Microbial Biotechnology

Electronic supplementary material

Lime and ammonium carbonate fumigation coupled with bio-organic fertilizer application steered banana rhizosphere to assemble a unique microbiome against Panama disease

Zongzhuan Shen¹, Beibei Wang², Jiaxin Zhu¹, Hangwei Hu³, Chengyuan Tao¹, Yannan Ou¹, Xuhui Deng¹, Ning Ling¹, Rong Li^{1, 4, *}, Qirong Shen¹

¹ Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China

² Hainan key Laboratory for Sustainable Utilization of Tropical Bio-resources, Institute of Tropical Agriculture and Forestry, Hainan University, 570228 Haikou, P. R. China

- ³ Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia
- ⁴ Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht

University, Utrecht, Netherlands

* Corresponding author: College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095, Nanjing, China. E-mail: lirong@njau.edu.cn. Tel: (86)02584395535. Fax: (86)02584395535.

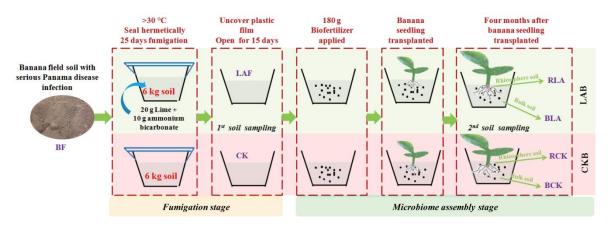
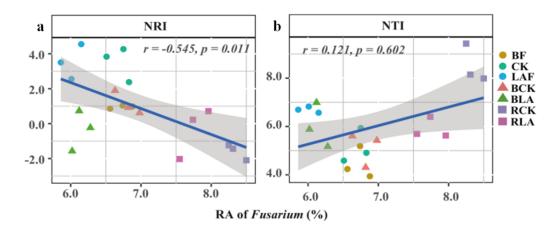
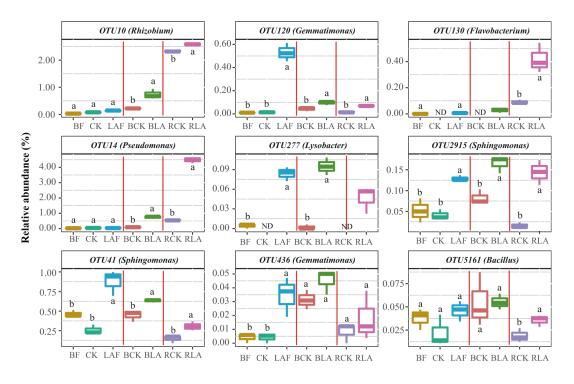



Fig. S1 Sketch map for each season of the two seasonal greenhouse experiments.


Fig. S2 Heatmap displaying the abundance of dominated bacterial phyla in each soil sample. Numbers in each cell represent the mean relative abundance of each phylum.

9.1	15.0	14.0	5.4	11.6	11.3	3.8	5.3	Acidobacteria	50
5.0	5.4	5.1	7.4	5.8	4.7	3.7	2.7	Actinobacteria	40
16.6	12.4	7.7	17.4	12.9	18.4	20.3	23.5	Bacteroidetes	30
4.5	4.9	3.1	3.0	3.6	11.5	1.1	3.1	Chloroflexi	20
14.3	14.3	23.3	26.0	13.0	8.0	7.8	7.1	Firmicutes	20
2.7	2.4	2.4	3.1	3.9	3.5	1.1	2.2	Gemmatimonadetes	10
34.0	27.4	28.4	28.2	31.7	26.1	50.1	46.4	Proteobacteria	
4.7	5.6	4.9	1.8	5.9	3.2	7.8	5.2	Verrucomicrobia	
9.2	12.7	11.1	7.7	11.5	13.1	4.3	4.6	Others	
All	BF	СК	LAF	BCK	BLA	RCK	RLA		

Fig. S3 Spearman correlations between the abundance of *F. oxysproum* quantified by qPCR with the phylogenetic relatedness of based on nearest net relatedness (NRI) (a) and nearest taxon index (NTI) (b) in bacterial community.

Fig. S4 Boxplot of the relative abundance of OTU10 (*Rhizobium*), OTU120 (*Gemmatimonas*), OTU130 (*Flavobacterium*), OTU14 (*Pseudomonas*), OTU277 (*Lysobacter*), and OTU2915 (*Sphingomonas*) for each soil sample. Different letters indicate a significant difference (p < 0.05) according to two independent sample t-test or ANOVA analysis.

C	Rawda	ta	Final		
Sample	No. of sequences	No. of OTUs	No. of sequences	No. of OTUs	
BF1	19,286	3,179	16,999	2,787	
BF2	10,986	2,483	9,788	2,213	
BF3	17,668	3,095	16,007	2,725	
BCK1	14,543	2,596	13,001	2,330	
BCK2	21,679	3,107	19,457	2,620	
BCK3	18,210	2,899	16,269	2,551	
BLA1	18,852	2,293	17,133	2,034	
BLA2	28,063	2,650	25,349	2,213	
BLA3	26,859	2,651	23,956	2,218	
CK1	15,844	2,814	14,481	2,472	
CK2	20,462	3,067	18,451	2,523	
CK3	18,481	2,880	16,794	2,531	
LAF1	24,574	2,835	23,332	2,411	
LAF2	27,449	2,851	26,248	2,460	
LAF3	16,807	2,412	16,055	2,147	
RCK1	11,298	1,384	11,059	1,275	
RCK2	24,103	2,007	23,570	1,793	
RCK3	16,704	1,670	16,404	1,521	
RLA1	27,281	2,114	26,577	1,860	
RLA2	25,449	2,034	24,816	1,783	
RLA3	10,809	1,375	10,577	1,259	
Total	415,407	7,580	386,323	5,448	

 Table S1 Number of sequences and OTUs from rawdata and processed final good quality sequences

 that were used to further analysis after basic quality control for different treatments.

Phyla	r	p value
Acidobacteria	-0.374	0.095
Actinobacteria	-0.640	0.002
Bacteroidetes	0.370	0.099
Chloroflexi	-0.538	0.012
Firmicutes	-0.596	0.004
Gemmatimonadetes	-0.669	0.001
Proteobacteria	0.782	< 0.001
Verrucomicrobia	0.827	< 0.001

Table S2 Spearman correlation coefficients and significant p value between the relative abundance of F.*oxysproum* with abundant bacterial and fungal phyla.