Supplementary Information

CEP120 interacts with C2CD3 and Talpid3 and is required for centriole appendage assembly and ciliogenesis

Jhih-Jie Tsai, Wen-Bin Hsu, Jia-Hua Liu, Ching-Wen Chang, and Tang K Tang*

Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan

*Corresponding author

gRNA1 : ATCGTCGTGTCCATCCTAGA gRNA2 : ATTTGCTACTGAGTTAGCTT

Wild-type	CEP120	ATCGTCGTGTCCATCCTAGAAGGTCGGCATTTCCCCCAAACGTCCAAAGCATATGCTTGTAGTGGAAGCAAAGTTTGATGGAGAACAGTTGGCT															GCT																			
		I	v	v	s	I	L	Е	G	R	н	F	Ρ	ĸ	R	Ρ	к	н	М	I		v	v	Е	A	к	F	D	G	Е	Q	L	A			
Exon 2																													Λf	ramo	chift	0.0116	od by			
(1 bp T insertion)	CEP120	ATC	GTC	GTG	TCC	ATC	CTT	AGA	AGG	TCG	GCA	TTT	CCC	CAA	ACG	TCC	CAAA	AGC1	ATA	TGC	CTT	GTZ	GT	GGA	AGC	AAA	GTT	TGP	inc.	ortio	n of "	Caus Tintr	oducor			
(KO-1,#3-6-3)		I	v	v	s	I	L	R	R	s	A	F	₽	Q	т	s	ĸ	A	Y	A	L	с	s	G	s	ĸ	v	*	a p at c	rema	stop	op codon				
Wild-type	CEP120	GAG	TTA	GCT	TGG	GAA	ATT	GAC	AGG	AAA	GCG	CTT	CAI	CAG	CAC	AGG	CTA	CAC	GCG	TAC	стс	CTF	TC	AAA	стс	CAA	TGT	TTI	'GCC	TTC	GAT	CCI	GTA			
Exon 3		E	L	A	W	E	I	D	R	ĸ	A	L	н	Q	н	R	L	Q	R	1	2	Ρ	I	ĸ	L	Q	с	F	A	L	D	P	v			
(1 bp G deletion)	CEP120	GAG	TTA	-CT	TGG	GAA	ATT	GAC	AGG	ААА	GCG	CTT	CAI	CAG	CAC	AGG	CTA	CAC	GCG	TAC	CTC	СТА	TC	AAA	стс	CAA	TGT	TTI	'GCC	TTG	GAT	'CCI	GTAA			
(KO-2,#34)		Е	L	L	G	ĸ	L	т	G	ĸ	F	R F	' 1	s	Т	6	З Y	r :	s '	v	L	L	s	N	S	N	v	I	P	, M	II	I	. *			
																													A frameshift caused by deletion of G introduces a premature stop codon at codon \$5							

Supplementary Fig. S1. Generation and analysis of *CEP120* knockout cells. **a** Diagram of exons 1-5 of the 20 exons in the human *CEP120* genomic locus, showing the location of the guide RNAs (gRNAs) used for CRISPR-directed genome editing (KO-1 and KO-2; not to scale). Exons are indicated in color to clarify splicing. (top sequences) Genome editing of the *CEP120* genomic sequence, and the resultant transcript and predicted protein sequences for KO-1 (exon 2 gRNA). Sequences are colored according to their respective exon, and part of the WT exon 2 sequence is omitted. The lesion (deletion or insertion) is shown in red. (bottom sequences) Genome editing of the *CEP120* genomic sequence, and the resultant transcript and predicted protein sequence, and the resultant transcript of the WT exon 2 sequence is omitted. The lesion (deletion or insertion) is shown in red. (bottom sequences) Genome editing of the *CEP120* genomic sequence, and the resultant transcript and predicted protein sequences for KO-2 (exon 3 gRNA). The lesion (deletion or insertion) is shown in red. (*CEP120+/+; p53+/+*), KO-Con (*CEP120+/+; p53-/-*), KO-1 (*CEP120-/-; p53-/-*), and KO-2 (*CEP120-/-; p53-/-*) cells were immunostained with antibodies against CEP120 (green) and Ac-tubulin (red). **c** KO-Con, KO-1, and KO-2 cells were subjected to Western blot analysis with the indicated antibodies. Uncropped blots are shown in Fig. S6g. Scale bar, 1 μm.

а

Supplementary Fig. S2 Depletion of CEP120 by siRNA treatment perturbs centriole elongation. a-c RPE1 (b) or PLK4-myc-doxycycline (Dox)-inducible cells (c) were treated with siControl or siCEP120 as shown in a, and analyzed by confocal fluorescence microscopy using the indicated antibodies. The distances between the CEP162-positive dots associated with a given pair of orthogonally oriented centrioles in siCEP120-treated RPE1 cells were calculated and are shown in b. The procentriole length in c was measured as the distance between the fluorescent peak intensity of SAS-6 (red) and CEP162 (green) in siControl and siCEP120-treated cells. Error bars represent the mean \pm s.d from pools of cells (n) from three independent experiments. ***P < 0.001 (two-tailed unpaired t-test). Scale bar, 1 µm.

Supplementary Fig. S3. CEP120 loss perturbs the recruitments of CEP83 (a) and CEP128 (b) to the centriole appendages, but does not alter the localizations of the early-born centriolar proteins, SAS-6 (c) and STIL (d), to the procentrioles. KO-Con and KO-2 cells were synchronized at early S phase and analyzed by confocal fluorescence microscopy using the indicated antibodies, and the results were quantified. Histogram illustrating the relative intensities of CEP83 (a), CEP128 (b), SAS-6 (c), and STIL (d) on centrioles. Error bars represent the mean \pm s.d. from pools of cells (n) from three independent experiments. ***P < 0.001; NS, not significant (two-tailed unpaired t-test). Scale bar, 1 µm.

Supplementary Fig. S4. CEP120 interacts with C2CD3 and Talpid3, and does not detectably interact with OFD1. **a-c** Full-length ³⁵S -methionine-labeled Talpid3 (**a**), C2CD3 (**b**), or OFD1 (**c**) proteins were incubated with bead-bound GST or various GST-CEP120 recombinant proteins with (**a**, **b**) or without (**a**, **c**) 0.5% sodium deoxycholate (SDC). The samples were washed and analyzed by SDS-PAGE and autoradiography. **d-f** The JS-associated CEP120 mutant (I975S) exhibits reduced binding to C2CD3 but not Talpid3. Full-length ³⁵S -methionine-labeled C2CD3 (**d**) or Talpid3 (**e**, **f**) proteins were incubated with bead-bound GST or various GST-CEP120 recombinant proteins with (**d**, **e**) or without (**e**, **f**) 0.5% sodium deoxycholate, and analyzed as described above.

Supplementary Fig. S5. Disease-associated CEP120 mutants have no effect on centriole elongation. KO-2 cells expressing doxycycline-inducible wild-type (WT) or mutant (L712F, L726P, I975S) CEP120-GFP were synchronized at G2 and analyzed with the indicated antibodies. Histogram illustrating the percentages of cells with overly long centrioles (centriole length > 0.5 μ m). Error bars represent the mean \pm s.d. from pools of cells (WT, n = 179; L712F, n = 171; L726P, n = 166; I975S, n = 92) from three independent experiments. NS, not significant (two-tailed unpaired t-test). Scale bar, 1 μ m.

Supplementary Fig. S6. Full-length blots corresponding to Figures 3, 5, 7 and S1. (a) Blots corresponding to figure 3d. The bands on the membranes close to the protein masses of CEP120, Talpid3, C2CD3, and α -tubulin were cut and aligned before exposure. (b) Blots corresponding to figure 5a. The bands on the membranes close to the protein masses of GFP-C2CD3 and CEP120-myc were cut and aligned before exposure. (c) Blots corresponding to figure 5b. The bands on the membranes close to the protein masses of CEP120-myc were cut and aligned before exposure. (c) Blots corresponding to figure 5b. The bands on the membranes close to the protein masses of GFP-C2CD3 and various truncated proteins of CEP120-myc were cut and aligned before exposure. (d) Blots corresponding to figure 5d. The bands on the membranes close to the protein masses of GFP-Talpid3 and CEP120-myc were cut and aligned before exposure. (e) Blots corresponding to figure 5e. The bands on the membranes close to the protein masses of GFP-Talpid3 and various truncated proteins of CEP120-myc were cut and aligned before exposure. (f) Blots corresponding to figure 7a. The bands on the membranes close to the protein masses of GFP-C2CD3 and various CEP120-myc mutants were cut and aligned before exposure. (g) Blots corresponding to supplementary figure 1c. The bands on the membranes close to the protein masses of CEP120 and α -tubulin were cut and aligned before exposure.