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Supplementary Information Text 

Methods 

Detection task 

Stimuli were delivered to the skin of the distal segment of one digit of the 

restrained hand, via a computer-controlled stimulator (BME Systems, MD; 2-mm 

round tip). The initial probe indentation was 500 µm. Vibrotactile stimuli consisted 

of trains of 20 Hz mechanical sinusoids (20 ms duration each sinusoid), with 

amplitudes of 1-34 µm (Fig. 1A). These were interleaved with an equal number of 

trials where no mechanical vibrations were delivered to the skin (amplitude = 0). 

A trial began when the probe tip (PD) indented the skin of one fingertip of the 

restrained, right hand, upon which the monkey placed its free, left hand on an 

immovable key (KD). After a variable pre-stimulus period (1.5-3 s), a vibrotactile 

stimulus could be presented or not (0.5 s). After a fixed delay period (3 s), the 

stimulator probe was lifted off from the skin (PU), indicating to the monkey that it 

could initiate the response movement (KU) to one of two buttons (PB). The button 

pressed indicated whether or not the monkey felt the stimulus (henceforth referred 

as ‘yes’ and ‘no’ responses, respectively). They were rewarded with a drop of 

liquid for correct responses. Psychometric detection curves were obtained by 

plotting the proportion of ‘yes’ responses as a function of the stimulus amplitude 

(left panel of Fig. 1B). Depending on whether the stimulus was present or absent 

and on the behavioral response, the trial outcome was classified as hit, miss, false 

alarm or correct rejection (right pane of Fig. IB). Monkeys were handled according 

to the institutional standards of the National Institutes of Health and Society for 

Neuroscience. All protocols were approved by the Institutional Animal Care and 

Use Committee of the Instituto de Fisiología Celular of the National Autonomous 

University of Mexico (UNAM).   

In addition to the experimental condition described above, the animals also 

performed a passive control task (referred as passive condition) during which the 

stimulus was present or absent, but no response was required (1). Monkeys were 
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rewarded randomly during the occurrence of the passive condition. Under this 

situation, sensory information enters or not to the somatosensory system, but no 

decision and perceptual report is required to obtain a reward. 

 

Recordings 

Neuronal recordings were obtained by using two arrays, each with seven 

independent, movable microelectrodes (2 −3 MΩ; [2, 3]). One array was inserted 

into S1 (cyan spot on the figurine of left panel of Fig. 1C), in the cutaneous 

representation of the fingers (areas 1 or 3b; middle panel of Fig. 1C). The other 

array was located lateral and posterior to the hand’s representation (green spot on 

the figurine of left panel of Fig. 1C) in a way that allowed us to lower the 

microelectrodes to the cutaneous representation of the fingers in the VPL of the 

somatosensory thalamus (right panel of Fig. 1C). Recordings were performed 

contralateral to the stimulated hand (right) and ipsilateral to the responding hand 

(left). Each recording began with a mapping session to find the cutaneous 

representation of the fingers in VPL.  Subsequently, we mapped neurons in S1 

sharing receptive fields with the neurons of VPL (Fig. 1D).  All recorded neurons 

had small cutaneous receptive fields with quickly (QA, VPL n = 65, S1 n=71) or 

slowly adapting (SA, VPL n = 9, S1 n=4) properties. Locations of the electrode 

penetrations in VPL and S1 were confirmed with standard histological techniques. 

The neuronal signal of each microelectrode was sampled at 30 kHz and spikes 

were sorted online. A more extensive description of the task and recording 

procedure can be found in previous publications (1, 3). 

Here, we report data from multiple recording sessions during which spikes were 

obtained. For the experimental condition, we recorded 47 sessions with 120−140 

trials per session (53 neurons in VPL, 75 neurons in S1, 84 VPL-S1 pairs).  For the 

passive control condition, we obtained 21 sessions with 70-140 trials (21 neurons 

in VPL, 36 neurons in S1). We performed a fully balanced comparative analysis 

between the original and control task recordings to mitigate confounding effects. 

To do so, we only considered VPL-S1 neuron pairs that were recorded in both 
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experimental conditions. In addition, for each of these pairs, we performed trial 

subsampling to obtain the same type and number of amplitude classes recorded in 

the vibrotactile detection and the passive stimulation task.  As a result, the pairing 

pre-processing yielded 36 VPL-S1 pairs that were recorded in both conditions: 

1307 stimulus-present trials and 1364 stimulus-absent trials that could be used for 

unbiased statistical comparison (Fig. 6). In the comparative analysis, we removed 

the first two intervals of both tasks due to the presence of signal artifacts in the 

passive condition. Hence, this analysis was restricted to the sub-period 0.5 − 5s in 

both tasks (Fig. 6). 

 

Single-trial DI estimation: Pre-processing, quantification and significance 

testing. 

We used custom-built MATLAB codes to analyze the data. The directionality 

analysis presented here is a refinement of our previous method to analyze spike-

train directional correlations (4). We estimated directional information between 

every neuron pair within a population using a Bayesian estimator of the directed 

information-theoretic measure (5) between a pair of discrete time series that were 

assumed to be generated according to a Markovian process. In more specific terms, 

for a pair time series (𝑥், 𝑦்) of length T, where 𝑥் ൌ ሺ𝑥ଵ, … , 𝑥்ሻ and 𝑦் ൌ

ሺ𝑦ଵ, … , 𝑦்ሻ, a time delay 𝐷 ൒ 0, and Markovian orders equal to 𝑀ଵ ൐ 0 and 𝑀ଶ ൐

0, respectively, the directed information-theoretic measure between the underlying 

stationary processes of 𝑥் and 𝑦், i.e., (𝑋, 𝑌), is estimated through the formula: 

 

𝐼መ஽ሺ𝑋 → 𝑌ሻ ≜ ଵ

்
∑ ∑ 𝑃෠൫𝑌௧ ൌ 𝑦௧ห𝑋௧ି஽ିெమ

௧ି஽ ൌ 𝑥௧ି஽ିெమ
௧ି஽ , 𝑌௧ିெభ

௧ିଵ ൌ 𝑦௧ିெభ
௧ିଵ ൯௬೟

்
௧ୀଵ ∗

𝑙𝑜𝑔
௉෠ቀ௒೟ୀ௬೟ቚ௑೟షವషಾమ

೟షವ ୀ௫೟షವషಾమ
೟షವ ,௒೟షಾభ

೟షభ ୀ௬೟షಾభ
೟షభ ቁ

௉෠ቀ௒೟ୀ௬೟ቚ௒೟షಾభ
೟షభ ୀ௬೟షಾభ

೟షభ ቁ
, 

[Eq. S1] 

where, the joint and marginal probability distributions of (𝑋, 𝑌) are estimated using 

the context-tree weighting algorithm (CTW, [6, 7]). Matlab code for the CTW-based 
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estimation of the directed information-theoretic measure can be downloaded from 

https://web.stanford.edu/~tsachy/DIcode/. Equation 1 quantifies the information 

that the past of 𝑋் at delay D, i.e., 𝑋௧ି஽ିெమ
௧ି஽ , has about the present of 𝑌், i.e., 𝑌௧, 

given the most recent part of 𝑌், i.e., 𝑌௧ିெభ
௧ିଵ . This estimator is consistent as long as 

the two neuronal time series (𝑋், 𝑌்) form a jointly stationary irreducible 

aperiodic finite-alphabet Markov process whose order does not exceed the 

prescribed maximum depth in the CTW algorithm (6). Prior to estimating the 

directed information-theoretic measure, we preprocessed our data as follows. For 

a single trial, we first binarized spike-train trials using bins of 1ms (mapping 1 to 

each bin with at least one spike and 0, otherwise). Second, in stimulus-present 

trials, we removed the variable-time pre-stimulus period in every trial and aligned 

all trials to the stimulus onset time. In contrast, in stimulus-absent trials, we aligned 

the trials to the probe down event (PD). We then divided each trial time series into 

twenty non-overlapping task intervals of 0.25s (250 bins). At each task interval, 

the spike train was assumed to be generated by a random process that satisfied the 

estimator requirements with a maximum memory of 2ms (𝑀ଵ ൌ 𝑀ଶ ൌ 2 bins) both 

for the joint and the marginal spike-train processes. Under the estimator 

requirements, it can be easily checked that the directed information-theoretic 

measure is asymptotically equivalent to the transfer entropy measure (8) in the 

limit of the time-series length. To assess that neurons were able to express minimal 

information through their spike-train responses, we assessed the significance of the 

entropy value (a particular case of the directed information-theoretic measure 

when 𝑋்and 𝑌்coincide) of each spike train at every task interval with maximum 

memory, 𝑀 ൌ 2.  This step removed segments of spike trains with zero or small 

number of spikes. Finally, among those pairs of spike-train segments with 

significant entropy, we ran the delayed directed information-theoretic measure 

estimator (Eq. S1) at time delays D=0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 ms. 

We dealt with the multiple test problem over delays by using the maximum 

directed information-theoretic measure over all preselected delays as a test 

statistic: 
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𝐼ୗ୘୅୘ሺ𝑋 → 𝑌ሻ ≜ max
஽ఢሾ଴,ଶ,⋯,ଶ଴ሿ

𝐼መ஽ ሺ𝑋 → 𝑌ሻ                       [Eq. S2] 

To assess the significance of the above statistic (Eq. S2), we used a Monte-Carlo 

permutation test (9). In this test, the original (i.e., non-permuted) estimation was 

compared with the tail of a distribution obtained by performing 20 equally-spaced 

(to maximize independent sampling) circular shifts of the target spike train 𝑌் 

within the range [50,200]ms and computed the corresponding P-value (10). Hence, 

the significance test provides three outputs: the significance assessment (0/1), the 

statistic value and the maximizing delay 𝐷෡ . In particular, any spike-train pair 

during a trial is considered to convey directional information (DI) at a given task 

interval if the corresponding test yields significance.  

 

Statistical analysis: Quantification of significant effects on DI percentages 

The main metric used in Figs. 3-7 was obtained by aggregating each DI type 

(feedforward, feedback and bidirectional) over all neuron pairs and trials at 

individual task intervals and computing their percentage over the total amount of 

trials. In Fig. 8, however, the percentage was computed over trials per neuron pair 

and then percentages were averaged over neuron pairs. 

Therefore, the main results illustrated in Figs. 3-8 were obtained by comparing DI 

percentages under usually two conditions. Comparisons of this metric were of two 

types: paired and unpaired. Paired comparisons appeared in the comparison 

between the VPL→S1 and VPL→S1 percentages (Fig. S1), the percentages over 

neuron pairs in different conditions (Fig. S3), the percentages between the original 

and control task (Fig. 6) and the percentages over neuron pairs for correct and error 

trials (Fig. 8). Unpaired comparisons appeared when assessing the stimulus-driven 

change in the percentage of directional information (Figs. 3A, 7A). In paired or 

unpaired comparisons of DI percentages we frequently used non-parametric tests 

for correlated samples (11) using statistics based on Cohen’s effect size (Cohen’s 

h; [12]) that measured the distance between proportions. The use of this statistic 

allows to straightforwardly quantify the size of any significant effect by comparing 
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its value with standarized thresholds (H = 0.2, small effect size; H = 0.5, medium 

effect size; H = 0.8 large effect size), thus avoiding sample size biases. For any 

unpaired comparison between proportion 𝑝ଵ and 𝑝ଶ, we used the original Cohen’s 

h measure: 

𝐻୳୬୮ୟ୧୰ୣୢሺ𝑝ଵ, 𝑝ଶሻ ൌ 2൫arcsin ඥ𝑝ଵ െ arcsin ඥ𝑝ଶ൯                      [Eq. S3] 

For paired comparison, we proposed the following paired version of Cohen’ h:  

𝐻୮ୟ୧୰ୣୢሺ𝑝ଵ, 𝑝ଶሻ ൌ signሺ𝑝തሻ ∗ 2 arcsin ඥ|𝑝ത|                      [Eq. S4] 

where 𝑝ത ൌ ௣భି௣మ

ଶ
. 

Non-parametric tests for correlated samples were performed through 1000 group-

based permutations (11) where groups were defined to be either single trials (Figs. 

3-7) or neuron pairs (Fig. 8) and group sample sizes were maintained in each 

permutation. Thus, our analysis avoided introducing any statistical bias to the 

sampled reference distribution. Most statistical comparisons were independently 

performed over task intervals (N = 20). To correct for interval multiplicity (e.g. 

Fig. S1), we applied the Holm-Bonferroni procedure (13), which provided a 

significance threshold that controlled the Familywise Error Rate (FWER) at a 

significance level (α = 0.05). In the remaining tests performed at different 

amplitude values or neuron pairs, multiplicity was not corrected for lack of 

sufficiently large sample sizes. 

In Fig. 6B we applied single-trial and average-trial correlation measures to 

quantify the non-parametric correlation (Spearman’s rank-order correlation) 

between DI percentages and stimulus amplitudes. Single-trial correlation values 

were obtained by correlating the trial-based binary vector associated to each DI 

type against their corresponding amplitudes. Average-trial correlations were 

obtained by first computing the overall percentage of DI at each amplitude and 

then by correlating these percentages against all amplitude values. 
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Statistical analysis: Influence of neuronal firing rates into DI percentages 

A great deal of the results was devoted to assess the influence of the firing rates of 

driver and target neurons into the DI measured in our data set (Figs. S4, S7A and 

B, 4 and 7). In particular, we made of use of Spearman’s correlation to correlate 

the firing rate of simultaneous neuronal spike trains in VPL and S1 with the 

existence of DI (0/1) between them across all trials. More precisely, we 

independently correlated the trial-based binary vector associated to the DI against 

the firing rate in VPL and S1 spike trains, respectively. We performed this 

computation in general for the DI against driver and target firing rates (Figs. S4A 

and S4B), and in particular for each DI type, feedforward, feedback and 

bidirectional, against VPL and S1 firing rates in every task interval (Figs. S4C and 

S4D and Figs. S7A and S7B). Moreover, we compared the firing rates of neurons 

in VPL and S1 holding the distinct DI types (Figs. 4, 7B and C). These later 

comparisons are intrinsically unpaired (in trials) as the amount of DI trials may 

differ across types. Hence, we made use of Wilcoxon rank-sum test to assess 

statistical differences in DI-dependent firing rates. 

 

Statistical analysis: Contribution of zero-lag and non-zero lag to bidirectional 

information 

By definition (See section “Single-trial DI estimation” above), each DI is 

associated to a (maximizing) delay. Hence, to study the contribution of individual 

time delays to each DI type we started by plotting their histograms in Fig. S2B 

using aggregated data from task intervals within or outside the stimulus period and 

the PWS. These histograms pinpointed the great percentage of bidirectional 

information at time delay 0 ms, especially during the stimulus-presence. We 

therefore examined in Fig. 7 and S7 the contribution of 0 ms delays to the main 

results reported for bidirectional information. To do so, we divided all bidirectional 

information estimates into two disjoint groups: one bidirectional group where the 

DI across each direction was estimated at 0 ms delay, and a second group where 

both were estimated at a delay different from 0 ms. The formed group is referred 
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in the main text as zero-lag bidirectional information, whereas the second group is 

referred to as non-zero lag bidirectional information. We then considered these 

groups as DI sub-types and performed on them the main analysis of the study in 

Fig. 7 and Fig. S7. Specifically, we repeated those analyses leading to Fig. 3A (Fig. 

7A), Fig. 4 (Fig. 7B and 7C), Fig. S4 (Fig. S7A and S7B), Fig. 5 (Fig. S7C) and 

Fig. 6 (Fig. 7D). 

 

Simulation study 

In Fig. S5, we made use of two stochastic models (Unidirectional and Bidirectional) to 

simulate pairs of spike trains from two different neurons eliciting firing rates within the 

range of our dataset and assess the sensitivity of our DI estimation method and the 

correlation between the DI and the firing rate induced by the estimation method. The 

simulation of spike-train pairs was randomly and independently generated on a trial-by-

trial basis according to two paradigms: a unidirectional model, which is associated to the 

reported feedforward and feedback information, and a bidirectional model, which is 

associated to bidirectional information. Under each paradigm, single-trial spike trains were 

modeled as binary sequences generated via conditional probabilities relying on signal (, 

) and noise parameters (, ). The range of these parameters was chosen to fit the range 

of neuronal firing rates found during the first half (250ms) of the stimulus period during 

hit trials. Each model was used to test the sensitivity of the DI estimation against the firing 

rate of either the target, driver or both simultaneous recorded neurons (Fig. S5C and S5D). 

In particular, we used the bidirectional model to test whether the DI sensitivity was 

significantly different between zero-lag and non-zero lag bidirectional information. In 

addition, each model served to test the correlation of the DI with the firing rate. To obtain 

a fair comparison with the correlation values observed in the real data, each model was 

mixed with realizations of independent spike train pairs so that the simulated data 

mimicked the overall DI percentage observables while still approximating the average 

firing rates in driver and target neurons (Fig. S5E and S5F). Then, the correlation values 

were shown as a function of increasing DI percentages (Fig. S5G and S5H), which 

corresponded to increasing weights of each paradigm in the mixed model.  Further details 

can be found in Fig. S5.  
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Fig. S1. VPL→S1 and S1→VPL directional information (DI) during the detection task. Time course of the 

task for the percentage of directional information (DI) and the average (unbiased) information-theoretic 

measure estimate over DI pairs between VPL→S1 (purple) and S1→VPL (green) in stimulus-present (left 

panel, trials = 3216 hit; neuron pairs = 84) and stimulus-absent trials (right panel, trials = 4371 correct 

rejections; neuron pairs = 84). Only paired trials where at least one spike train attained a minimal firing rate of 

35Hz were selected for the computation. In all figures, grey boxes depict the stimulation period for the 

stimulus-present trials, and the possible window of stimulation (PWS) for the stimulus-absent trials). Error bars 

denote the SEM (standard error of the mean). (A) Percentage of DI. Black lines depict intervals for which the 

difference between DI was significantly different (P < 0.05; non-parametric test, multiple-test corrected; effect 

size > 0.3). Blue lines depict significant intervals for which the effect size was larger than 0.5. (B) Time course 

of information-theoretic measure for VPL→ S1 (purple) and S1→ VPL (green) directional information. Black 

lines depict intervals for which the difference between directions was significantly different (P < 0.05; non-

parametric test, multiple-test corrected; effect size > 0.3). Here and in the next time-varying figures, we 

removed the variable-time pre-stimulus period in every stimulus-present trial and aligned all trials to the 

stimulus onset. In stimulus-absent trials, we aligned the trials to the probe down event (PD).
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Fig. S3. Directional Information (DI) comparison between stimulus-present and stimulus-absent trials. 

Related to Fig. 3. Percentage of (A) feedforward, (B) feedback, and (C) bidirectional information per neuron 

pair (trials = 3216 hits; trials = 4371 correct rejections; neuron pairs = 84) during the first interval (0-0.25s) of 

the stimulus period in stimulus-present trials vs. the first interval (0-0.25s) of the possible window of 

stimulation (PWS) in stimulus-absent trials. In each panel the insets depict the histograms of the angular 

deviation between stimulus-absent and stimulus-present trials over all neuronal pairs and indicates its median. 

The percentage for all three types of DI was higher during the stimulus-present trials (θ < 45°) with feedforward 

(θ = 30.5°) and bidirectional (θ = 25.2°) information exhibiting larger differences across conditions than 

feedback (θ = 41.1°) information.
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Fig. S5. Unidirectional and Bidirectional simulation models.  Related to Fig. 3 and 4. We simulated pairs of 

spike trains (N=3850 trials) from two different neurons eliciting firing rates within the range of our data set to 

assess (1) the sensitivity of our DI estimation method and (2) the correlation between the DI and the firing rate 

induced by the estimation method. Pairs of spike trains were randomly and independently generated according 

to two simulation paradigms: unidirectional model, which is associated to the reported feedforward and 

feedback information, and bidirectional model, which is associated to bidirectional information. Under each 

paradigm, single-trial spike trains were modeled as T-length binary sequences (X =[X ,…,X ] and T 1 T

Y =[Y ,…,Y ]), which were generated by probabilistic models with parameters chosen to fit the range of T 1 T

neuronal firing rates found during the first half (250ms) of the stimulus period during hit trials. (A) 
TUnidirectional model:  The single-trial spike train of the driver neuron is denoted as X  and is modeled as a 

binary Markov chain of order 1 with two autocorrelation parameters (δ , λ ), which characterize the neuronal X X



T
signal, i.e., the spiking probability of X  after a silent bin, δ  =P(X =1| X =0) and the spiking probability of X  X i i-1 T

after a spike, λ  =P(X =1| X =1). On the other hand, the single-trial spike train of the target neuron is denoted as X i i-1

T T
Y  and is characterized by a transformation of the process X  that depends on 3 parameters (D, ε, ν). D stands for 

the delay at which the coupling between both spike trains occurs while ε and ν parametrize the channel noise, 
T T

i.e., the spiking probability of Y  after a silent bin, ε =P(Y =1| X =0), and the spiking probability of Y  after a i i-D

T T T 
spike bin in X , ν=P(Y =1| X =1). (B) Bidirectional model. The bidirectional coupling between X  and Y is i i-D

modeled by 4 parameters (D , D , ε, ν). D  and D  stand for the delays in each direction at which the coupling 1 2 1 2

occurs, respectively, while ε and ν parametrize in an unbiased form the noise across both unidirectional links,  

X  → Y  and Y  → X . (C)-(D) Sensitivity percentage of the DI estimation for both simulation models. Gray line T T T T

in each panel depicts the mean neuronal firing rate in real-data recordings during the first half of the stimulus 

period during hit trials (50,33Hz).  Curves that are function of joint target and driver neurons are constructed by 

binning firing rates from both neurons in consecutive 10Hz bins (10-20Hz, 20-30Hz, etc.) and plotting the 

sensitivity values at bin midpoints. Error bars denote the SEM (standard error of the mean) across simulation 

realizations. (C) Sensitivity percentage of the DI estimation method in the unidirectional model as a function of 
T T

firing rate of the driver (X ), target (Y ) and both neurons. In total, an ensemble of spike train pairs (simulated 

trials=3850) were uniformly generated with T=250 bins across autocorrelation parameters δ =0.02:0.01:0.08 X

and λ =0.05, and noise parameters ε=0.013 and ν=0.35:0.1:0.45. Delays were uniformly drawn over D=0:2:20 X

bins. Error bars denote the SEM (standard error of the mean). (D) Sensitivity percentage of the DI estimation 
T T

method in the bidirectional model as a function of firing rate of the driver (X ), target (Y ) and both neurons. In 

total, spike train pairs (simulated trials=1925) were uniformly generated with T=250 bins across noise 

parameters ε=0.013 and ν=0.35:0.1:0.45 and delays uniformly drawn over D , D  =0:2:20 bins. Error bars 1 2

denote the SEM (standard error of the mean). In this model the difference between the sensitivity of zero-lag 

and non-zero lag bidirectional information was not found significant (Wilcoxon rank-sum test, P>0.05, SI 

Appendix). (E)-(H) To fit the DI estimation percentages found in real data recordings, both models were mixed 

with an ensemble of independently generated spike train pairs (simulated trials =3850 for unidirectional model; 

simulated trials =1925 for bidirectional model) with autocorrelation parameters δ =0.02:0.01:0.08 and λ =0.05. X X

To sample different DI percentages, the mixing factor α varied from α=0 (all pairs belong to the independent 

ensemble) to α=1 (all pairs belong to the uni/bidirectional model) in steps of 0.04 keeping always the total 

number of trials equal. In each panel, the gray line depicts the overall DI percentage for either unidirectional 

(21.5%) or bidirectional information (5.4%). Error bars denote the SEM (standard error of the mean) across 
T T

simulation realizations. (E) Average firing rate of driver (X ) and target neurons (Y ) in the mixed unidirectional 

model as a function of the DI percentage. (F) Same as Panel (E) but for the mixed bidirectional model. (G) 
T T

Correlation between DI and the driver (X ) and target neurons (Y ) firing rate in the mixed unidirectional model 

as a function of the DI percentage. (H) Same as panel E, but for the mixed bidirectional model. 
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Fig. S6. Relationship of the amount of feedback and bidirectional information with respect to 

feedforward information across distinct stimulus amplitudes. Related to Fig. 5 (A) Relationship between 

%DI feedback and %DI feedforward for all stimulus amplitude values analyzed in the study. (B) Relationship 

between %DI bidirectional and %DI feedforward for all stimulus amplitude values analyzed in the study.  Error 

bars denote the standard error of the mean (SEM).
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Fig. S7. Influence of neuronal firing rate and stimulus amplitudes on zero-lag and non-zero lag 

bidirectional information. Related to Fig. 8 (A) Spearman's correlation between the firing rate in VPL 

neurons and the existence of overall and either zero-lag or non-zero lag bidirectional information, respectively, 

with a S1 neuron during the time course of the task during stimulus-present (left; trials = 3216 hits) and 

stimulus-absent (right; trials = 4371 correct rejections (B) Same as panel A, but for neurons in S1 holding 

bidirectional information with VPL neurons. (C)  Mean percentage of overall (left), zero-lag (middle) and non-

zero lag (right) bidirectional information as a function of the stimulus amplitude during the first half of the 

stimulation period (left, 0 − 0.25 s). The value of r is the correlation between the stimulus amplitude and the 

existence of DI in each type across all trials (no amplitude-averages) with Spearman correlation (trials = 7587). 

The value R is the analogous correlation considering amplitude-average values (amplitudes = 8). Asterisks 

depict significance (*, P < 0.05; Spearman  correlation). Error bars denote the SEM (standard error of the 

mean).
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