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Abstract	

Prediction	 of	 phenotypic	 consequences	 of	 mutations	 constitutes	 an	 important	

aspect	 of	 precision	 medicine.	 Current	 computational	 tools	 mostly	 rely	 on	

evolutionary	conservation	and	have	been	calibrated	on	variants	associated	with	

disease,	which	poses	conceptual	problems	 for	assessment	of	variants	 in	poorly	

conserved	 pharmacogenes.	 Here,	 we	 evaluated	 the	 performance	 of	 18	 current	

functionality	 prediction	 methods	 leveraging	 experimental	 high-quality	 activity	

data	from	337	variants	in	genes	involved	in	drug	metabolism	and	transport	and	

found	 that	 these	 models	 only	 achieved	 probabilities	 of	 0.1	 to	 50.6%	 to	 make	

informed	 conclusions.	 We	 therefore	 developed	 a	 functionality	 prediction	

framework	 optimized	 for	 pharmacogenetic	 assessments	 that	 significantly	

outperformed	current	algorithms.	Our	model	achieved	93%	for	both	sensitivity	

and	specificity	for	both	loss-of-function	and	functionally	neutral	variants,	and	we	

confirmed	 its	 superior	performance	using	 cross	validation	analyses.	This	novel	

model	holds	promise	to	improve	the	translation	of	personal	genetic	information	

into	 biological	 conclusions	 and	 pharmacogenetic	 recommendations,	 thereby	

facilitating	the	implementation	of	Next-Generation	Sequencing	data	into	clinical	

diagnostics.	

	

	

	 	

Volker Lauschke� 6/22/2018 9:31 AM
Deleted: 	

Volker Lauschke� 6/22/2018 9:32 AM
Deleted: 244	
Volker Lauschke� 6/22/2018 9:32 AM
Deleted: pharmacogenetic	missense	
Volker Lauschke� 6/26/2018 1:33 PM
Formatted: Not Highlight

Volker Lauschke� 6/26/2018 1:33 PM
Deleted: 12.4
Volker Lauschke� 6/26/2018 1:33 PM
Formatted: Not Highlight

Volker Lauschke� 6/26/2018 1:33 PM
Deleted: 49
Volker Lauschke� 6/22/2018 1:03 PM
Deleted: 2
Volker Lauschke� 6/22/2018 1:03 PM
Deleted: 95%	
Volker Lauschke� 2/20/2018 4:01 PM
Deleted: deleterious	
Volker Lauschke� 6/25/2018 7:32 AM
Deleted: in	an	independent	validation	
cohort



	 3	

Introduction	

In	 the	 last	decades,	 rapid	progress	 in	 sequencing	 technologies	has	 allowed	 the	

deciphering	of	genomic	information	on	an	unprecedented	scale.	While	the	initial	

sequencing	 of	 the	 human	 genome	 in	 the	 frame	 of	 the	 Human	 Genome	 Project	

cost	2.7	billion	USD	and	took	14	years	to	complete,	costs	and	times	declined	to	

around	1,200	USD	and	1.5	days	for	a	whole-genome	sequence	with	30x	coverage	

in	 2015	 1	 and	 technology	 to	 enable	 the	 100	 USD	 genome	 has	 already	 been	

announced	2.	As	outcomes	of	these	technological	advancements,	the	vast	extent	

of	genomic	information	has	propelled	medicine	by	providing	information	about	

disease	 susceptibility,	 e.g.	 in	 cancer	 3,	 4,	 type	 2	 diabetes	 mellitus	 5	 or	

schizophrenia	6,	by	identifying	genes	that	underlie	monogenic	disorders	7,	8	and	

by	facilitating	the	discovery	of	novel	therapeutic	targets,	particularly	in	oncology	

9.		

	

However,	despite	these	successes	of	human	genomics	on	a	population	scale,	the	

translation	 of	 personal	 genomic	 data	 into	 clinically	 actionable	 information	

remains	 difficult.	 Each	 individual	 harbors	 on	 average	 23,000	 -	 25,000	 genetic	

variants	 in	 exons,	 including	 10,000	 –	 12,000	 variants	 resulting	 in	 amino	 acid	

exchanges	and	around	100	variants	resulting	in	stop-gain	mutations,	frameshifts	

or	differential	splice	sites,	the	vast	majority	of	which	are	rare	with	minor	allele	

frequencies	 (MAF)	 <	 1%	 10.	 Genes	 with	 importance	 for	 drug	 absorption,	

distribution,	metabolism	and	excretion	(ADME)	are	highly	variable	11-13	and	such	

genetic	 variability	 has	 been	 estimated	 to	 account	 for	 around	 20%–30%	of	 the	

inter-individual	 differences	 in	 drug	 response	 14.	 However,	 while	 on	 average	

around	100	genetic	variants	are	detected	across	ADME	genes	in	each	individual,	
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the	 overwhelming	 majority	 has	 not	 been	 experimentally	 characterized,	 which	

poses	a	significant	challenge	for	the	clinical	 interpretation	of	genetic	variability	

and	impairs	the	translation	of	genomic	data	into	actionable	advice	15,	16.		

	

As	systematic	experimental	analyses	in	relevant	expression	systems	are	hitherto	

not	 feasible	 for	 these	 vast	 numbers	 of	 variants,	 computational	 methods	 have	

been	 proposed	 for	 predicting	 the	 functional	 relevance	 of	 identified	 genetic	

mutations.	In	recent	years,	dozens	of	algorithms	have	been	presented	that	aim	to	

distinguish	deleterious	from	neutral	variants.	These	algorithms	use	a	variety	of	

features,	 such	 as	 secondary	 structure,	 functional	 sites,	 protein	 stability	 or	

sequence	 conservation,	 and	 are	mostly	 based	 on	machine	 learning	 techniques,	

such	 as	 support	 vector	 machines,	 artificial	 neural	 networks	 or	 naïve	 Bayes	

classifiers	 17-19.	 Importantly,	 computational	 methods	 are	 generally	 trained	 on	

sets	 of	 variants	 with	 high	 evolutionary	 constraints	 implicated	 in	 disease.	

However,	 as	 many	 ADME	 genes	 are	 generally	 only	 poorly	 conserved,	 we	

hypothesize	that	specialized	pharmacogenetic	prediction	models	are	needed	that	

have	been	calibrated	on	appropriate	ADME	data	sets.		

	

In	this	study,	we	used	experimental	activity	data	 from	337	variants	distributed	

across	43	ADME	genes	to	evaluate	current	functionality	prediction	methods	and	

found	 that	 standard	 algorithms	 are	 only	 relatively	 poor	 predictors	 of	 the	

functional	 impact	 of	 ADME	 gene	 mutations.	 We	 thus	 developed	 a	 novel	

computational	 functionality	 prediction	 model	 optimized	 for	 pharmacogenetic	

assessments,	 which	 substantially	 outperformed	 standard	 algorithms,	 correctly	

flagging	93%	of	experimental	loss-of-function	(LOF)	variants	as	deleterious	and	
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93%	of	variants	without	functional	impact	as	neutral.	Thus,	the	ADME-optimized	

prediction	framework	significantly	improves	in	silico	functionality	assessment	of	

pharmacogenetic	variants,	thereby	facilitating	the	translation	of	uncharacterized	

variants	 into	 pharmacogenetic	 recommendations	 and	 providing	 a	 further	 step	

towards	 the	 leveraging	 of	 Next-Generation	 Sequencing	 data	 for	 the	

personalization	of	pharmacological	treatment.		

	

	

Methods	

In	vitro	functionality	data	

We	obtained	experimental	 functionality	data	for	337	single	variant	alleles	from	

the	 43	 ADME	 gene	 (see	 Supplementary	 Table	 1	 for	 references).	 The	 common	

variants	rs3758581	(CYP2C19	I331V),	rs16947	(CYP2D6	R296C)	and	rs1135840	

(CYP2D6	 S486T)	 were	 considered	 as	 neutral.	 An	 overview	 of	 all	 analyzed	

variants,	 the	 substrates	 and	 expression	 systems	 used	 for	 characterization	 and	

the	 in	 silico	 predictions	 by	 all	 tested	 algorithms	 is	 provided	 in	 Supplementary	

Table	 2.	 Where	 necessary,	 variant	 coordinates	 were	 translated	 to	 a	 uniform	

reference	genome	version.	Mutations	 for	which	no	 score	 could	be	 retrieved	by	

any	 prediction	 method	 were	 excluded.	 Variants	 were	 considered	 to	 have	 a	

deleterious	 impact	 if	 they	 reduced	 their	 intrinsic	 clearance	 more	 than	 2-fold	

compared	to	the	wildtype	allele	(for	most	genes	the	*1,	in	the	case	of	NAT1	the	*4	

allele).		

	

Statistical	definitions	
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True	positives	(TP)	and	false	negatives	(FN)	are	variants	that	have	a	functional	

impact	 in	 vitro	 and	 are	 predicted	 in	 silico	 to	 be	 deleterious	 or	 neutral,	

respectively.	Conversely,	true	negatives	(TN)	and	false	positives	(FP)	are	defined	

as	 mutations	 that	 do	 not	 affect	 the	 functionality	 of	 the	 gene	 in	 vitro	 and	 are	

predicted	 in	 silico	 to	 be	 neutral	 or	 deleterious,	 respectively.	 The	 true	 positive	

rate	 or	 sensitivity	 is	 defined	 as	 !"
!"! !"

,	 specificity	 is	 !"
!"! !"

	and	 the	 false	

positive	 rate	 is	 defined	 as	 !"
!"! !"

.	 Furthermore,	 the	 positive	 and	 negative	

predictive	 values	 are	 calculated	 as	 !"
!"! !"

	and	 !"
!"! !"

,	 respectively	 and	 the	

total	predictive	accuracy	is	 !"! !"
!"! !" !"! !"

.	

	

Computational	functionality	predictions	

We	compared	the	 functionality	assessments	of	18	current	 in	silico	 functionality	

prediction	algorithms,	conservation	scores	and	ensemble	scores	computed	using	

ANNOVAR	20:	SIFT21,	PolyPhen-222,	Likelihood	ratio	tests23,	MutationAssessor24,	

FATHMM25,	 FATHMM-MKL26,	 PROVEAN27,	 VEST328,	 CADD29,	 DANN30,	

MetaSVM31,	 MetaLR31,	 GERP++32,	 SiPhy33,	 PhyloP34	 (using	 both	 vertebrate	 and	

mammalian	alignments)	and	PhastCons35	(using	both	vertebrate	and	mammalian	

alignments).		

	

Development	of	ADME	optimized	algorithm	

The	 337	 alleles	 were	 randomly	 partitioned	 into	 five	 subsets	 for	 5-fold	 cross	

validations	while	assuring	equal	proportions	of	deleterious	and	neutral	variants	

(Figure	1).	Thresholds	for	the	individual	algorithms	were	optimized	on	the	basis	

of	 the	Youden	 index	or	 informedness	 function,	which	can	be	 interpreted	as	 the	
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probability	 of	 an	 informed	 classification.	 The	 Youden	 index,	 defined	 as	 I	 =	

sensitivity	 +	 specificity	 –	 1,	 was	 calculated	 for	 each	 potential	 threshold	

(increments	0.01	to	0.05)	between	the	highest	and	lowest	possible	score	for	each	

respective	method.	All	variants	i	were	classified	as	deleterious	or	neutral	by	each	

of	the	k	threshold-optimized	algorithms.	If	the	computational	prediction	for	vari	

aligns	with	 the	 corresponding	experimental	 result,	 then	score	 sk,i	 =1	otherwise	

sk,i	=	0.	Subsequently,	out	of	all	possible	constellations	the	algorithm	combination	

was	selected	for	the	ADME-optimized	model	for	which	 𝑠!,! = 𝑚𝑎𝑥!! 	with	l	≤	k.	

Importantly,	 the	 result	 with	 this	 model	 was	 validated	 for	 each	 fold	 using	 the	

independent	 validation	 set.	 Overall,	 optimal	 results	 for	 the	 pharmacogenetic	

prediction	 model	 were	 derived	 by	 integrating	 assessments	 of	 LRT,	

MutationAssessor,	PROVEAN,	VEST3	and	CADD.	The	overall	prediction	score	of	

the	ADME-optimized	model	is	defined	as	follows:	each	of	the	algorithms	predicts	

whether	 a	 variant	 is	 deleterious	 or	 neutral	 based	 on	 its	 ADME-optimized	

threshold	 value	 (1=deleterious	 and	 0=functionally	 neutral).	 The	 final	 score	 is	

derived	by	averaging	the	assessments	of	the	individual	algorithms	(1	or	0).	Thus,	

a	score	of	1	indicates	that	all	algorithms	predicted	the	variant	to	be	deleterious,	a	

score	of	0	that	all	algorithms	predicted	the	variant	to	be	neutral	and	a	score	of	

e.g.	0.5	that	half	of	the	algorithms	predicted	the	variant	to	be	deleterious	and	half	

to	be	neutral.	Receiver	operating	characteristics	(ROC)	analyses	were	performed	

using	Prism	6	(GraphPad	Software	Inc.).	

	

	

Results	
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Conventional	 computational	 algorithms	 have	 a	 low	 predictive	 accuracy	

when	applied	to	pharmacogenetic	variants	

We	 first	 evaluated	 the	 performance	 of	 current	 computational	 functionality	

assessment	algorithms	on	pharmacogenetic	variants	across	43	ADME	genes	with	

low	evolutionary	constraints	(Supplementary	Table	3).	To	this	end,	we	derived	

predictions	 for	 337	 pharmacogenetic	 single	 nucleotide	 variants	 (SNVs)	 with	

available	high-quality	experimental	data.	These	variants	cause	alterations	in	the	

amino	 acid	 sequence	 of	 their	 corresponding	 gene	 product,	 which	 can	 either	

cause	direct	modulation	of	protein	activity,	result	in	changes	in	protein	levels,	for	

instance	 due	 to	 misfolding	 followed	 by	 degradation	 or	 entail	 dysregulation	 of	

protein	 transport.	We	 evaluated	 eight	 commonly	 used	 functionality	 prediction	

algorithms,	SIFT,	PolyPhen-2,	LRT,	MutationAssessor,	FATHMM,	FATHMM-MKL,	

PROVEAN	 and	 VEST3	 (Figure	 2a).	 When	 using	 the	 area	 under	 the	 ROC	 curve	

(AUCROC)	as	measure	for	model	quality,	VEST3,	MutationAssessor	and	PolyPhen-

2	 exhibited	 the	 best	 performance	 with	 AUCROC	 values	 of	 0.8,	 0.78	 and	 0.77,	

respectively,	whereas	FATHMM	performed	worst	(AUCROC	=	0.51;	Table	1).		

	

Next,	 we	 tested	 the	 performance	 of	 four	 models,	 GERP++,	 SiPhy,	 PhyloP	 and	

PhastCons	 using	 different	 phylogenetic	 models	 (using	 7	 vertebrates	 or	 20	

mammals),	 resulting	 in	 a	 total	 of	 six	 sores	 that	 use	 evolutionary	 conservation	

based	on	 sequence	 alignments	 as	 a	measure	 for	 functional	 importance	 (Figure	

2b).	Overall,	the	predictive	power	of	evolutionary	conservation	scores	(AUCROC	=	

0.58	–	0.67)	was	substantially	lower	than	of	functionality	prediction	algorithms	

which	 base	 their	 assessment	 also	 on	 additional	 features,	 such	 as	 homology	

alignments	 or	 structure-based	 features	 (AUCROC	 =	 0.51	 –	 0.8;	 Table	 1).	 These	
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findings	 suggest	 that	 evolutionary	 conservation	 alone	 seems	 to	 be	 a	 poor	

indicator	of	functional	impact	in	poorly	conserved	loci,	such	as	ADME	genes.	

	

We	 furthermore	 analyzed	 the	 ensemble	 scores	 CADD,	 DANN,	 MetaSVM	 and	

MetaLR	 that	 integrate	assessments	 from	multiple	orthologous	methods	 (Figure	

2c).	CADD	and	DANN	performed	substantially	better	than	MetaSVM	and	MetaLR	

on	our	data	set	with	the	former	showing	the	best	predictive	performance	of	all	

models	analyzed	(AUCROC	=	0.81;	Table	1).	Importantly,	the	predictive	power	of	

most	algorithms	on	our	ADME	variant	cohort	was	substantially	lower	compared	

to	data	 sets	based	on	pathogenicity-associated	variants	 (Table	1),	 emphasizing	

the	shortcomings	of	model	parameterization	based	on	genome-wide	analyses	for	

pharmacogenetic	functionality	predictions.		

	

	

Optimization	of	pharmacogenetic	functionality	predictions	

To	 improve	 the	predictive	power	of	pharmacogenetic	 functionality	predictions,	

we	structured	the	problem	into	two	tasks:	First,	we	optimized	the	classification	

thresholds	 of	 the	 individual	 algorithms	 and,	 in	 a	 second	 step,	 we	 selected	 the	

optimal	combination	of	model	components.		

	

We	decided	to	optimize	parameterization	of	the	algorithms	based	on	the	concept	

of	overall	informedness,	defined	as	the	probability	that	a	prediction	is	informed	

(i.e.	 not	 by	 chance)	 using	 the	 Youden	 index	 as	 statistical	 target	 metric	 (see	

Supplementary	 Figure	 1	 for	 graphical	 depiction	 and	 further	 explanation).	 The	

Youden	index	J	developed	as	a	measure	to	rate	diagnostic	tests	36,	is	defined	on	
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the	basis	of	a	ROC	curve	as	𝐽 = 𝑚𝑎𝑥! 𝑠𝑒𝑛𝑠 𝑥 + 𝑠𝑝𝑒𝑐 𝑥 − 1 	across	all	potential	

threshold	scores	x.	The	point	x	for	which	the	sum	of	sensitivity	and	specificity	is	

maximal	indicates	the	optimal	threshold	value	that	maximizes	the	capacity	of	the	

test	 to	 differentiate	 between	 deleterious	 and	 neutral	 variants	when	 sensitivity	

and	 specificity	 are	 weighted	 equally,	 thus	 avoiding	 impacts	 of	 the	 unequal	

distribution	of	neutral	and	functionally	deleterious	variants	in	our	data	set	37.	We	

defined	 the	 optimal	 threshold	 value	 for	 each	 algorithm	 or	 score	 based	 on	 the	

global	maximum	of	the	informedness	graph	(Figure	3a).	Interestingly,	shapes	of	

the	 informedness	 functions	 differed	 substantially	 between	 algorithms.	 While	

some	algorithms,	such	as	PolyPhen-2	and	FATHMM-MKL	showed	largely	stable	

informedness	 values	 across	 a	 wide	 range	 of	 threshold	 scores,	 others,	 such	 as	

SIFT	 or	 PROVEAN,	 exhibited	 sharp	 peaks,	 indicating	 drastic	 differences	 in	 the	

robustness	of	the	method	to	variation	in	threshold	scores.		

	

To	evaluate	the	sensitivity	of	this	approach	to	variability	in	training	set	variants	

we	performed	5-fold	cross	validations	in	which	we	partitioned	the	variants	into	

five	equally	sized	subsets.	Of	these	five	subsets,	four	are	used	for	model	training	

and	 one	 is	 used	 for	 independent	 validation.	 This	 process	 is	 iterated	 five	 times	

with	 each	of	 the	 five	 subsamples	 serving	once	 as	 validation	data	 set.	 For	most	

algorithms,	 including	 PROVEAN	 (|coefficient	 of	 variation|=0.006),	 DANN	

(|CV|=0.012)	 and	 VEST3	 (|CV|=0.054),	 the	 optimal	 threshold	 differed	 only	

marginally	 between	 folds,	 demonstrating	 the	 robustness	 of	 the	 threshold	

optimization	 (Supplementary	 Table	 4).	 In	 contrast,	 optimal	 thresholds	 were	

substantially	 different	 across	 folds	 for	 PhyloP	 (|CV|=3.12)	 and	 FATHMM	

(|CV|=2.33).	 Interestingly,	 the	 added	 value	 of	 threshold	 optimization	 differed	
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substantially	 across	 prediction	 tools	 (Figure	 3b	 and	 Table	 2).	While	 threshold	

optimization	did	only	marginally	improve	the	informedness	of	PolyPhen-2,	SIFT	

or	 CADD	 (ΔI<0.03),	 the	 performance	 of	 other	 algorithms,	 such	 as	 SiPhy	

(ΔI=0.13),	GERP++	(ΔI=0.22)	and	VEST3	(ΔI=0.38),	were	highly	improved.		

	

When	 integrating	 the	 individual	 predictions	 for	 each	 variant	 into	 a	 consensus	

decision	by	averaging	the	ADME-optimized	thresholds	across	folds,	the	resulting	

model	achieved	82%	sensitivity	and	62%	specificity.	To	improve	this	predictive	

accuracy,	we	evaluated	the	predictive	performance	for	all	possible	combinations	

of	 threshold-optimized	 algorithms.	 Importantly,	 optimal	 model	 constituents	

were	highly	similar	between	folds	(Supplementary	Table	4)	and,	based	on	these	

findings,	we	integrated	the	LRT,	MutationAssessor,	PROVEAN,	VEST3	and	CADD	

using	 ADME-optimized	 parameters	 (Table	 2)	 into	 our	 pharmacogenetic	

prediction	framework.		

	

	

Performance	of	ADME	optimized	prediction	framework	

In	 the	 training	 data	 sets	 the	 ADME	 optimized	 prediction	 framework	 achieved	

overall	 sensitivity	 and	 specificity	 of	 80%	 ±	 2%	 S.D.	 and	 80%	 ±	 3%	 S.D.,	

respectively,	thus	outperforming	all	previously	reported	functionality	prediction	

algorithms,	conservation	or	ensemble	scores.	This	superior	performance	of	 the	

ADME	optimized	model	was	validated	using	the	independent	variants	from	each	

training	set,	achieving	sensitivity	and	specificity	of	79%	±	10%	S.D.	and	81%	±	

11%	S.D.,	respectively.	
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Importantly,	 when	 analyzing	 all	 337	 pharmacogenetic	 variants	 using	 the	

developed	ADME	optimized	prediction	framework	we	found	that	the	score	of	the	

ADME-optimized	prediction	model	correlates	well	with	the	extent	of	 functional	

impact	 of	 the	 variant	 in	 question	 (R2	 =	 0.9,	 p	 =	 2.9*10-5;	 Figure	 5a).	 For	 LOF	

variants	 	 (<10%	 activity	 of	WT)	 the	model	 yielded	 scores	 of	 0.84±0.02	 s.e.m.,	

which	 continuously	 decreased	 with	 increased	 functionality	 in	 vitro	 up	 to	

0.19±0.02	 s.e.m.	 for	 functionally	neutral	 variants	 (>90%	activity	of	WT).	When	

translating	 these	 scores	 into	 dichotomous	 functionality	 predictions,	 the	model	

achieved	 93%	 sensitivity	 (101/109	 variants)	 for	 LOF	 variants	 that	 decreased	

activity	 >10-fold	 whereas	 variants	 with	 only	 mild	 functional	 effects	 were	

recognized	 with	 55-70%	 sensitivity	 (Figure	 5b).	 Conversely,	 prediction	

specificity	 for	variants	that	exhibited	≥90%	of	the	 functional	activity	of	 the	WT	

allele,	was	93%	(66/71	variants),	whereas	the	specificity	for	variants	with	50%-

100%	activity	was	only	56-82%	(Figure	4c).	Overall,	these	performance	metrics	

resulted	 in	 a	 predictive	 accuracy	 of	 93%	 for	 LOF	 and	 functionally	 neutral	

variants,	compared	to	84%	for	CADD,	the	score	with	the	next	highest	accuracy.	

	

Overall,	the	ADME	optimized	model	achieved	the	highest	extent	of	informedness	

for	LOF	and	neutral	variants	(IADME	=	0.86),	followed	by	CADD	(ICADD	=	0.65)	and	

LRT	 (ILRT	 =	 0.63;	 Figure	 5c).	 Similarly,	 when	 all	 variants	 are	 considered	 and	

classified	 dichotomously,	 the	 ADME	model	 substantially	 outperformed	 current	

models	 (IADME	=	0.6	 followed	by	 ICADD	=	0.51).	 In	contrast,	VEST3	and	FATHMM	

only	 yielded	 overall	 values	 of	 IVEST	 =	 0.11	 and	 IFATHMM	 =	 0.01,	 respectively.	

Besides	the	increased	predictive	power,	the	integrated	ADME	model	successfully	

derived	 assessments	 for	 all	 variants,	 while	 some	 individual	 algorithms	 were	
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unable	 to	 predict	 the	 functional	 impact	 of	 up	 to	 5%	 of	 all	 variants	 analyzed	

(Figure	5d).	

	

Lastly,	we	analyzed	whether	the	predictive	performance	of	the	ADME	optimized	

prediction	 model	 depended	 on	 the	 frequency	 of	 the	 respective	 variant.	 The	

majority	of	the	337	variants	analyzed	in	this	study	were	rare	(n	=	285)	or	very	

rare	(n=232)	with	MAF<1%	or	MAF<0.1%,	respectively.	Notably,	the	predictive	

power	of	the	model	for	LOF	and	functionally	neutral	variants	was	better	for	very	

rare	(IMAF<0.1%	=	0.87)	and	rare	mutations	(I0.1%≤MAF<1%	=	1)	compared	to	common	

variants	 (IMAF≥1%	 =	 0.45;	 Figure	 5e).	 Similar	 trends	 were	 observed	 when	 all	

variants	were	considered	either	in	our	model	(Figure	5f)	or	in	individually	tested	

algorithms	(Supplementary	Figure	2).	While	our	results	correlated	significantly	

with	data	from	REVEL	(R2	=	0.5;	Supplementary	Figure	3),	a	prediction	method	

to	 analyze	 the	pathogenicity	 of	 rare	missense	 variants	 38,	 the	ADME-optimized	

prediction	 framework	 performed	 substantially	 better	 for	 the	 prediction	 of	

pharmacogenetic	variants:	When	using	 the	 threshold	 score	 that	 resulted	 in	 the	

best	 Youden	 index	 for	 disease	 associated	 variants	 (0.5),	 REVEL	 achieved	

informedness	 values	 of	 0.36	 and	 0.61	 on	 our	 pharmacogenetic	 data	 set	 when	

considering	 all	 or	 only	 LOF	 and	 functionally	 neutral	 variants,	 respectively.	 In	

contrast,	 on	 the	 same	 variants	 the	 ADME-optimized	 model	 achieved	

informedness	levels	of	0.6	and	0.86,	respectively	(Supplementary	Table	5).	These	

findings	emphasize	the	usefulness	of	the	ADME	optimized	prediction	model	 for	

the	functional	interpretation	of	pharmacogenetic	variants	with	low	frequencies,	

which,	due	to	their	large	numbers,	are	difficult	to	systematically	characterize	in	

vitro.	
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Discussion	

Despite	 the	 abundance	 of	 genomic	 data	 generated	 in	 the	 frame	 of	 multiple	

completed	and	ongoing	population-scale	sequencing	projects,	the	understanding	

of	personal	genomic	data	and	translation	into	clinically	actionable	information	is	

still	 very	 limited.	Functional	 interpretation	of	 identified	mutations	 relies	either	

on	 clinical	 or	 experimental	 data,	 which	 is	 only	 available	 for	 a	 small	 subset	 of	

well-characterized	genetic	variants,	or	on	computational	prediction	tools.	A	vast	

number	of	algorithms	and	scores	have	been	presented	that	predict	the	likelihood	

of	 whether	 a	 genetic	 variant	 has	 a	 functional	 impact	 based	 on	 sequence	

homology,	 structural	 features,	 preexisting	 annotations	 or,	 most	 importantly,	

evolutionary	 constraints	 39	 and	 these	 tools	 have	 been	 reasonably	 successful	 in	

predicting	 mutations	 associated	 with	 disease	 40,	 41.	 However,	 the	 predictive	

quality	of	these	algorithms	on	specific	classes	of	genes	with	lower	evolutionary	

constraints	that	are	often	not	directly	disease-associated,	has	not	been	evaluated.	

	

Here,	 we	 benchmarked	 18	 commonly	 used	 prediction	 methods	 on	 a	

pharmacogenetic	data	set	encompassing	337	variants	with	available	high-quality	

experimental	 characterization	 data	 using	 functional	 assays,	 which	 have	 been	

suggested	as	gold	standard	sets	for	the	benchmarking	of	computational	tools	42.	

We	 focused	 on	 pharmacokinetic	 genes	 involved	 in	 drug	 metabolism	 and	

transport	as	these	can	be	genetically	highly	polymorphic	and	are	subject	to	low	

evolutionary	 constraints.	 In	 contrast,	 drug	 targets	 are	 highly	 heterogeneous	

regarding	 their	 evolutionary	 conservation	 and	 are	 commonly	 associated	 with	
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congenital	 diseases	 43.	 Importantly,	 we	 found	 that	 performance	 of	 tested	

algorithms	 on	 this	 ADME	 data	 set	 was	 substantially	 lower	 than	 on	 data	 sets	

comprising	 of	 pathogenic	 variants	 (Table	 1).	 Of	 the	 different	 methods	 tested,	

evolutionary	 conservation	 scores	 exhibited	 overall	 the	 worst	 performance,	

supporting	our	hypothesis	that	selective	constraints	are	unreliable	measures	for	

assessing	the	functionality	of	variants	 in	genes	with	 low	evolutionary	pressure,	

such	 as	 ADME	 genes	 44.	 Given	 that	 most	 algorithms	 rely	 on	 evolutionary	

conservation	 as	 a	 core	 feature,	 these	 findings	 suggest	 that	ADME	gene-specific	

parameter	optimization	and	integration	of	orthogonal	approaches	represents	an	

appealing	rationale	to	improve	the	pharmacogenetic	predictions.	

	

After	 optimization	 our	 model	 significantly	 outperformed	 all	 individual	

functionality	prediction	methods	achieving	a	predictive	accuracy	of	93%	for	LOF	

and	 functionally	neutral	 variants,	 compared	 to	84%	 for	CADD,	 the	 second	best	

algorithm.	 Interestingly,	 we	 achieved	 the	 best	 overall	 performance	 not	 by	

integrating	 the	 individually	 best	 performing	 algorithms.	 For	 instance,	 LRT	

ranked	only	 as	5	with	 an	 accuracy	of	 81.8%	but	 the	LRT	 score	was	 integrated	

into	 the	 most	 predictive	 ADME	 model.	 This	 finding	 is	 in	 agreement	 with	 the	

performance	 of	 the	 model	 on	 human	 disease	 alleles	 for	 which	 the	 overlap	

between	LRT	and	other	methods	has	been	shown	to	be	low	23.	

	

Deviations	between	in	vitro	data	and	in	silico	predictions	can	be	allotted	to	both	

computational	 and	 experimental	 factors	 45.	 Firstly,	 the	 use	 of	 sensitivity	 and	

specificity	 as	 statistical	 summary	 metrics	 requires	 dichotomous	 variant	

classification,	which	relies	on	the	definition	of	an	activity	threshold	below	which	
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variants	are	considered	as	deleterious	(here	50%	of	WT)	and	modulation	of	this	

cutoff	will	influence	the	number	of	discrepancies.	On	our	pharmacogenetic	data	

set	 the	 sensitivity	 and	 specificity	 of	 predictions	 was	 substantially	 higher	 for	

variants	 that	 caused	 >10-fold	 reduction	 or	 no	 reduction	 (activity	 ≥90%)	 in	

protein	functionality,	respectively,	compared	to	variants	that	only	had	moderate	

effects	 (Figure	 5b),	 indicating	 that	 the	 choice	 of	 a	 more	 stringent	 threshold	

would	further	improve	predictive	performance.		

	

Secondly,	inter-experimental	variability	can	change	the	classification	of	a	variant,	

particularly	 for	 variants	 that	 result	 only	 in	 moderate	 decreases	 of	 protein	

activity;	 a	 problem	 which	 can	 only	 be	 overcome	 by	 stringent	 experimental	

replications.	Furthermore,	variants	that	result	in	substrate-specific	functionality	

changes	 can	 be	missed	 when	 probing	 functionality	 using	 a	 limited	 number	 of	

assays	 (Supplementary	Table	2).	We	observed	substrate-dependent	differences	

for	CYP2D6*49,	which	significantly	reduces	enzyme	activity	towards	the	CYP2D6	

substrates	dextromethorphan	and	bufuralol	but	does	not	affect	the	clearance	of	

tamoxifen	 46,	 47.	 Similarly,	 CYP2C8*10	 and	 CYP2C8*13	 exhibited	 reduced	

amodiaquine	N-deethylation	activity	while	their	paclitaxel	hydroxylation	kinetics	

remained	unaffected	48.		

	

Lastly,	 discrepancies	 can	 occur	 between	 the	 functional	 impact	 of	 a	 variant	 in	

vitro	 and	 in	 vivo.	 One	 such	 example	 is	 CYP2D6*35,	 which	 shows	 reduced	

tamoxifen	 hydroxylation	 in	 vitro	 47	 but	 has	 not	 been	 associated	 with	 reduced	

activity	 in	 vivo	 49.	 Similarly,	 CYP2A6*8	 is	 unlikely	 to	 affect	 catalytic	 activity	 in	

vivo50	 but	 strongly	 impairs	 nicotine	 and	 coumarin	 metabolism	 in	 vitro51.	 Our	
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ADME	 optimized	 prediction	 model	 clearly	 flagged	 both	 alleles	 as	 functionally	

neutral	(Figure	2a),	thus	correctly	predicting	the	functional	consequence	in	vivo.	

However,	 for	 the	 sake	 of	 consistency	 and	 clarity	 we	 trained	 our	 model	

exclusively	with	 quantitative	 and	 homogeneous	 experimental	 in	vitro	 data	 and	

did	 not	 introduce	 more	 heterogeneous	 and	 variable	 data	 from	 patient	

phenotyping.	

	

The	presented	prediction	framework	improved	both	sensitivity	and	specificity	of	

functionality	 predictions	 for	 variants	 in	 poorly	 conserved	 genes	 compared	 to	

preexisting	 assays.	 However,	 while	 the	 model	 is	 capable	 of	 predicting	 the	

functionality	 of	 genetic	 variations	 beyond	missense	 mutations,	 such	 as	 indels,	

frameshifts	 and	 synonymous	 variants,	 comprehensive	 investigations	 into	 the	

performance	regarding	these	variant	classes	are	currently	not	feasible	due	to	the	

small	 number	 of	 such	 pharmacogenetic	 variants	 with	 available	 experimental	

characterization	data.		

	

In	 summary,	 we	 have	 developed	 and	 validated	 a	 functionality	 prediction	

framework	 for	 genetic	 variants	 in	 ADME	 genes	 that	 significantly	 outperforms	

current	 methods	 using	 multiple	 quality	 metrics,	 is	 not	 limited	 to	 previously	

encountered	mutations	and	can	be	easily	applied	to	novel	variants	through	use	

of	the	established	ANNOVAR	platform.	Importantly,	the	model	not	only	informs	

about	 the	 likelihood	 that	 the	 variant	 in	question	has	deleterious	 effects	 on	 the	

functionality	of	the	gene	product	but	also	provides	quantitative	estimates	of	 its	

effect	on	gene	function.	Thus,	it	presents	a	versatile	tool	that	aspires	to	improve	

the	 prediction	 of	 phenotypic	 consequences	 of	 variants	 discovered	 in	 genomic	
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sequencing	projects,	thereby	facilitating	the	translation	of	the	entire	spectrum	of	

patient’s	genetic	variability	into	pharmacogenetic	recommendations.		
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Table	 1.	 Comparison	 of	 the	 predictive	 performance	 of	 functionality	

prediction	tools	on	pathogenic	and	pharmacogenetic	data	sets.	Performance	

measures	on	disease	associated	data	sets	were	obtained	from	references	26-31.	

Algorithm	

Category	

Performance	on	disease-associated	data	set	(AUCROC)	

Performance	on	pharmacogenetic	data	set	(AUCROC)	

	
SIFT	

	

	

	

Functionality	prediction	algorithms	

0.76	–	0.88	

0.74	

	
PolyPhen-2	

	

0.79	–	0.88	

0.77	

	
LRT	

	

0.67	–	0.72	

0.75	

	
Mutation	Assessor	

	

0.8	–	0.83	

0.78	

	
FATHMM	

	

0.87	–	0.91	

0.51	

Algorithm	 Category	 Performance	on	

disease-associated	

data	set	(AUCROC)	

Performance	on	

pharmacogenetic	

data	set	(AUCROC)	

SIFT	 	

	

	

Functionality	

prediction	

algorithms	

0.76	–	0.88	 0.74	

PolyPhen-2	 0.79	–	0.88	 0.77	

LRT	 0.67	–	0.72	 0.75	

Mutation	Assessor	 0.8	–	0.83	 0.78	

FATHMM	 0.87	–	0.91	 0.51	

FATHMM-MKL	 0.91	 0.73	

PROVEAN	 0.85	 0.76	

VEST3	 0.91	 0.8	

GERP++	 	

	

Evolutionary	

conservation	scores	

0.67	–	0.78	 0.67	

SiPhy	 0.69	–	0.81	 0.63	

PhyloP	(vertebrate)	 0.67	-	0.83	 0.64	

PhyloP	(mammalian)	 0.64	

PhastCons	(vertebrate)	 0.67	-	0.83	 0.58	

PhastCons	

(mammalian)	

0.61	

CADD	 	

	

Ensemble	scores	

0.93	 0.81	

DANN	 0.95	 0.75	

MetaSVM	 0.88	-	0.89	 0.68	

MetaLR	 0.92	–	0.94	 0.68	
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Table	 2.	 Overview	 of	 computational	 method	 parameters	 to	 assess	 the	

functionality	of	pharmacogenetic	variants.	Sensitivity	and	specificity	of	each	

prediction	 method	 is	 shown	 for	 conventional	 disease	 dataset-based	

parameterization	 and	 ADME	 optimized	 parameters.	 Threshold	 values	 are	 in	

arbitrary	units,	values	for	sensitivity	and	specificity	are	provided	in	%.	

	

	 	 Conventional	 ADME	optimized	
Algorit
hm	

Category	 Thresho
ld	

Sensitivi
ty	(%)	

Specifici
ty	(%)	

Thresho
ld	

Sensitivi
ty	(%)	

Specifici
ty	(%)	

SIFT	 	
	
	
	
	
	

Functionality	
prediction	
algorithms	

<0.05	 80.7	 54.2	 <0.0376	 75.6	 57.6	
PolyPh
en-2	

>0.447	 80.8	 63	 >0.3841	 83	 61.6	

LRT	 <0.001	 66.3	 72.3	 <0.0025	 77.3	 65.2	
Mutati
on	
Assess
or	

>1.9	 79	 63.7	 >2.0566	 74	 67.8	

FATHM
M	

<-1.5	 18.2	 81.9	 <0.486	 69.9	 27.1	

FATHM
M-MKL	

>0.73	 64.2	 68	 >0.3982	 77.4	 63.3	

PROVE
AN	

<-2.5	 80.7	 56.9	 <-3.286	 72.2	 72.2	

VEST3	 >0.9	 14.3	 95.9	 >0.4534	 67.6	 78.8	
GERP+
+	

	
	
	
	
	
	
	

Evolutionary	
conservation	

scores	

>4.4	 28.4	 84.4	 >1.2482	 84.2	 47.6	

SiPhy	 >12.17	 32.1	 78.2	 >7.2442	 51.9	 72.7	
PhyloP	
(verteb
rate)	

NA	 NA	 NA	 >0.5216	 70.5	 53.7	

PhyloP	
(mam
malian)	

NA	 NA	 NA	 >0.0461	 77.4	 49	

PhastC
ons	
(verteb
rate)	

NA	 NA	 NA	 >0.07	 81.1	 34.7	

PhastC
ons	
(mam
malian)	

NA	 NA	 NA	 >0.1872	 67.4	 49.7	

CADD	 	
Ensemble	
scores	

>15	 75.8	 74.8	 >19.19	 74.2	 78.9	
DANN	 >0.99	 68.9	 70.1	 >0.9688	 85.8	 54.4	
MetaSV
M	

>0	 43.4	 86.3	 >-0.3371	 51.6	 78.1	

MetaLR	 >0.5	 41.2	 84.2	 >0.4039	 52.2	 76.7	
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Figure	legends	

Figure	1:	Schematic	depiction	of	 the	workflow	for	the	development	of	 the	

ADME	optimized	prediction	model.	

	

Figure	2:	Overview	of	the	performance	of	different	functionality	prediction	

methods.	Variants	(n=337)	were	separated	into	phenotypically	neutral	variants	

(lighter	 shaded	 circles)	 and	 those	 that	 have	 a	 relevant	 impact	 on	 substrate	

metabolism	 (intrinsic	 clearance	 reduced	 >2-fold;	 darker	 shaded	 squares).	

Functionality	 was	 predicted	 using	 8	 common	 prediction	 algorithms	 (a),	 6	

evolutionary	 conservation	 scores	 (b)	 and	 4	 ensemble	 scores	 (c).	 Conventional	

thresholds	 of	 the	 respective	 algorithms	 are	 depicted	 as	 dashed	 lines	 and	

intervals	of	functionality	scores	deemed	functional	are	shaded	in	light	grey.	The	

average	scores	of	variants	in	the	neutral	and	deleterious	groups	are	indicated.		

	

Figure	3:	Pharmacogenetic	threshold	optimization	results	 in	substantially	

higher	 probabilities	 to	 make	 informed	 decisions.	 a,	 The	 degree	 of	

informedness	 is	 plotted	 as	 a	 function	of	 threshold	 score	 for	 eight	 functionality	

prediction	algorithms,	six	evolutionalry	conservation	scores	and	 four	ensemble	

scores.	 The	 threshold	 score	 corresponding	 to	 the	 global	 maximum	 of	

informedness	 is	 indicated.	 ΔI	 denotes	 the	 gain	 in	 informedness	 between	 using	

the	 pharmacogenetically	 optimized	 threshold	 and	 the	 conventional	 threshold	

provided	 in	 the	 literature.	 Results	 are	 depicted	 for	 one	 of	 the	 five	 folds	 in	 our	

cross-validation	 analysis.	 b,	 Averaging	 the	 ΔI	 values	 of	 the	 five	 folds	

demonstrates	 that	 the	 increases	 in	 informedness	 due	 to	 ADME-specific	
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parameterization	differ	 substantially	between	algorithms	and	are	 stable	across	

folds.	As	no	standard	 thresholds	 for	PhyloP	and	PhastCons	are	provided	 in	 the	

literature,	 no	 ΔI	 values	 for	 these	 conservation	 scores	 are	 shown.	 Error	 bars	

indicate	S.D.	

	

Figure	4:	The	ADME	optimized	model	outperforms	 conventional	methods	

for	 the	 functionality	 prediction	 of	 pharmacogenetic	 variants.	 Column	plot	

showing	 the	 sensitivity	 (shades	 of	 blue)	 and	 specificity	 (shades	 of	 red)	 of	

commonly	 used	 functionality	 prediction	 algorithms,	 ensemble	 scores	 and	

evolutionary	 conversation	 scores	 as	well	 as	 of	 the	ADME	optimized	prediction	

model	presented	here.	Notably,	the	ADME	optimized	model	was	the	only	method	

achieving	both	sensitivity	and	specificity	of	>80%	in	both	training	and	validation	

data	set.	Error	bars	indicate	S.D.	across	folds.	

	

Figure	 5:	 The	 ADME	 optimized	model	 provides	 quantitative	 estimates	 of	

functional	 variant	 effects.	 a,	 The	 score	 provided	 by	 the	 ADME	 optimized	

prediction	 model	 correlates	 quantitatively	 with	 the	 level	 of	 gene	 product	

functionality	determined	experimentally	in	vitro	(R2	=	0.9,	p	=	2.9*10-5).	Highest	

scores	are	provided	for	LOF	variants	with	<10%	of	WT	functionality	(0.84	±	0.02	

s.e.m.),	 while	 variants	 that	 do	 not	 affect	 gene	 product	 functionality	 receive	

lowest	 scores	 (0.19	 ±	 0.02	 s.e.m.).	 Data	 is	 plotted	 as	mean	 ±	 s.e.m.	b,	 93%	 of	

variants	that	resulted	in	severely	decreased	functionality	in	vitro	(<10%	activity	

of	WT)	were	correctly	classified	as	deleterious,	whereas	variants	whose	effect	on	

functionality	 was	 only	 moderate	 (decreased	 functionality	 variants;	 10%-50%	

activity	 of	WT),	 were	 flagged	with	 lower	 probabilities.	 Similarly,	 variants	 that	
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showed	equivalent	 activity	 than	WT	 (>90%)	were	more	 likely	 to	be	 flagged	as	

functionally	neutral	(93%	specificity)	than	variants	with	50-100%	of	activity.	c,	

Levels	 of	 informedness	 are	 shown	 for	 all	 variants	 (black)	 and	 variants	 with	

<10%	 and	 >90%	 of	WT	 activity	 (red	 curves	 corresponding	 to	 red	 columns	 in	

panel	 b).	 Note	 that	 the	 ADME	 optimized	 prediction	 framework	 achieved	 the	

highest	values	of	informedness,	irrespective	of	which	variants	were	considered.	

d,	Overview	of	the	fraction	of	variants	for	which	no	prediction	could	be	obtained	

by	the	individual	algorithms.	While	SIFT,	FATHMM	and	PROVEAN	did	not	return	

predictions	for	5%	of	variants,	CADD,	DANN,	SiPhy,	PhastCons,	PhyloP,	GERP	and	

the	 ADME	 optimized	 model	 provided	 assessments	 for	 all	 non-synonymous	

variants	 analyzed	here.	e-f,	 Column	plot	 depicting	 sensitivity	 and	 specificity	 of	

the	ADME-optimized	prediction	model	for	LOF	and	functionally	neutral	variants	

(e)	 or	 all	 variants	 (f)	 depending	on	 their	minor	 allele	 frequencies	 (MAF).	Note	

that	predictive	measures	are	higher	for	very	rare	(MAF<0.1%)	and	rare	variants	

(0.1%≤MAF<1%)	compared	 to	 common	variants	 (MAF≥1%).	vert	=	vertebrate;	

mam	=	mammalian.	

	

	

Supplementary	Information	

Supplementary	 information	 is	 available	 at	 The	 Pharmacogenomics	 Journal’s	

website.	
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