SUPPLEMENTAL MATERIAL: Model Code, Supplemental Figures and Tables

Thorough QT/QTc in a Dish: An In Vitro Human Model That Accurately Predicts Clinical Concentration-QTc Relationships

Alexander D. Blanchette, BS1*; Fabian A. Grimm, PhD1*; Chimedullam Dalaijamts, PhD1; Nan-

Hung Hsieh, PhD¹; Kyle Ferguson, MS¹; Yu-Syuan Luo, PhD¹; Ivan Rusyn, MD PhD¹;

Weihsueh A. Chiu, PhD¹

¹Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX

* These authors equally contributed to this manuscript

Address correspondence to:

Weihsueh A. Chiu, PhD, Department of Veterinary Integrative Biosciences, 4458 TAMU, Texas

A&M University, College Station, TX 77843, (979) 845-4106, fax: (979) 847-8981

Conflict of Interest Statement

The authors declared no competing interests for this work.

Bayesian Dose-Response Model (stan version 2.17.3(1))

```
data {
     real scale factor; // overall scaling factor
     int<lower=0> Ni; // Number of cell lines
     int<lower=0> Nj; // Number of data points
     vector[Nj] x; // concentrations
     vector[Nj] ys;
                     // responses, scaled by scale factor
     int<lower=0,upper=Ni> cell[Nj]; // cell line for each data point
     int<lower=1> Nguants; // Number of guantiles of EC10 to calculate
     vector[Nquants] quants;
                                 // Quantiles (e.g.,
c(0.01,0.025,0.5,0.975,0.99))
parameters {
     // Population mean
     real m y0; // background
     real m x0; // numerator scale
     real m Emax;
                     // max effect size
     real m n; // Hill exponent
     // Population standard deviation
     real<lower=0> sd y0;
     real<lower=0> sd x0;
     real<lower=0> sd Emax;
     real<lower=0> sd n;
     // Inter-individual variability
     real z y0[Ni];
     real z x0[Ni];
     real z Emax[Ni];
     real z n[Ni];
      // Residual error variance
     real<lower=0> sigma y;
}
transformed parameters {
     real y0[Ni]; // untransformed background
     real x0[Ni]; // untransformed numerator scale
real Emax[Ni]; // untransformed max effect size
                            // untransformed Hill exponent
     real n[Ni];
     for (i in 1:Ni) { // un-log transform
           y0[i] = exp(m y0 + sd y0 * z y0[i]);
           x0[i] = exp(m_x0 + sd_x0 * z_x0[i]);
           Emax[i] = exp(m Emax + sd Emax * z Emax[i]); // Emax
positive
           n[i] = exp(m n + sd n * z n[i]);
     }
}
model {
```

```
vector[Nj] yp;
     // prior distributions
     m y0 ~ normal(0,5);
     m x0 ~ normal(0,5);
     m_Emax \sim normal(0,5);
     m n ~ normal(0,1);
      sd_y0 ~ normal(0,1);
      sd x0 ~ normal(0,1);
      sd_Emax ~ normal(0,1);
      sd n ~ normal(0,0.2);
      z y0 \sim normal(0,1);
      z \times 0 \sim \text{normal}(0,1);
      z Emax ~ normal(0,1);
      z_n \sim normal(0,1);
      sigma y ~ normal(0,0.2);
     for (j in 1:Nj) {
           yp[j] = y0[cell[j]]*(1 + (x[j] / x0[cell[j]])^n[cell[j]] /
(1 + ((x[j] / x0[cell[j]])^n[cell[j]])/Emax[cell[j]]));
     ys ~ student_t(5,yp,sigma_y);
}
generated quantities {
     vector[Ni] ec10;
                        // Concentration at which the relative
response is 10%
     for (i in 1:Ni) {
           if (Emax[i] > 0.1)
                 ec10[i] = x0[i]*(0.1 * Emax[i] / (Emax[i] -
0.1))^(1/n[i]);
           else
                 ec10[i] = 1000;
      }
}
```


SUPPLEMENTAL FIGURES AND FIGURE LEGENDS

Figure S1. Concentration-response model fits for cisapride showing decay-rise data (black dots); median prediction (colored lines) and 95% CI (colored shadings). Each panel is a different donor.

Citalopram Decay Rise Ratio

Figure S2. Concentration-response model fits for citalopram showing decay-rise data (black dots); median prediction (colored lines) and 95% CI (colored shadings). Each panel is a different donor.

Figure S3. Concentration-response model fits for disopyramide showing decay-rise data (black dots); median prediction (colored lines) and 95% CI (colored shadings). Each panel is a different donor.

Dofetilide Decay Rise Ratio

Figure S4. Concentration-response model fits for dofetilide showing decay-rise data (black dots); median prediction (colored lines) and 95% CI (colored shadings). Each panel is a different donor.

Moxifloxacin Decay Rise Ratio

Figure S5. Concentration-response model fits for moxifloxacin showing decay-rise data (black dots); median prediction (colored lines) and 95% CI (colored shadings). Each panel is a different donor.

N-acetylprocainamide Decay Rise Ratio

Figure S6. Concentration-response model fits for N-acetylprocainamide showing decayrise data (black dots); median prediction (colored lines) and 95% CI (colored shadings). Each panel is a different donor.

Figure S7. Concentration-response model fits for quinidine showing decay-rise data (black dots); median prediction (colored lines) and 95% CI (colored shadings). Each panel is a different donor.

Sematilide Decay Rise Ratio

Figure S8. Concentration-response model fits for sematilide showing decay-rise data (black dots); median prediction (colored lines) and 95% CI (colored shadings). Each panel is a different donor.

Figure S9. Concentration-response model fits for sotalol showing decay-rise data (black dots); median prediction (colored lines) and 95% CI (colored shadings). Each panel is a different donor.

Figure S10. Concentration-response model fits for vernacalant showing decay-rise data (black dots); median prediction (colored lines) and 95% CI (colored shadings). Each panel is a different donor.

Cabazitaxel Decay Rise Ratio

Figure S11. Concentration-response model fits for cabazitaxel showing decay-rise data (black dots); median prediction (colored lines) and 95% CI (colored shadings). Each panel is a different donor.

Figure S12. Concentration-response model fits for lamotrigine showing decay-rise data (black dots); median prediction (colored lines) and 95% CI (colored shadings). Each panel is a different donor.

Mifepristone Decay Rise Ratio

Figure S13. Concentration-response model fits for mifepristone showing decay-rise data (black dots); median prediction (colored lines) and 95% CI (colored shadings). Each panel is a different donor.

Figure S14. Comparison of cisapride concentration-response functions based on *in vivo* data (black line) compared to *in vitro* data (magenta line: population median; orange region: 95% confidence interval on population median; yellow region: 95% confidence interval on random individual; dashed line: standard iCell donor (1434).

Figure S15. Comparison of citalopram concentration-response functions based on *in vivo* data (black line) compared to *in vitro* data (magenta line: population median; orange region: 95% confidence interval on population median; yellow region: 95% confidence interval on random individual; dashed line: standard iCell donor (1434).

Figure S16. Comparison of disopyramide concentration-response functions based on *in vivo* data (black line [linear]; purple line [Hill]) compared to *in vitro* data (magenta line: population median; orange region: 95% confidence interval on population median; yellow region: 95% confidence interval on random individual; dashed line: standard iCell donor (1434).

Figure S17. Comparison of dofetilide concentration-response functions based on *in vivo* data (purple line) compared to *in vitro* data (magenta line: population median; orange region: 95% confidence interval on population median; yellow region: 95% confidence interval on random individual; dashed line: standard iCell donor (1434).

Figure S18. Comparison of moxifloxacin concentration-response functions based on *in vivo* data (black line) compared to *in vitro* data (magenta line: population median; orange region: 95% confidence interval on population median; yellow region: 95% confidence interval on random individual; dashed line: standard iCell donor (1434).

Figure S19. Comparison of n-acetyleprocainamide concentration-response functions based on *in vivo* data (black line [linear], purple line [Hill]) compared to *in vitro* data (magenta line: population median; orange region: 95% confidence interval on population median; yellow region: 95% confidence interval on random individual; dashed line: standard iCell donor (1434).

Figure S20. Comparison of quinidine concentration-response functions based on *in vivo* data (black line) compared to *in vitro* data (magenta line: population median; orange region: 95% confidence interval on population median; yellow region: 95% confidence interval on random individual; dashed line: standard iCell donor (1434).

Figure S21. Comparison of sematilide concentration-response functions based on *in vivo* data (black line [linear] and purpose line [Hill]) compared to *in vitro* data (magenta line: population median; orange region: 95% confidence interval on population median; yellow region: 95% confidence interval on random individual; dashed line: standard iCell donor (1434).

Figure S22 Comparison of sotalol concentration-response functions based on *in vivo* data (black line) compared to *in vitro* data (magenta line: population median; orange region: 95% confidence interval on population median; yellow region: 95% confidence interval on random individual; dashed line: standard iCell donor (1434).

Figure S23. Comparison of vernacalant concentration-response functions based on *in vivo* data (purple line) compared to *in vitro* data (magenta line: population median; orange region: 95% confidence interval on population median; yellow region: 95% confidence interval on random individual; dashed line: standard iCell donor (1434).

Figure S24. Comparison of cabazitaxel concentration-response functions based on *in vivo* data (black line) compared to *in vitro* data (magenta line: population median; orange region: 95% confidence interval on population median; yellow region: 95% confidence interval on random individual; dashed line: standard iCell donor (1434).

Figure S25. Comparison of lamotrigine concentration-response functions based on *in vivo* data (black line) compared to *in vitro* data (magenta line: population median; orange region: 95% confidence interval on population median; yellow region: 95% confidence interval on random individual; dashed line: standard iCell donor (1434).

Figure S26. Comparison of mifepristone concentration-response functions based on *in vivo* data (black line) compared to *in vitro* data (magenta line: population median; orange region: 95% confidence interval on population median; yellow region: 95% confidence interval on random individual; dashed line: standard iCell donor (1434).

Figure S27. Comparison of *in vivo* response (% change) at Cmax with *in vitro* response (% change) at Cmax, based on **(A)** population median and **(B)** standard donor (1434).

Figure S28. Comparison of *in vivo* EC₁₀ with *in vitro* EC₁₀, based on (A) population median and (B) standard donor (1434).

Figure S29. Comparison of *in vivo* EC₀₅ with *in vitro* EC₀₅, based on **(A)** population median and **(B)** standard donor (1434).

SUPPLEMENTAL TABLES

				MW			
			Molecular	of		Mass	
			formula	interes		transition	С
Drug name	CAS #	MW	(analyte)	t	[M+H]	(m/z)	E
citalopram							
hydrobromide	59729-33-8	405.3	$C_{20}H_{21}FN_2O$	324.4	325.4	325→109	30
disopyramide							
phosphate	22059-60-5	437.5	C ₂₁ H ₂₉ N ₃ O	339.5	340.5	340→239	15
	115256-11-		$C_{19}H_{27}N_3O_5S$				
dofetilide	6	441.6	2	441.6	442.6	442→198	50
lamotrigine	84057-84-1	256.1	$C_9H_7Cl_2N_5$	256.1	257.1	256→187	37
mifepristone	84371-65-3	429.6	C ₂₉ H ₃₅ NO ₂	429.6	430.6	430→372	35
moxifloxacin	186826-86-						
hydrochloride	8	437.9	C ₂₁ H ₂₄ FN ₃ O ₄	401.4	402.4	402→358	19
n-							
acetylprocainamid							
е	32795-44-1	277.4	$C_{15}H_{23}N_3O_2$	277.4	278.4	278→205	18
quinidine sulfate	50-54-4	746.9	$C_{20}H_{24}N_2O_2$	324.4	325.4	325→81	33
	101526-83-						
Sematilide	4	313.4	$C_{14}H_{23}N_3O_3S$	313.4	314.4	314→162	37
sotalol							
hydrochloride	959-24-0	308.8	$C_{12}H_{20}N_2O_3S$	272.4	273.4	273→255	20
Vernakalant	748810-28-						
hydrochloride	8	385.9	$C_{20}H_{31}NO_4$	349.5	350.5	350→168	35
cisapride	260779-88-		$C_{23}H_{29}ClFN_3$				
monohydrate	2	484.0	O4	465.9	466.9	466→184	35
	183133-96-					836.6→555.	
cabazitaxel	2	835.9	C45H57NO14	835.9	836.9	5	13

 Table S1. Single Reaction Monitoring parameters for HPLC-MS/MS Analysis

ZORBAX SSHD Eclipse Plus C18 column (3.0 X 50 mm, 1.8 μ m, catalogue #: 979757-302; Agilent, Santa Clara, CA) with a C18 guard column (2.1 X 5 mm, 1.8 μ m, catalogue #: 821725-901; Agilent, Santa Clara, CA) were used for chromatography with the following solvent gradient [A: water with 0.1% formic acid; B: methanol with 0.1% formic acid, shown as Time (A%)]: 0(90)-1(90)-3(10)-4(2)-5(2)-5.2(90)-8(90).

Table S2.Plasma protein	binding (free fra	action) reported in literatu	re
Drug	CAS N	Free fraction	References
Cisapride (monohydrate)	81098-60-4	0.02-0.025	(2, 3)
	(260779-88-2)	0.0395 <u>+</u> 0.037	
Citalopram	59729-33-8	0.2	(4)
(hydrobromide)	(59729-32-7)		
Disopyramide (phosphate)	3737-009-005	0.25-0.50	(5)
	(22059-60-5)		
Dofetilide	115256-11-6	0.17-0.337 (in all patients) 0.337 ± 0.021 (in patients with normal kidney)	(6)
Moxifloxacin	151096-09-2	0.3-0.5	(7)
(hydrochloride)	(186826-86-8)		
N-acetylprocainamide	32795-44-1	0.3	(8)
Quinidine (sulfate)	56-54-2	0.1	(8-10)
	(50-54-4)	0.12-0.2 (adult)	
		0.3-0.5 (pregnant)	
		0.77	
		0.23 (0.154-0.47)	
Sematilide	101526-83-4	0.96	(11)
Sotalol (hydrochloride)	3930-20-9	1.0	(12)
	(959-24-0)		
Vernacalant (HCl)	794466-70-9	0.53-0.63	(13)
	(748810-28-8)		
Cabazitaxel	183133-96-2	0.05–0.066	(14, 15)
Lamotrigine	84057-84-1	0.45	(16)
Mifepristone	84371-65-3	0.01-0.02	(17, 18)

 Table S2. Plasma protein binding (free fraction) reported in literature

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
384-well Cell Culture PlatedefinedSize of surface area (cm2)User- defined0.36VFserum volume fraction in the bulk medium (L/L)User- defined0.05CDConcentration of DOM (mg/L)User- defined0DDDensity of DOM (kg/L)User- defined1CSaSerum albumin concentration (g/L)User- defined21.65*CsiSerum lipid concentration (g/L)User- defined1.9DsaDensity of serum albumin (kg/L)User- defined1.36DsiDensity of serum lipids (kg/L)User- defined1.46
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c cccc} VF & serum volume fraction in the bulk & User- & 0.05 \\ \hline medium (L/L) & defined & \\ \hline C_D & Concentration of DOM (mg/L) & User- & 0 \\ \hline defined & & \\ \hline D_D & Density of DOM (kg/L) & User- & 1 \\ \hline defined & & \\ \hline C_{Sa} & Serum albumin concentration (g/L) & User- & 21.65* \\ \hline defined & & \\ \hline C_{Sl} & Serum lipid concentration (g/L) & User- & 1.9 \\ \hline defined & & \\ \hline D_{Sa} & Density of serum albumin (kg/L) & User- & 1.36 \\ \hline defined & & \\ \hline D_{Sl} & Density of serum lipids (kg/L) & User- & 1 \\ \hline defined & & \\ \hline \end{array} $
$ \begin{array}{ c c c c c c } \hline medium (L/L) & defined \\ \hline C_D & Concentration of DOM (mg/L) & User- & 0 \\ & & defined \\ \hline D_D & Density of DOM (kg/L) & User- & 1 \\ & & defined \\ \hline C_{Sa} & Serum albumin concentration (g/L) & User- & 21.65* \\ & & defined \\ \hline C_{Sl} & Serum lipid concentration (g/L) & User- & 1.9 \\ & & defined \\ \hline D_{Sa} & Density of serum albumin (kg/L) & User- & 1.36 \\ & & defined \\ \hline D_{Sl} & Density of serum lipids (kg/L) & User- & 1 \\ & & defined \\ \hline \end{array} $
$ \begin{array}{c ccc} C_D & Concentration of DOM (mg/L) & User- & 0 \\ & defined & & & \\ \hline D_D & Density of DOM (kg/L) & User- & 1 \\ & defined & & & \\ \hline C_{Sa} & Serum albumin concentration (g/L) & User- & 21.65* \\ & defined & & & \\ \hline C_{Sl} & Serum lipid concentration (g/L) & User- & 1.9 \\ & defined & & & \\ \hline D_{Sa} & Density of serum albumin (kg/L) & User- & 1.36 \\ & defined & & & \\ \hline D_{Sl} & Density of serum lipids (kg/L) & User- & 1 \\ \hline \end{array} $
$ \begin{array}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $
$ \begin{array}{c cccc} D_D & Density of DOM (kg/L) & User- & 1 \\ & defined & & & \\ C_{Sa} & Serum albumin concentration (g/L) & User- & 21.65* \\ & defined & & & \\ C_{S1} & Serum lipid concentration (g/L) & User- & 1.9 \\ & defined & & & \\ D_{Sa} & Density of serum albumin (kg/L) & User- & 1.36 \\ & defined & & & \\ D_{S1} & Density of serum lipids (kg/L) & User- & 1 \\ \end{array} $
$\begin{tabular}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $
$ \begin{array}{c cccc} C_{Sa} & Serum albumin concentration (g/L) & User- & 21.65* \\ \hline & & defined \\ \hline C_{Sl} & Serum lipid concentration (g/L) & User- & 1.9 \\ \hline & & & defined \\ \hline D_{Sa} & Density of serum albumin (kg/L) & User- & 1.36 \\ \hline & & & defined \\ \hline D_{Sl} & Density of serum lipids (kg/L) & User- & 1 \\ \hline & & & & defined \\ \hline \end{array} $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
defined D _{S1} Density of serum lipids (kg/L) User- defined 1
D _{SI} Density of serum lipids (kg/L) User- defined
defined
defined
f_L volume fraction of total lipid User- 0.05
equivalent (i.e., pseudo-octanol defined
content)
D_C Density (cells/mL) User- 1
defined
M_C Mass (cells) (mg) User- 3.0
defined
C_{S} Ionic strength of the medium (M) User- 0.15
defined
$T_{\rm S}$ System temperature (C°) User- 37
defined
V _T Total system volume User- 0.149
defined
V _M Bulk medium (excluding cells/tissue) User- 0.05
(Plating medium) defined
V _A volume of head space Calculated 0.1
V _W volume of medium (aqueous phase Calculated 0.05
only)
V _{Sa} volume of serum albumin Calculated 4.4E-05
V _{SI} volume of serum lipids Calculated 4.8E-06
V _D volume of DOM Assumed 0
V _C volume of cell/tissue (seeding User- 6.48E-5
volume) defined

 Table S3. Armitage et al. (2014)(19) model generic input parameters.

							log							
					log K _{OW}				KAW		$C_{SAT,W}(S_W) (mg/L)$			
		MW		log	Experi					C _{SAT,W}				
		(g/mol	MP	Ko	-			ma		(S_W)				Experi-
Name	CAS)	$(^{\circ}C)$	W	mental	Mean	min	Х		(mg/L)	Mean	min	max	mental
Cisapride	81098-	466.0	261.5	3.0		3.19	3.02	3.6	-	2.707	57.78	2.71	164.48	
	60-4			9				5	18.79					
Citalopram	59729-	405.3	188.0	2.9		2.92	2.51	3.3	-7.68	19.04	137.8	8.471	380.58	
hydrobromide	32-7			2				9						
Citalopram	59729-	324.4	188.0	3.7		3.08	2.51	3.7	-8.96	31.09	90.505	6.78	304.6	
	33-8			4				4						
Disopyramide	3737-	339.5	94.8	2.5	2.58	2.60	1.70	2.9	-	44.88	20.776	0.128	44.81	
	09-05			8				6	13.98		2			
Dofetilide	11525	441.6	251.3	2.1		1.57	0.12	2.3	-	256.3	166.47	44.156	289.663	
	6-11-6		7	4				3	13.37				4	
Moxifloxacin	15109	401.4	325.0	0.9		1.17	0.08	2.4	-	1146	355.66	5.82073	1144.07	
	6-09-			5				3	17.90		7	5	6	
	2													
Moxifloxacin	18682	437.9	325.0	1.2		1.22	0.08	2.4	-8.35	7.81	100.71	6.34940	287.255	
hydrochloride	6-86-8			2				3			47	5	8	
N-acetylpro-	32795-	277.4	210.1	0.9		1.27	0.99	1.5	-	2367	7183.6	926.389	24407.8	
cainamide	44-1			9				3	12.38		76	1	6	
Quinidine	56-54-	324.0	189.5	3.4	3.44	2.86	1.57	3.4	-	140	216.1	152.604	261.468	2.64E+0
-	2			4				4	13.46					2
Sematilide	10152	313.4	208.3	1.3		1.09	0.92	1.2	-	1228	3886.4	91.8320	13069.6	
	6-83-4			6				4	13.30		1	6		
Sotalol	3930-	272.4	207	0.2	0.24	0.24	-	0.5	-	876.45	5637.8	876.999	14544.0	5510
	20-9			4			0.33	5	12.00		5	2	2	
Vernakalant	79446	349.5	178.0	2.6		2.80	2.17	4.0	-	350.6	12405	313.47	496233.	
	6-70-9		3	4				7	12.47		8.3		2	
Cabazitaxel	18313	835.9	182	4.3		4.31	2.24	7.5	-5.29	6.08	44.054	0.0024	167.19	
	3-96-2			1				6						

 Table S4. Armitage et al. (2014)(19) model chemical-specific input parameters.

Lamotrigine	84057-	256.0	189.2	0.9	2.57	1.19	-	2.5	-9.04	3127	10675.	17.92	39424	
	84-1		1	9			0.19	7			2			
Mifepristone	84371-	429.6	230.2	5.3		5.05	4.70	5.3	-	33	33.42	0.0498	91.93	
	65-3		3	9				9	10.69					

Data from ChemSpider and U.S. EPA Chemistry Dashboard.

Table S5. Ch	nical <i>in viv</i>	<i>o</i> PK-PD m	odels for (QTc pro	longation.			
Drug treatment	Free fraction in plasma	Free fraction in media [1]	In Vivo Model Type[2]	QTc0 (msec)	Other parameters[3]	Cmax (uM Free)	Reference	
Positive for ch	inical OTc r	nalangatian	in "health	v" nonu	lation			
Cisapride	0 072	0.616	Linear	386	Slope = 1260	0.067	(20)	
Citalopram	0.773	1.000	Linear	425	Slope = 16.8	4.3	(21)	
Disopyramide	0.671	0.954	Linear	450	Slope = 15.0	3.2	(22)	
1 1			Hill	450	Emax = 97.4; n = 1; Kd = 2.69	8.8	(23)	
Dofetilide	0.622	0.864	Hill	368	Emax = 131; n = 2.9; Kd = 0.0031	0.0085	(24)	
Moxifloxacin hydrochloride	1.000	0.934	Linear	396	Slope = 1.61	4.4	(25)	
N-acetyl procainamide	0.978	0.965	Linear	440	Slope = 0.770	112	(26)	
			Hill	440	Emax = 170; n = 1; Kd = 28.5	112		
Quinidine sulfate	0.375	0.675	Linear	407	Slope = 199	3.8	(27)	
Sematilide	0.847	0.955	Linear	394	Slope = 44.3	2.6	(11)	
			Hill	394	Emax = 90.5; n = 1; Kd = 1.22	2.6		
Sotalol	0.920	0.968	Linear	380	Slope $= 6.51$	3.1	(25)	
Vernacalant	0.788	0.966	Hill	424	Emax = 20.3; n = 1; Kd = 5.14	15	(28)	
Negative for c	linical QTc	prolongation	n in "healt	hy" popi	lation [4]			
Cabazitaxel	0.204	0.705	Linear	400	Slope $= 0$	0.44	(29)	
Lamotrigine	0.872	1.000	Linear	400	Slope $= 0$	48	(30)	
Mifepristone	0.017	0.583	Linear	400	Slope = 0	0.24	(31)	

T-LL CF CH-L-LL DV DD dala fan OTa ---1-...

[1]See Main Text Table 1. Measured values >1 were set to 1.

[2]Model formulas: linear (QTc = QTc0 + Slope $\times C_{free}$) and Hill (QTc = QTc0 + Emax \times $C_{\text{free}}^{n}/(Kd^{n}+C_{\text{free}}^{n})$

[3]Units of other model parameters: Slope (msec/uM free), Emax (msec), Kd (uM free) [4]Slope set to zero for negative controls

SUPPLEMENTAL REFERENCES

- (1) Carpenter, B. *et al.* Stan: A Probabilistic Programming Language. *J Stat Softw* **76**, 1-32 (2017).
- (2) U.S.FDA. FDA approval package: Cisapride monohydrate. (ed. Research, C.f.D.E.a.) 7 (2000).
- (3) U.S.FDA. FDA approval package: Biopharmaceutical review: Cisapride. (ed. Biopharmaceutics, D.o.) A17 (1992).
- (4) U.S.FDA. FDA package: Citalopram hydrobromide. 3 (2009).
- (5) U.S.FDA. FDA approval package: Disopyramide phosphate. 15 (1982).
- U.S.FDA. FDA approval package: Biopharmaceutical review: Dofetilide Vol. 1.28 127 (1998).
- (7) U.S.FDA. FDA approval package: Moxifloxacin hydrochloride. 4 (2009).
- (8) Valkó, K.L., Nunhuck, S.B. & Hill, A.P. Estimating Unbound Volume of Distribution and Tissue Binding by In Vitro HPLC-Based Human Serum Albumin and Immobilised Artificial Membrane-Binding Measurements. *Journal of Pharmaceutical Sciences* 100, 849-62 (2011).
- (9) U.S.FDA. FDA approval package: Quinidine sulfate. (ed. Research, C.f.D.E.a.) 12 (1989).
- (10) U.S.FDA. FDA approval package: Quinidine sulfate. 1 (2000).
- (11) Shi, J., Lasser, T., Koziol, T. & Hinderling, P.H. Kinetics and dynamics of sematilide. *Ther Drug Monit* **17**, 437-44 (1995).
- (12) U.S.FDA. FDA approval package: Sotalol hydrochloride. 3 (1992).
- (13) EMEA. Assessment report: Vernakalant. (ed. Agency, E.M.) 15 (2011).
- (14) Azaro, A. *et al.* A phase I pharmacokinetic and safety study of cabazitaxel in adult cancer patients with normal and impaired renal function. *Cancer Chemotherapy and Pharmacology* **78**, 1185-97 (2016).
- (15) Sarantopoulos, J. *et al.* Safety and pharmacokinetics of cabazitaxel in patients with hepatic impairment: a phase I dose-escalation study. *Cancer Chemotherapy and Pharmacology* **79**, 339-51 (2017).
- (16) Patsalos, P.N., Zugman, M., Lake, C., James, A., Ratnaraj, N. & Sander, J.W. Serum protein binding of 25 antiepileptic drugs in a routine clinical setting: A comparison of free non-protein-bound concentrations. *Epilepsia* **58**, 1234-43 (2017).
- (17) U.S.FDA. FDA approval package: Mifepristone (ed. Research, C.f.D.E.a.) 11 (2016).
- (18) U.S.FDA. FDA approval package: Mifepristone. 7 (2012).
- (19) Armitage, J.M., Wania, F. & Arnot, J.A. Application of mass balance models and the chemical activity concept to facilitate the use of in vitro toxicity data for risk assessment. *Environ Sci Technol* **48**, 9770-9 (2014).
- (20) Chain, A.S., Dubois, V.F., Danhof, M., Sturkenboom, M.C. & Della Pasqua, O. Identifying the translational gap in the evaluation of drug-induced QTc interval prolongation. *British journal of clinical pharmacology* **76**, 708-24 (2013).
- (21) Friberg, L.E., Isbister, G.K. & Duffull, S.B. Pharmacokinetic-pharmacodynamic modelling of QT interval prolongation following citalopram overdoses. *British journal of clinical pharmacology* **61**, 177-90 (2006).
- (22) Thibonnier, M., Holford, N.H., Upton, R.A., Blume, C.D. & Williams, R.L. Pharmacokinetic-pharmacodynamic analysis of unbound disopyramide directly measured

in serial plasma samples in man. *Journal of pharmacokinetics and biopharmaceutics* **12**, 559-73 (1984).

- (23) Lima, J.J. & Boudoulas, H. Stereoselective effects of disopyramide enantiomers in humans. *Journal of cardiovascular pharmacology* **9**, 594-600 (1987).
- (24) Le Coz, F., Funck-Brentano, C., Morell, T., Ghadanfar, M.M. & Jaillon, P. Pharmacokinetic and pharmacodynamic modeling of the effects of oral and intravenous administrations of dofetilide on ventricular repolarization. *Clin Pharmacol Ther* 57, 533-42 (1995).
- (25) Chain, A.S., Krudys, K.M., Danhof, M. & Della Pasqua, O. Assessing the probability of drug-induced QTc-interval prolongation during clinical drug development. *Clin Pharmacol Ther* **90**, 867-75 (2011).
- (26) Piergies, A.A., Ruo, T.I., Jansyn, E.M., Belknap, S.M. & Atkinson, A.J., Jr. Effect kinetics of N-acetylprocainamide-induced QT interval prolongation. *Clin Pharmacol Ther* 42, 107-12 (1987).
- (27) Karbwang, J., Davis, T.M., Looareesuwan, S., Molunto, P., Bunnag, D. & White, N.J. A comparison of the pharmacokinetic and pharmacodynamic properties of quinine and quinidine in healthy Thai males. *British journal of clinical pharmacology* **35**, 265-71 (1993).
- (28) Mao, Z., Wheeler, J.J., Townsend, R., Gao, Y., Kshirsagar, S. & Keirns, J.J. Population pharmacokinetic-pharmacodynamic analysis of vernakalant hydrochloride injection (RSD1235) in atrial fibrillation or atrial flutter. *J Pharmacokinet Pharmacodyn* 38, 541-62 (2011).
- (29) Maison-Blanche, P. *et al.* An open-label study to investigate the cardiac safety profile of cabazitaxel in patients with advanced solid tumors. *Cancer chemotherapy and pharmacology* **73**, 1241-52 (2014).
- (30) Dixon, R. *et al.* Lamotrigine does not prolong QTc in a thorough QT/QTc study in healthy subjects. *British journal of clinical pharmacology* **66**, 396-404 (2008).
- (31) Darpo, B., Bullingham, R., Combs, D.L., Ferber, G. & Hafez, K. Assessment of the cardiac safety and pharmacokinetics of a short course, twice daily dose of orally-administered mifepristone in healthy male subjects. *Cardiology journal* 20, 152-60 (2013).