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Supplementary Information 

Medical Subject Headings (MeSH) term-based collection of the research publications 

dealing with ARSs and related diseases.  

To retrieve the articles describing the association of ARSs and disease, we queried Pubmed 

server with the MeSH terms representing ARS and disease. For “ARS”, we used a MeSH 

term of “amino acyl-trna synthetases”. For disease, we chose 6 MeSH terms representing 

major disease category including "Neoplasms", "Metabolic Diseases", "Autoimmune 

Diseases", "Central Nervous System Diseases", "Neurodegenerative Diseases", "Infection", 

and "Respiratory Tract Diseases”. To generate Pubmed query, we combined the MeSH terms 

ARS and each disease by “AND” operator and added Pubmed option “[MeSH Terms]”. This 

constraint is to find the research articles only if they carry both ARS and Disease MeSH 

terms. An example of keyword used in our research is “amino acyl-trna synthetases” [MeSH 

Terms] AND “Neoplasms” [MeSH Terms]. XML files from the Pubmed query results were 

downloaded and further analyzed to count cumulated number of the published papers by 

disease category and by year. 

 

Functional enrichment analysis 

For each species, we first collected interactors of MSC-ARSs/AIMPs and Free-ARSs. For each 

set of interactors, we then performed the enrichment analysis of gene ontology biological 

processes (GOBPs) to identify cellular processes represented by the interactors using DAVID 

(1). The GOBPs with p < 0.05 computed from DAVID were selected as the ones enriched by 

the set of the interactors. 



 

Calculation of enrichment scores 

To construct GOBP tree, we first collected directed acyclic graphs of GOBP terms describing 

parent-daughter relationships between GOBP terms from the Gene Oncology Consortium 

(release date: 2017-07-07) (2). For each of the representative cellular processes (e.g., DNA 

repair or RNA processing in Fig. 3C), we selected GOBP terms enriched by at least one set of 

MSC-ARS/AIMP interactors in five species (S. cerevisiae, C. elegans, D. melanogaster, M. 

musculus and H. sapiens) and then constructed a GOBP tree showing parent-daughter 

relationship among them using the selected GOBP terms. The GOBP tree is composed of a root 

GOBP and its daughter GOBPs. For the GOBP tree, the average enrichment score was 

evaluated as follows: 1) counter the number of species (Nroot) in which the root GOBP was 

enriched by MSC-ARS/AIMP interactors; 2) select daughter GOBPs with which three or more 

MSC-ARS/AIMP interactors were annotated in more than half of Nroot; and 3) compute the 

average of Z-scores of the root GOBP and the selected daughter GOBPs in the tree. The Z-

score was computed as –N(P)-1 where P is the enrichment P-value nd N(.)-1 is the inverse normal 

distribution. 

 

Construction of network models 

To construct network models, we collected the list of MSC-ARSs/AIMPs interactors annotated 

with the GOBPs in H. sapiens, KEGG pathways related to two non-catalytic functions of 

ARSs/AIMPs (mTOR signaling and DNA repair) and interactors previously reported to have 

associations with these non-catalytic functions. For each non-catalytic function, we then 

constructed a network model describing the collected interactions among the non-ARS/AIMP 



interactors of MSC-ARSs/AIMPs. The nodes in each network model were arranged based on 

their pathways in KEGG pathway database (3). 

 

mRNA expression-survival correlation 

To evaluate correlations of mRNA expression levels with patient survivals, we first collected 

read counts for 60,483 gene features for tumor samples of 26 types of human cancers (Table 

S1) from NCI Genomic Data Commons (GDC) Data Portal (4). For each type of human cancer, 

the read counts were normalized using the TMM normalization method (5) in the edgeR 

package (6). The normalized counts were converted to log2-read-counts after adding one to the 

normalized counts and the log2-read-counts for the samples were further normalized within the 

dataset for the type of cancer using the quantile normalization method (7). For each of 

ARSs/AIMPs and their interactors, we divided the samples in a cancer type into two groups 

(top and bottom 25% of patients with highest and lowest mRNA expression levels, respectively) 

based on the normalized log2-read-counts and evaluated differences in survival curves between 

the two groups using log-rank test with Kaplan-Meier estimation (8).  

  



Supplementary figure legend 

Figure S1. The illustration of noncatalytic domains of MSC components. 

Human MSC component have several appended domains or motifs. The conserved catalytic 

domains and tRNA recognition domains are shown in dark or light gray boxes. Glutathion S-

Transferase-like domain (GST) are shown in the EPRS, MRS AIMP2 and AIMP3, while 

WHEP domains are shown in ERPS, MRS. Leucine zipper motif is also observed in AIMP1, 

AIMP2, and RRS. AIMP1 has an EMAPII domain which is involved in several cellular 

response. While DRS and KRS have the lysine rich domains in the N-terminal region, LRS and 

IRS have the appended sequences. QRS has the appended sequences in the C-terminal regions. 

 

Figure S2. The number of the published research articles on the disease association of 

ARSs from 1970 to 2018. The inset shows the list of 7 major diseases defined by MeSH term.  

 

Figure S3. Relationship of MSC-ARSs/AIMPs to cancer patient survival  

(A) The survival curves of liver hepatocellular carcinoma (LIHC) patients whose IRS 

expression levels were grouped to the top (red line) and bottom (black) 25% of the total patients. 

(B) The survival curves of breast invasive carcinoma (BRCA) patients whose MRS expression 

levels were grouped to the top (red line) and bottom (black) 25%. (C) The survival curves of 

head and neck squamous cell carcinoma (HNSC) patients whose AIMP1 expression levels were 

grouped to the top (red line) and bottom (black) 25%. P represents the significance of the 

mRNA expression-survival correlation.   

  



 

Table S1. List of 26 types of human cancers used to analyze the mRNA expression-survival 

correlation 

The mRNA-sequencing data generated form 26 types of human cancers by The Cancer 

Genome Atlas (TCGA) studies (number of primary tumor samples > 100) were collected from 

NCI Genomics Data Commons (GDC) Data Portal (5). Only the mRNA-sequencing data for 

primary tumor samples were used for evaluating the correlations 

 

Type Name Primary site 
Number of samples 

(primary tumor) 

BRCA Breast invasive carcinoma Breast 1,102 

UCEC 
Uterine corpus endometrial 

carcinoma Uterus 551 

KIRC Kidney renal clear cell carcinoma Kidey 538 

LUAD Lung adenocarcinoma Lung 533 

LGG Brain lower grade glioma Brain 511 

LUSC Lung squamous cell carcinoma Lung 502 

THCA Thyroid carcinoma Thyroid 502 

HNSC 
Head and Neck squamous cell 

carcinoma Head and Neck 500 

PRAD Prostate adenocarcinoma Prostate 498 

COAD Colon adenocarcinoma Colorectal 478 

BLCA Bladder urothelial carcinoma Bladder 414 

STAD Stomach adenocarcinoma Stomach 375 

OV Ovarian serous cystadenocarcinoma Ovary 374 

LIHC Liver hepatocellular carcinoma Liver 371 



CESC 
Cervical squamous cell carcinoma 
and endocervical adenocarcinoma Cervix 304 

KIRP 
Kidney renal papillary cell 

carcinoma Kidney 288 

SARC Sarcoma Soft Tissue 259 

PCPG 
Pheochromocytoma and 

paraganglioma Adrenal Gland 178 

PAAD Pancreatic adenocarcinoma Pancreas 177 

READ Rectum adenocarcinoma Colorectal 166 

ESCA Esophagel carcinoma Esophagus 161 

GBM Glioblastoma multiforme Brain 156 

LAMI Acute myeloid leukemia Bone Marrow 151 

TGCT Testicular germ cell tumors Testis 150 

THYM Thymoma Thymus 119 

SKCM Skin cutaneous melanoma Skin 103 

 

  



Table S2. PPI (protein-protein interaction) databases used for evolutionary analysis of 

ARS networks.  

For each species, the PPI databases and the numbers of PPIs and proteins used for analysis are 

listed. Only the PPIs with experimental evidence were used. In the case of STRING, the PPIs 

with experimental score > 0.4 were used. The PPIs for dimerization were filtered out before 

the analysis. 

Species 
Number of 
interactions 

Number of 
proteins 

Databases 

S. cerevisiae 214,967 5,862 
BioGRID (9), CCSB interactome datasets (10-12), 
DIP (13), HitPredict (14), IntAct (15), MINT (16), 
STRING (17) 

C. elegans 70,277 8,116 
BioGRID (9), CCSB interactome datasets (18, 19), 
DIP (13), HitPredict (14), IntAct (15), MINT (16), 
STRING (17) 

D. melanogaster 167,225 11,176 
BioGRID (9), DIP (13), DroID (20), HitPredict (14), 
IntAct (15), MINT (23), STRING (24) 

M. musculus 82,254 11,502 
BioGRID (9), DIP (13), HitPredict (14), IntAct (15), 
MINT (16), STRING (17) 

H. sapiens 337,756 17,445 
BioGRID (9), CCSB interactome datasets (21-24),  
DIP (13), HitPredict (14), HPRD (25), HTRIdb (26), 
IntAct (15), MINT (16), STRING (17) 
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