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Figure S1: Experimental dependence of the 1H NMR 
spin echo signal amplitude on the nominal cryostat 
temperature Tnom (circles).  The fit with a linear 
dependence on 1/Tnom (red line) verifies that the actual 
sample temperature matches the nominal temperature 
down to 3.3 K.  A glycerol/water sample containing 5 
mM Dy3+ was used for these measurements.   
 

 
 
 
 
 
 

 
 

Figure S2: (a) 1H NMR spectra of 
frozen glycerol/water solutions 
with 5 mM Dy3+, 5 mM 
DOTOPA, 10 mM DOTOPA, 
and 15 mM DOTOPA at 30 K, 10 
K, 4.4 K, and 3.3 K.  (b) Table of 
1H NMR linewidths (full-width-
at-half-maximum in kHz) in 
these spectra. 
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Figure S3: Experimental 1H 
NMR signal decay curves as 
functions of LG  for the four 

samples at 30 K (red lines), 
10 K (orange lines), 4.4 K 
(green lines), and 3.3 K 
(blue lines).  Stretched-
exponential fits (red and 
blue dots, for experimental 
data at 30 K and 3.3 K) were 
used to determine values of 

2LGT , which are plotted in 

Fig. 3a. 
 
 
 
 
 
 
 

 
 

 
Figure S4: Experimental 1H 
NMR signal decay curves 
under pulsed spin-locking 
for the four samples at 30 K 
(red lines), 10 K (orange 
lines), 4.4 K (green lines), 
and 3.3 K (blue lines).  
Single-exponential fits 
(black dots, for 
experimental data at 10 K) 
were used to determine 
values of 2PSLT , which are 

plotted in Fig. 3b. 
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Figure S5: Experimental 1H 
NMR signal decay curves as 
functions of SL  for the 5 mM 

DOTOPA sample at 30 K, 10 K, 
4.4 K, and 3.3 K.  Data are 
shown for CW spin-locking 
fields 1 2   = 20 kHz (red 

lines), 40 kHz (orange lines), 80 
kHz (green lines), and 100 kHz 
(blue lines).  Stretched-
exponential fits (black dots, for 
experimental data at 1 2   = 

40 kHz) were used to determine 
values of 1T  , which are plotted 

in Fig. 4b. 
 

 
 
 

 
 
 

Figure S6:  Same as Fig. S5, but 
for the 10 mM DOTOPA 
sample.   1T   values are plotted 

in Fig. 4c. 
  



S5 
 

 
Figure S7:  Same as Fig. S5, but for 
the 15 mM DOTOPA sample.  1T   

values are plotted in Fig. 4d. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. S8: Experimental 1H NMR 
signal decay curves as functions 
of the Hahn echo period 2 echo  at 

30 K (red lines), 10 K (orange 
lines), 4.4 K (green lines), and 
3.3 K (blue lines).  Single-
exponential fits (black dots, for 
experimental data at 10 K) were 
used to determine values of 2T .  

With 5 mM Dy3+: 2T  = 289  7 

s, 279  9 s, 256  15 s, and 
256  14 s at 30 K, 10 K, 4.4 K, 
and 3.3 K, respectively.  With 5 
mM DOTOPA: 2T  = 218  6 s, 

227  7 s, 232  18 s, and 214 
 14 s at 30 K, 10 K, 4.4 K, and 
3.3 K, respectively.  With 10 mM 
DOTOPA:   2T  = 130  3 s, 136 

 5 s, 137  6 s, and 147  7 s at 30 K, 10 K, 4.4 K, and 3.3 K, respectively.  With 15 mM 
DOTOPA: 2T  = 137  4 s, 141  2 s, and 181  4 s at 30 K, 10 K, and 4.4 K, respectively. 
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Fig. S9: Experimental 1H NMR 
signal decay curves as functions 
of the Carr-Purcell echo train 
period 2 echoN , with echo  = 30 s, 

at 30 K (red lines), 10 K (orange 
lines), 4.4 K (green lines), and 3.3 
K (blue lines).  Single-exponential 
fits (black dots, for experimental 
data at 10 K) were used to 
determine values of 2T .  With 5 

mM Dy3+: 2T  = 231  13 s, 236 

 13 s, 233  11 s, and 241  16 
s at 30 K, 10 K, 4.4 K, and 3.3 K, 
respectively.  With 5 mM 
DOTOPA: 2T  = 201  10 s, 207 

 5 s, 181  11 s, and 177  12 
s at 30 K, 10 K, 4.4 K, and 3.3 K, 
respectively.  With 10 mM 

DOTOPA:   2T  = 127  3 s, 139  6 s, 132  4 s, and 134  7 s at 30 K, 10 K, 4.4 K, and 3.3 

K, respectively.  With 15 mM DOTOPA: 2T  = 154  5 s, 162  5 s, and 180  5 s at 30 K, 10 

K, and 4.4 K, respectively. 
 

 
Figure S10:  (a) Dependence of the 
experimentally determined 2PSLT  

value on the delay  after switching 
microwaves off (see Fig. 1a) for 
measurements at 4.4 K (green 
triangles), 10 K (orange squares), 
and 30 K (red pentagons).  The 
sample contained 10 mM 
DOTOPA.  Color-coded lines are 
fits with the functional form 

2 0exp( / )PSL a bT T T     , which 

yield 0  = 30 ± 6 ms, 120 ± 60, and 

170 ± 50 ms at 4.4 K, 10 K, and 30 
K.  (b,c,d) 1H NMR signal decay 
curves used to determine 2PSLT  

values at 30 K, 10 K, and 4.4 K, 
respectively.   
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Figure S11: Autocorrelation functions 
1

( ) ( ) [ ( ) ( ) ( ) ( )]
2xy xy x x y yB t B t B t B t B t B t        (left) 

and ( ) ( )z zB t B t   (right) from simulations of the electron spin dynamics in a system of thirty 

DOTOPA molecules in a cube with the indicated concentrations at the indicated temperatures.  A 
9.39 T magnetic field is applied along z.  Autocorrelation functions (black lines) were averaged 
over 300 simulations for each condition, with a total period of 2ms in each simulation.  Red curves 
are bi-exponential fits to the averaged autocorrelation functions up  = 1ms.  Best-fit parameters 
and corresponding nuclear spin relaxation times are given in Tables 1 and 2. 
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Derivation of expressions for nuclear spin relaxation rates 
 
Theoretical approach 
 
 To derive expressions for the relaxation rates 11 / T   and 21 / LGT , we use a standard method 

of second-order time-dependent perturbation theory to analyze the evolution of the nuclear spin 
density operator ( )t  under a Hamiltonian with the following form in the laboratory frame: 
 
 0 1( ) 2 cos ( )z xH t S S t t     ε S           (S1) 

 
Here 0  is the nuclear Larmor frequency, 1  and   are the RF amplitude and frequency, and 

( ) ( )Ht tε B  is a vector representing the direction and magnitude of a randomly fluctuating 

magnetic field at the nucleus, produced by the magnetic moments of the surrounding electron 
spins.  S is the nuclear spin angular momentum vector.  We assume that the three components of 

( )tε  satisfy  
 
 ( ) ( ') (0) ( ')at t t t                 (S2) 

 
where the overbar indicates an ensemble average and , , ,x y z   .  In other words, when 
averaged over the ensemble, the three fluctuating field components are not correlated with one 

another (i.e., cross-correlation functions are zero) and the autocorrelation functions ( ) ( ')t t    

depend only on the difference between t and 't .  Moreover, we assume that 

( ) ( ') ( ) ( ') ( ')x x y yt t t t f t t      , because the positions and states of the electron spins are 

symmetric about z on average, and ( ) ( ') ( ')z zt t g t t    .  We further assume that the ensemble 

average of ( )tε  is zero at all times. 
 To apply second-order perturbation theory, we must first transform to a frame in which the 
first two terms in Eq. (S1) vanish.  As shown below, such a transformation is accomplished by a 
series of rotations, with net rotation operator ( )R t , resulting in a transformed Hamiltonian 
 

   
1( ) ( )[ ( ) ] ( )

( ) ( ), ( ), ( )

( ) ( ) ( )

x y z

x x y y z z

H t R t t R t

t S t S t S t

t S t S t S  

 

 

  

ε S

ε



  

  

       (S3) 

 
which determines the evolution in time of a transformed density operator 1( ) ( ) ( ) ( )t R t t R t    

according to the Liouville equation 
( )

[ ( ), ( )]
d t

i H t t
dt

  
   .  

 A second-order solution of the Liouville equation is 
 

 
' '

0 0 0
( ) (0) '[ ( '), (0)] ' ''[ ( '),[ ( ''), (0)]]

t t t
t i dt H t dt dt H t H t                 (S4) 
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Using the assumption that ( ) 0t ε , and further assuming that all members of the ensemble have 
the same initial density operator, the ensemble average of Eq. (S4) becomes 
 

 
'

0 0
( ) (0) ' ''[ ( '),[ ( ''), (0)]]

t t
t dt dt H t H t               (S5) 

 
Since we are concerned with single-nuclear-spin systems, the density operator can be written as 

( ) ( ) ( ) ( )x x y y z zt p t S p t S p t S    , where ( )tp  is a nuclear spin polarization vector.  Then, using 

the standard commutation relations among angular momentum components, the double 
commutator in Eq. (S5) is 
 

 
 

[ ( '),[ ( ''), (0)]] ( ')[ ( '') (0) ( '') (0)] ( ')[ ( '') (0) ( '') (0)]

( ')[ ( '') (0) ( '') (0)] ( ')[ ( '') (0) ( '') (0)]

( ')[ ( '') (0

y x y y x z z x x z x

z y z z y x x y y x y

x z x

H t H t t t p t p t t p t p S

t t p t p t t p t p S

t t p

      

     

 

    

    

 

        

     

  ) ( '') (0)] ( ')[ ( '') (0) ( '') (0)]x z y y z z y zt p t t p t p S        

  

            (S6) 
 
Eq. (S5) can then be written as an equation for the coefficients 0( )ap t , where 0t  is the maximum 

time up to which the second-order expression in Eq. (S5) remains valid: 
 

  
0

0

0

( ) 1 (0)

( ) 1 (0)

( ) 1 (0)

x xx xy xz x

y yx yy yz y

z zx zy zz z

p t W W W p

p t W W W p

p t W W W p

      
           

          
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Using the short-hand notation 
0 '

1 2 1 20 0
' '' ( ') ( '')

t t
h h dt dt h t h t    , the matrix elements in Eq. (S7) are 

 

 

( )

( )

( )

xx y y z z xy y x xz z x

yx x y yy z z x x yz z y

zx x z zy y z zz x x y zy

W W W

W W W

W W W

       

       

       

     

     

     

  
  
  

       

       

       

  (S8) 

 
Note that cross-correlations between the transformed field components (i.e., quantities such as 

( ') ( '')x yt t   )  are not necessarily zero, even though the cross-correlations are zero in the laboratory 

frame. 
 The next step in general is to replace the integrals with respect to 't  and ''t  with integrals 
over ' ''t t    and ' ''u t t  .  Although correlation functions in the laboratory frame are assumed 
to be functions of   alone, correlation functions in the transformed frame may involve products 
of functions of   and functions of u  (see below).  In this case, it can be shown that 

0 0 0' 2

1 2 1 20 0 0

1
' '' ( ) ( ) ( ) ( )

2

t t t t
dt dt h h u d h duh u




  


     .  However, as shown below, terms that involve 
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functions of u make negligible contributions to Eq. (S7).   The important terms, for which 2 ( ) 1h u 

, become 
0 0'

1 1 0 0 10 0 0 0
' '' ( ) ( )( ) ( )

t t t
dt dt h d h t t d h     


      , where the last approximation is 

legitimate when the correlation function 1( )h   decays to zero with a characteristic correlation time 

c  that is much smaller than 0t .  Thus, the matrix elements in Eq. (S8) are approximately 

proportional to 0t , as required if the evolution of the ensemble-averaged, transformed density 

operator is to be described by spin relaxation rates. 
 We then make the standard assumption that, for each member of the ensemble of nuclear 
spin systems, the fluctuating fields represented by ( )tε  in the interval 0[0, ]t   are completely 

uncorrelated with their values in the interval 0 0[ ,2 ]t t , and the fluctuating fields in all subsequent 

intervals 0 0[ ,( 1) ]nt n t  are also completely uncorrelated with one another.  This assumption allows 

Eq. (S7) to be extended to   
 

  

0

0

0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

( ) ( )

( ) ( )

( ) ( )

1 / / / (( 1) )

/ 1 / / (( 1) )

/ / 1 / (( 1) )

1 / / /

x x

y y

z z

xx xy xz x

yx yy yz y

zx zy zz z

xx xy xz

p t p Nt

p t p Nt

p t p Nt

t T t T t T p N t

t T t T t T p N t

t T t T t T p N t

t T t T t T

   
      
   
   

     
        

       

  
 0 0 0

0 0 0

(0)

/ 1 / / (0)

/ / 1 / (0)

N

x

yx yy yz y

zx zy zz z

p

t T t T t T p

t T t T t T p

   
        

       

  (S8) 

 
where 01 / /T W t  .  Subject to the assumptions discussed above, Eq. (S8) is valid for 

arbitrarily large values of 0t Nt , while Eq. (S5) is valid only for 0t t .  

 Off-diagonal matrix elements in Eqs. (S7) or (S8) produce small rotations of ( )tp , because 

T T    for   .  These rotations represent the well-known dynamic frequency shifts.  

Diagonal elements produce the decay of ( )tp  that corresponds to nuclear spin relaxation processes.  
If we ignore off-diagonal elements, Eq. (S8) becomes 



S11 
 

 

0

0

0

( ) 1 / 0 0 (0)

( ) 0 1 / 0 (0)

( ) 0 0 1 / (0)

(1 ) 0 0

(0)

0 (1 ) 0 (0)

(0)

0 0 (1 )

exp( ) (0)

exp( )

N

x xx x

y yy y

z zz z

N

xx
x

N
y

yy
z

N

zz

xx x

yy

p t t T p

p t t T p

p t t T p

t

NT
p

t
p

NT
p

t

NT

t T p

t T

     
           
          

 
 

         
  

  
 


  (0)

exp( ) (0)
y

zz z

p

t T p

 
 
 
  

  (S9) 

 
using the fact that exp( ) (1 / )Na a N    if / 1a N  .  Thus, we arrive at the final result that the 

quantities T  are the desired spin relaxation times. 

 
Expression for 1T    

 
 To derive an expression for 1T  , we first transform to an intermediate frame that rotates 

around z at frequency 0  .  The Hamiltonian in Eq. (S1) then becomes 

   
 1 0 1 0 0 0'( ) (1 cos 2 ) sin 2 ( )[ ( ) ] ( )x y z zH t S t S t R t t R t          ε S   (S10) 

 
with 0 0( ) exp( )z zR t iS t   .  After discarding terms that oscillate at 02 , we then transform to a 

final frame that rotates around x at frequency 1 , in which the Hamiltonian is 

 

 1 0 0 1( ) ( ) ( )[ ( ) ] ( ) ( )

( )
x z z xH t R t R t t R t R t

t

      
 

ε S

ε S




     (S11) 

 
with 
 

 
0 0

0 1 0 1 1

0 1 0 0 1

( ) ( )cos ( )sin

( ) ( )sin cos ( )cos cos ( )sin

( ) ( )sin sin ( )cos sin ( )cos

x x y

y x y z

z x y z

t t t t t

t t t t t t t t t

t t t t t t t t t

    

        

        

 

   

  





   (S12) 
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1T  relaxation is determined by xxW  in Eq. (S7), because the spin-locking direction is x in the final 

frame.  From Eqs. (S8) and (S12), using the assumptions regarding correlation functions that were 
stated at the beginning of this section, we have 
 

0

0

0

'

0 0 1 1 0 0 1 10 0

'

0 0 1 1 0 0 1 10 0

0

' '' ( ') ( '')(sin 'sin ''cos 'cos '' sin 'sin ''sin 'sin '')
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y y
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W dt dt t t t t t t t t t t

dt dt t t t t t t t t t t
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    

       
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 
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       
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Then 
 

 1 0 1 0 1 10

( )
1 / 1 / [cos( ) cos( ) ] ( )cos

2xx

f
T T d g

        
        

    (S14) 

 
Expression for 2LGT   

 
 To derive an expression for 2LGT , we first transform to an intermediate frame that rotates 

around z at frequency 0    , where / 2  is the Lee-Goldburg frequency offset.  Ignoring 

rapidly oscillating terms, the Hamiltonian in this frame is 
   
 1'( ) ( )[ ( ) ] ( )z x z zH t S S R t t R t       ε S       (S15) 

 
We then transform to a second intermediate frame by applying a rotation about y by the magic 

angle 1cos (1/ 3)m
 , obtaining 

 
 ''( ) ( ) ( )[ ( ) ] ( ) ( )LG z y m z z y mH t S R R t t R t R        ε S     (S16) 
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where / 2LG   is the Lee-Goldburg effective field amplitude, with 1

2

3 LG   and 
1

3
LG 

.  We then transform to a final frame that rotates about z at frequency LG , in which the 

Hamiltonian is  
 

 
( ) ( ) ( ) ( )[ ( ) ] ( ) ( ) ( )

( )

z LG y m z z y m z LGH t R t R R t t R t R R t

t

         

 

ε S

ε S




   (S17) 

 
with 
 

 

( ) ( )(cos cos cos sin sin )

( )(cos cos sin sin cos ) ( )sin cos

( ) ( )(cos sin cos cos sin )

( )(cos sin sin cos cos ) ( )sin sin

x x m LG LG

y m LG LG z m LG

y x m LG LG

y m LG LG z m LG

t t t t t t

t t t t t t t

t t t t t t

t t t t t t

      
        

      

        

 

  

  

  





( ) ( )sin cos ( )sin sin ( )cosz x m y m z m

t

t t t t t t          

   (S18) 

 

2LGT  relaxation is determined by xxW  and yyW  in Eq. (S7).  From Eqs. (S8) and (S18), we have 

 
0
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' 2 2

0 0

2 2

0 0
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' '' ( ' '')(sin sin 'sin '' cos )

t t
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m LG LG LG

t
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t t t t t t t t
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     

   
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 


0
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'

' 2 2

0 0

2 2

0

' '' ( ' '')[cos cos 'cos ''cos ( ' '') sin cos ( ' '')

cos sin ( ' '')sin ( ' '') sin 'sin ''cos ( ' '')]

' '' ( ' '')(sin cos 'cos '' cos

t

t t

yy m LG LG m

m LG LG LG

t

m LG LG

W dt dt f t t t t t t t t

t t t t t t t t

dt dt g t t t t

     

     

   

    

    
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
 


'

0
)

t

m

  (S19) 

 
Since cos 'cos '' (cos cos ) 2LG LG LG LGt t u       and 

sin 'sin '' ( cos cos ) 2LG LG LG LGt t u       , the double integrals in Eq. (S19) contain terms of 

the form 
0 0 0' 2

0 0 0

1
' '' ( )cos cos ( )cos cos

2

t t t t

LG LGdt dt f u d f du u



      


   

0

00

1
( )cos [sin (2 ) sin ]

2

t

LG LG
LG

d f t      


   .  Unlike terms that do not depend on u, terms 

that contain cos LGu  are not proportional to 0t  when ( )f   decays on the time scale of c .  These 

terms are therefore negligible, provided that 0 1 / LGt  . 

 Retaining only terms that do not depend on u, Eq. (S19) becomes 
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2
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



 
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            (S20) 
 
Then  
 





2

0

1 / 1 /

1 (2 3) (2 3)
( )[2cos cos( ) cos( ) ]

3 2 2
( )(1 cos )

LG xx

LG LG

LG

T T

d f

g
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  





 
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 

  

            (S21) 
 

In terms of spectral density functions, defined by 
0

( ) 2 ( ) cosxyJ u d f u  


   and 

0
( ) 2 ( ) coszJ u d g u  


  , Eqs. (S14) and (S21) can be written as 

 

1 0 0 1

1 1
1/ [ ( ) ( )] ( )

4 2xy xy zT J J J                (S22) 

 

2

1 (2 3) (2 3) 1
1/ ( ) ( ) ( ) [ (0) ( )]

3 12 12 6LG xy xy LG xy LG z z LGT J J J J J      
        (S23) 


