetragonal peak.40
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Fig. S2. Surface plot of log(intensity) at 12.2K The material is still clearly tetragonal here, although it is displaying some spread in the momentum space direction that
orthorhombic domains are expected, possibly indicating critical fluctuations or a static response to unintentional strains from securing the crystal to the sample holder.

Fig. S3. Surface plot of log(intensity) at 6.6K The material is clearly orthorhombic at this temperature, displaying multiple peaks.
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Fig. S4. Line cut of log(counts) along the (1,1,0) direction, centered at (6,0,0) The dotted lines represent where the first moment of counts was determined to be, which
was normalized by the lattice parameters to determine the orthorhombic order parameter.

3. Quadrupole operators41

The three relevant quadrupole operators, which correspond to the axis of the quadrupole oriented along [0 0 1] (z2 symmetry),42

along [1 0 0] or [0 1 0] (x2 − y2 symmetry), and along [1 1 0] or [1 -1 0] (xy symmetry) respectively, are given by the familiar43

Steven’s operators:44

O0
2 = 3J2

z − J(J + 1) [2]45
46

O2
2 = J2

x − J2
y = 1

2(J2
+ + J2

−) [3]47

48

Pxy = 1
2(JxJy + JyJx) = −i4 (J2

+ − J2
−) [4]49

In the restricted Hilbert space corresponding to the quasi-quartet CEF groundstate of YbRu2Ge2, these operators have the50

following matrix elements, where for convenience the basis of states is represented in the order (3/2, -1/2, -3/2, 1/2)51

O0
2 =

−15 0 0 0
0 −9 0 0
0 0 −15 0
0 0 0 −9



O2
2 =

 0 2
√

15 0 0
2
√

15 0 0 0
0 0 0 2

√
15

0 0 2
√

15 0



Pxy =

 0 −i
√

15 0 0
i
√

15 0 0 0
0 0 0 i

√
15

0 0 −i
√

15 0


Noticing the correspondence to the Pauli spin matrices, we introduce for completeness a third, octupole, operator, that will52

also have finite matrix elements in this basis: O−2
3 = −i

4 (Jz(J2
+ − J2

−) + (J2
+ − J2

−)Jz)53

O−2
3 =

 0 −i
√

15 0 0
i
√

15 0 0 0
0 0 0 −i

√
15

0 0 i
√

15 0
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Inspection of these expressions reveals they can be written as tensor products of the canonical Pauli matrices and the54

identity, I:55

O2
0 = I ⊗ (−3σz − 12I) [5]56

O2
2 = I ⊗ (2

√
15σx) [6]57

Pxy = σz ⊗ (
√

15σy) [7]58

O−2
3 = I ⊗ (

√
15σy) [8]59

With reference to the tensor product formula:60

[I ⊗A, I ⊗B] = I ⊗ [A,B] [9]61

and noting that constants don’t affect commutation relations, the three operators O0
2, O2

2, and O−2
3 obey the canonical62

commutation relations. The quasi-quartet ground state can be thought of as two replicas of a pseudo-spin 1
2 doublet, where the63

two replicas arise as a consequence of Kramer’s theorem. These three operators will then serve as the effective spin operators64

in the three spatial dimensions of the pseudo-spin space. The quartet is split (by roughly ∆0 = 10K) due to the tetragonal65

point symmetry of the CEF, yielding a finite σz (i.e a finite O0
2 quadrupole moment) above TQ. Mixing of these eigenstates, as66

described in Figure 1 of the main text, can then yield finite quadrupole moments O2
2 or Pxy.67

4. Quadrupole-strain Susceptibility68

Externally applied stresses cause finite strains, which in turn affect the eigenstates and eigenvalues of HCEF , shifting and
admixing the states described in Section S1. The magneto-elastic coupling (MEC) Hamiltonian is given by

H = HCEF +
∑
Γi

BlmεΓiQΓi

Where Blm are coefficients yet to be determined, and Γi are irreducible representations of the point group. Applying a69

non-zero stress which induces a strain (εγ = εxx − εyy) will induce a finite moment of 〈O2
2〉, which will perturbatively change70

the existing Hamiltonian (in the basis of the quasi-quartet) to be in the form:71

H = HCEF +B2
2εγO

2
2 = I ⊗

[
∆0/2 2

√
15B2

2εγ
2
√

15B2
2εγ −∆0/2

]
Diagonalizing this matrix gives a new energy gap of:72

∆/2 =
√

(∆0/2)2 + 60(B2
2εγ)2 [10]73

The thermal expectation value of the quadrupolar moment 〈O2
2〉 is now:74

〈O2
2〉 = 120B2

2εγ
∆ tanh

(
∆
2T

)
[11]75

Thus the quadrupole-strain susceptibility is:76

χQB1g
=
dQB1g

dεB1g

∣∣∣∣
ε→0

= 60B2
2

T
[12]77

when T >> ∆0 , and78

χQB1g
=
dQB1g

dεB1g

∣∣∣∣
ε→0

= 120B2
2

∆0
tanh

(
∆0

2T

)
[13]79

in general.80

Although in the case of the B2g order parameter Pxy the Hamiltonian cannot be written as concisely, a similar result is still81

obtained:82

χQB2g
=
dQB2g

dεB2g

∣∣∣∣
ε→0

= 15Bxy
T

[14]83

when T >> ∆0 , and84
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χQB2g
=
dQB2g

dεB2g

∣∣∣∣
ε→0

= 30Bxy
∆0

tanh
(

∆0

2T

)
[15]85

in general.86

Hence both the B1g and B2g quadrupole strain susceptilities can be put in the form:87

χQΓi
= dQΓi

dεΓi

∣∣∣∣
ε→0

= 2〈QΓi〉2oBΓi
∆0

tanh
(

∆0

2T

)
[16]88

Assuming no B1g or B2g strain is being applied, the A1g quadrupole-strain susceptibility is:89

χQA1g
=
dQA1g

dεA1g

∣∣∣∣
ε→0

=
〈QA1g 〉2o(B2

0)1 sech2 (∆0
2T

)
T

[17]90

Where 〈QA1g 〉o = 391

Adding in mean-field interactions of the form HQQ = KΓi〈QΓi〉QΓi will renormalize the quadrupole-strain susceptibilities92

to be in the form:93

χQΓi
= dQΓi

dεΓi

∣∣∣∣
ε→0

=
2BΓi〈QΓi〉2o tanh

(
∆0
2T

)
∆0 − 2KΓi〈QΓi〉2o tanh

(
∆0
2T

) [18]94

For T >> ∆/2 this becomes the familiar expression:95

χQΓi
= BΓi〈QΓi〉2o
T − 〈QΓi〉2oKΓi

[19]96

For A1g this renormalizes it to become:97

χA1g =
B2

0〈Q0
2〉2o sech2 (β(∆/2 + 3K0

2 〈O0
2〉|ε=0

))
T − 〈Q0

2〉2oK0
2 sech2 (β(∆/2 + 3K0

2 〈O0
2〉ε=0

)) [20]98

The proposed CEF quasi-quartet states (4) can be substituted in to find the actual values : 〈Qi〉o: 〈O0
2〉o = 3.035,99

〈O2
2〉o = 8.3185, and 〈Pxy〉o = 3.4660100

With these values the elastoresistivity measurements can be fit to to obtain absolute values for Ki and the gap ∆ and101

relative ratios of Bi.102

5. Relation of Elastoresistivity to Quadrupole-strain Susceptibility103

To show how the proportionality between the quadrupole-strain susceptibilities and the elastoresistivity coefficients is obtained,104

we follow Friederich and Fert (6) and extend their argument to tetragonal systems, replacing the magnetic field with strain105

as the source of the quadrupole moment. If we make the following assumptions that: a) the strain is perturbative, hence106

the quadrupole moments can be treated as impurities but the system has a infinitesimal overall quadrupole moment; b) The107

scattering is dominated by isotropic (in the ab plane) elastic scattering potentials Vδ(ri) at each Yb site i; c) We can use the108

first Born approximation to obtain the scattering rate Wkk′ ; and d) The conduction electrons are primarily s-wave and p-wave109

in character, then we can follow the argument laid out in Ref. (6).110

We begin by writing down the scattering interaction between s and p wave conduction electrons and 4f sites originally111

derived by Kondo:112

Vscatt =
∑
kk′

[
V − D

k2
f

(
(J · k)(J · k′)− J(J + 1)

3 k · k′
)]

a†k′a
′
k [21]113

Where D is the coefficient of the quadrupolar scattering potential from the 4f electrons, and V in the sum is the previously114

mentioned strength of the isotropic scattering potential. When this potential is plugged into Fermi’s Golden rule, assuming the115

quadrupole term is perturbatively small, the anisotropic cross terms lead to a resistivity ratio directly from Ref. (6), Equation116

3:117

ρQi
ρ0

= 2D
3V

(
〈J2
i 〉 −

J(J + 1)
3

)
[22]118

Where i is the direction of the current, and ρ0 is the resistivity due to the isotropic scattering potential (isotropic only in119

the ab plane in the case of YbRu2Ge2)120

6 of 10 Elliott W. Rosenberg, Jiun-Haw Chu, Jacob P.C Ruff, Alexander T. Hristov, and Ian R. Fisher



Thus:121

ρQx − ρQy
2ρ0

= D

3V

(
〈J2
x〉 − 〈J2

y 〉
)

= D

3V 〈O
2
2〉 [23]122

Because inelastic scattering should only be dependent on the magnitude of the gap and matrix elements like 〈|Qi|〉2, its B1g123

component induced by strain should be close to zero. Similarly the anisotropic part of the Kondo scattering should be close to124

zero, as there is no reason to suggest there are quadrupolar aspects of the coupling of conduction electrons to the magnetic125

aspects of the 4f sites. Thus, taking the appropriate strain derivatives (in this case, with respect to εxx − εyy), we find that126

the elastoresistivity associated with scattering from the 4f orbital is directly proportional (with a temperature independent127

proportionality coefficient) to the B1g quadrupole-strain susceptibility.128

∂(ρxx4f − ρ
yy
4f )

ρ0
4f

∂εB1g

∣∣∣∣∣
ε→0

≈
D

3V
∂〈O2

2〉
∂εB1g

∝ χB1g [24]129

Several scattering processes contribute to the resistivity of YbRu2Ge2. Assuming validity of Matthiessen’s rule, ρY bRu2Ge2 =130

ρimp + ρe−ph + ρe−e + ρ4f where ρimp arises from impurity scattering, ρe−ph from electron-phonon interactions, ρe−e from131

electron-electron scattering, and ρ4f is defined above. At least in principle, each of these terms can have an associated132

elastoresistivity; the expression derived in Eq. 24 above relates only to the 4f part. Contributions to the resistivity and133

elastoresistivity arising from ρimp, ρe−ph and ρe−e can be subtracted by considering a non-magnetic analog that has the same134

crystal structure, the same band structure and a similar impurity concentration. YRu2Ge2 (note that Y = Yttrium, different135

to Ytterbium Yb) potentially provides such a non-magnetic analog. Such a subtraction would then yield,136

∂(ρxx4f − ρ
yy
4f )

ρ0
4f

∂εB1g
≈

∂(ρxxY bRu2Ge2 − ρ
yy
Y bRu2Ge2

)
ρ0
Y bRu2Ge2

− ρ0
Y Ru2Ge2

−
∂(ρxxY Ru2Ge2 − ρ

yy
Y Ru2Ge2

)
ρ0
Y bRu2Ge2

− ρ0
Y Ru2Ge2

∂εB1g
[25]137

where superscripts ‘0’ refer to zero strain conditions.138

The unstrained resistivity of YRu2Ge2, ρ0
Y Ru2Ge2, is found to be almost an order of magnitude smaller than that of139

YbRu2Ge2 (see Figure 3 in the main paper). Furthermore, normal metals far from any electronic instabilities, typically exhibit140

very small elastoresistivities. Hence, we can safely make the approximation that:141

∂(ρxx4f − ρ
yy
4f )

ρ0
4f

∂εB1g
≈

∂(ρxxY bRu2Ge2 − ρ
yy
Y bRu2Ge2

)
ρ0
Y bRu2Ge2

∂εB1g
∝ χB1g [26]142

Hence elastoresistivity will be a direct measure of the quadrupole-strain susceptibility given these conditions.143

6. Linearity of the B1g elastoresistivity144

An effective way to show that the elastoresistivity is linear in strain while using the AC technique that we describe in the main145

paper is to perform these measurements for a variety of offset bias strains. In Fig. S5 we show data for the B1g response for146

measurements performed with an AC amplitude corresponding to a peak-to-peak voltage applied to the PZT stack of 40 volts,147

with a simultaneous DC bias voltage of 0V, -250V and + 250V in the temperature range from 6 to 20 K. Over this temperature148

range, these offset voltages correspond to DC strain offsets (relative to 0V) of approximately 0, -0.021%, and 0.029% . As can149

be seen by inspecting the figures, in the temperature range above TQ, the data almost perfectly line up, demonstrating the150

absence of any significant non-linear response.151
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Fig. S5. Strain dependence of the B1g elastoresistivity response The B1g quadrupole-strain susceptibility displays little sensitivity to tuning B1g offset strains above the

quadrupolar phase transition indicating this channel is dominated by linear behavior, and hence
(

∆ρ
ρ

)
B1g

/∆εB1g provides a good measure of the linear elastoresistivity

coefficients for this symmetry channel, m11-m12

7. Non-linearity of the A1g elastoresistivity152

In contrast to the case of B1g response, the in-plane A1g response ρxx+ρyy
ρ0

exhibited a striking non-linearity. Fig. S6 shows the153

response for measurements performed with an AC amplitude corresponding to a peak-to-peak voltage applied to the PZT stack154

of 40 volts, with a simultaneous DC bias voltage of 0V, -250V and + 250V in the temperature range from 6 to 20 K. Over this155

temperature range, these offset voltages correspond to DC strain offsets (relative to 0V) of approximately 0, -0.021%, and156

0.029% . The sample was oriented on the PZT stack such that the crystal experienced a combination of A1g and B1g strains157

for Fig. S6 , and A1g and B2g strains for Fig. S7. As can be seen, there is a striking difference between the measurements,158

indicating the presence of a substantial non-linear A1g elastoresistivity in response to B1g symmetry strains.159

Fig. S6. Non-linearity of the A1g response with respect to B1g strain. The A1g quadrupole-strain susceptibility displays striking sensitivity to tuning offset B1g strains
above the quadrupolar phase transition.
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Fig. S7. Non-linearity of the A1g response with respect to B2g strain. The A1g quadrupole-strain susceptibility displays small sensitivity to tuning offset A1g and B2g
strains above the quadrupolar phase transition.

Although the A1g response is not the main subject of this paper, we outline below the origin of this effect, making particular160

reference to how this shows up in an AC measurement.161

To second order in strain, a crystal that experiences both A1g and B1g symmetry strains can experience an A1g elastoresistance162

response given by163 (∆ρ
ρ0

)
A1g

= m
A1g
A1g

εA1g +m
A1g,A1g
A1g

[εA1g ]2 +m
B1g,B1g
A1g

[εB1g ]2 [27]164

Where we are following the notation used in Ref.[(7)]. The linear term proportional to εA1g is allowed by symmetry as well165

as quadratic terms proportional to ε2
B1g .166

Since the AC Elastoresistivity method used for these measurements locks in to the response at the frequency ω at which the167

strain is applied, it is useful to write the strains out as a combination of DC offset strains (arising for example from thermal168

expansion mismatches and glue strains, as well as intentional bias strains as mentioned previously) and AC applied strains:169

εtoti = εDCi + εACi cosωt [28]170

Where i represents the symmetry channel and the amplitude of the AC term depends on the voltage waveform applied to171

the piezo. Substituting into Eq. 27 and focusing on the amplitude of the signal that will be locked into at frequency ω:172 (∆ρ
ρ0

)AC
A1g

= m
A1g
A1g

εACA1g + 2mA1g,A1g
A1g

εDCA1gε
AC
A1g + 2mB1g,B1g

A1g
εDCB1gε

AC
B1g [29]173

Thus we can expect both a linear and non-linear contribution to the signal, with the strength of the non-linear part174

determined by both the amount of offset strain and the quadratic coefficient of that channel.175

A similar difference in non-linear elastoresistivity coefficients was recently observed for the underdoped Fe-based super-176

conductor, Ba(Fe0.975Co0.025)2As2 (7). In that material, the nematic transition occurs in the B2g symmetry channel and the177

quantity mB2g,B2g
A1g

exhibits a divergence. In the present case, YbRu2Ge2 undergoes a nematic transition in the B1g symmetry178

channel, and the quantity mB1g,B1g
A1g

appears to grow very large. Both results highlight the role played by nematic (quadrupole)179

fluctuations in affecting the isotropic properties of materials . In the case of YbRu2Ge2, the observation of a large mB1g,B1g
A1g

180

adds further evidence to our conclusion that the quadrupole-strain susceptibility is large in the B1g channel but small in the181

B2g channel.182

8. Focused Ion Beam parameters183

The instrument used to etch the samples was an FEI Helios NanoLab 600i DualBeam FIB/SEM, containing both a focused Ga+184

ion beam ("Tomahawk") and a high resolution field emission scanning electron ("Elstar") column. Combined with advances in185

patterning, scripting, and a suite of accessories, these features make milling, imaging, analysis, and sample preparation down to186

the nanoscale possible.187
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A 65 nA ion current was used to etch through the samples. Gallium implantation is expected to affect a depth of less than188

100 nm from the surface roughly, which is inconsequential for the bulk resistivity measurements that were performed.189

9. Crystal Growth and Measurement Details190

Single crystals of YbRu2Ge2 were grown using an unseeded flux method, with Indium being the flux and the other precursors191

added in stoichiometrically. The flux ratio was varied from 96-98%, with 97.5% found to produce both the largest size individual192

crystals and also the greatest yield. To help ensure inclusion of the high-melting point Ru into the melt, the elemental Ru and193

Ge precursors were arc-melted in a mono-arc furnace. The elements were then combined into an alumina crucible, which was194

sealed inside a Ta crucible to prevent oxidation and to contain the flux. The crucibles were heated to a max temperature of195

1450K for 6-12 hours, and then cooled to 1200K at approximately 4K/hour. The alumina crucibles were then sealed in quartz196

and spun in a centrifuge at 400K to remove the Indium flux from the crystals. The resulting crystals were etched in HCl acid197

for several months until they were easily cleaveable.198

For transport and elastoresistivity measurements, current and voltage contacts were made to the sample by connecting gold199

wires to the sample using Epotech H-20E silver paste. Typical bar dimensions for samples in elastoresistivity measurements200

were 200-400µm in length, by 70-120µm in width. Samples were glued using Angstrom Bond to Si substrates, which were then201

bonded to the center of a side of a Piezomechanick 5x5x9 mm PZT piezoelectric stack (Piezomechanik PSt150/5x5/7 cryo 1)202

in the appropriate orientation using Devcon 5-Minute Epoxy. Uncertainty in alignment with respect to the crystal axes was203

estimated to be less than 2 degrees. The PZT stack was mounted on a thermally anchored probe in a helium flow cryostat.204

AC Elastoresistivity measurements were applied using a 1.6Hz 50V rms sinusoidal excitation to the PZT while simultaneously205

driving a 5 mA rms current through the sample at 107 Hz, sourced by a Keithley 6221 DC and AC current source.206

The signal was first measured by a SRS830 lock-in amplifier (LIA) with a time constant < 30ms referenced to 107 Hz,207

and the output of that LIA is measured by a second LIA with a time constant of > 3s referenced at 1.6Hz to detect the208

elastoresisitivity signal. Care was taken to ensure the phase of the output signal was properly accounted for. Strain transmission209

was measured from the piezo surface to the top surface of the Si where the samples were glued, and was determined to be210

roughly 50% and essentially temperature independent from 4K to 100K. This was taken into account in determining the211

magnitude of the elastoresistivity coefficients.212
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