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Supplementary Note 1: A motivating example to show causal transition structure under
network interventions
Consider the following intervention model,

Aα(di, t) =
dα

i

∑N(t)
i dα

i

(1)

A critical observation on Equation (1) refers to the causal dynamics of interventions. The distribution Aα(di, t) of interven-
tions leads to time-varying behavior as a function of Gt . From a dynamic perspective, this time-varying distribution of the
intervention leads to a time-inhomogeneous Markovian transition of Gt between different configurations in time: At a time
point s, the attacker makes a stochastically greedy choice that prioritizes its preference on the nodes degree (e.g., either hub-
preferential when α > 0 or the opposite when α < 0), which has no explicit memory on the trajectory of the interventions
in the past given the network Gs at that moment. However, Gs is a causal consequence of all prior intervention sequences.
Effectively, this means a dynamic Markovian transition structure from Gs to Gs+1 where Ps,i, j is a

(N
s

)
by

( N
s+1

)
transition prob-

ability matrix (assuming only one node removed at each time step). Ps,i, j follows the Markov property yet has time-varying
state space and time-inhomogeneous transition probability (given by Aα(d,s)). To better understand this, consider the exam-
ple of a 4-node network under the 2-step intervention in Supplementary Figure 1.(b) and assume hub-prioritized intervention
(α > 0). G0 is the original network and G2 is what we observe. Nodes A and B are missing because of the intervention. In
this simple example, two trajectories from G0 to G2 exist, namely, A → B or B → A. However, by Equation (1), only A → B is
possible as the attacker chooses only connected nodes. Clearly, G2 is a consequence of the attack performed in sequence and
there is a causal link in time between consecutive transitions. Inferring G0 from G2 requires the identification of such causal
interdependency introduced by the time-varying (relative) preference of the attacker, although the same intervention strategy
is maintained all the time (i.e., α is not a function of time).

Supplementary Note 2: Analysis of small world property of example real networks

Network C∆ Cws L C̄r L̄r S∆ Sws |G| |E|
facebook 0.5013 0.5406 3.0660 0.0109 2.1828 35.2577 32.6937 4049 91575
hu.Map 0.6432 0.3651 9.6820 0.0034 3.1362 61.2782 34.7834 4035 28366

brain 0.1069 0.3047 3.4879 0.0105 3.5924 10.5103 29.9697 1015 1000

Supplementary Table 1. Quantification of small-worldness of the real networks.

Small world networks are usually identified and defined from two major structural signatures, namely, much higher cluster-
ing coefficient and similar average shortest path length as compared the Erdos-Renyi random graphs. The clustering coefficient
of a network measures the extent to which the neighbors of a node are also interconnected. In practice, there are two (not
equivalent) ways to compute the clustering coefficient of a network. The first definition of the clustering coefficient of a
graph is an average of the local clustering coefficient computed for each node in the network1. Given a node i, its clustering
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Supplementary Figure 1. A motivating example. Temporal causal transition structure of Gt under time-varying
interventions. Gs and Gs′ (s < s′) are causally interdependent even though the adversarial party always makes Markovian
decisions.

coefficient is computed by,

cws(i) =
2Ei

ki(ki −1)
(2)

where Ei is the number of existing edges between neighbors of node i and ki is number of its immediate neighbors. Therefore,
the local clustering coefficient cws(i) measures the density of edges between neighbors of node i. The global clustering
coefficient Cws thus can be computed by the average of cws(i). An alternative definition of clustering coefficient C∆ in common
use2, based on transitivity, is computed by,

C∆ =
3N∆
Nl=2

(3)

where N∆ is the number of triangles and Nl=2 is the number of paths of length 2. A triangle is a set of three nodes in which
each directly connects to the other two. Both Cws and C∆ quantify the density of interconnections of neighbors of a node in
the average sense whereas they are not mathematical equivalent. Therefore, we report the small-worldness of our considered
networks based on these two different definitions. A common quantitative definition of a small-world network is stated as
follows3,
Definition 1 (Small-worldness): A network is said to be a small-world network if S > 1 where S is defined as,

S =
γ
λ

(4)

γ =
C
Cr

(5)

λ =
L
Lr

(6)

where C and Cr is the clustering coefficient of the considered graph and its equivalent Erdos-Renyi random network. An
equivalent Erdos-Renyi random network of a given network of size N is obtained by randomly assigning its edges to pairs
of nodes in an empty network of same size. C by our definition can be Cws or C∆. For Erdos-Renyi random network, the
expectation of Cr can be well approximated by < d > /N where < d > is its average degree4. L is the average of the length of
all-pair shortest paths. The expectation of Lr is computed by ln(N)/ln(< d >) for a Erdos-Renyi random network. Therefore,
the S serves as a measurement of small-worldness of a network. Intuitively, a bigger S suggests that the network is closer
to a small-world network. Following the definition, a network is a small-world network if S > 1. To verify whether the
networks (facebook, hu.Map and human brain connectome) in our experiments are small-world networks, we compute S for
each network based on two definitions of C and report the results in Supplementary Table 1. For all networks, S (Sws or S∆)
is much greater than 1 and ranges from 10.5103 to 64.2782. This suggests that all three networks are small-world network,
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Supplementary Figure 2. Degree distribution of the facebook social network and its equivalent Erdos-Renyi
random network.

hence following its structural robustness against random removals. In addition, small-world network usually has a greater
than expected number of hubs (as compared to its Erdos-Renyi equivalents) and thus has a greater fraction of nodes with
high degree. Consequently the degree distribution will be enriched at high degree values (i.e., long or fat tailed). To further
corroborate our discussion, we visualize the degree distribution (Target) of three networks in Supplementary Figure 2-4. To
show the difference, we also plot the degree distribution of an instance of their Erdos-Renyi equivalents (Erdo-Renyi random).
As we can see from these figures, there is a considerable greater amount of probability mass concentrated on the region of high
degrees, as opposed to that of their Erdos-Renyi equivalents, indicating the more-than-expected existence of hub nodes. More
importantly, we notice a linear dependence in Supplementary Figure 2 and Supplementary Figure 3, suggesting that they are
also scale-free networks where the degree distribution obeys a power-law. Scale-free networks are actually ultra small-world
networks5.

Supplementary Note 3: Transitional behavior of interventions
All three networks in the experiments are small-world networks with a small portion of its nodes significantly more connected
than the rest. A hub-prioritized intervention therefore changes its statistical behavior over time as the hubs are being removed.
It changes from a highly targeted removal to a close-random removal. To verify this, we have shown the empirical CDF (eCDF)

3/10



10
0

10
1

10
2

Degree

10
-4

10
-3

10
-2

10
-1

10
0

P
ro

b
a
b
ili

ty

Target

Erdos-Renyi random

Supplementary Figure 3. Degree distribution of the human protein complex interaction network and its equivalent
Erdos-Renyi random network.

of how a strongly hub-prioritized (α = 10) attacker chooses its target over time in Supplementary Figure 5-7. If the attacker
purely randomizes its choice irrespective of target’s degree, we will observe the blue dashed line being a linear function of the
node ID, implying a uniform distribution. Otherwise, if certain nodes are significantly preferred than others, we will observe
large jumps in the eCDF curves, an indicator of strong preference. Supplementary Figure 5 exactly shows such patterns
over the course of the intervention. Initially, hub nodes are not all removed (e.g., 1st step or 5-th step) and the intervention
strategy is highly prioritizing the hubs. As hubs being removed, the eCDF changes close to the dashed line, suggesting that
the attacker chooses almost randomly from the residual network. Similar observations are due in Supplementary Figure 6 and
Supplementary Figure 7, which support our analysis made in the manuscript.

Supplementary Note 4: Multi-fractal Network Generative Model
We consider the multi-fractal network generative model (MFNG) due to its capability to reproduce the properties of a wide
range of real networks and its theoretical roots in the thermodynamic limit of graph sequences. A sequence of network Gn is
convergent if the sequence t(F,Gn) has a limit for every simple network F . t(F,G) is the homomorphism density defined as:

t(F,G) =
hom(F,G)

|V (G)|V (F)
(7)
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Supplementary Figure 4. Degree distribution of the human consensus brain connectome and its equivalent
Erdos-Renyi random network.

hom(F,G) is the total number of adjacency preserving mapping between F and G. That is, for every edge ei, j in E(F), the edge
eψ(i),ψ( j) is in E(G). E() and V () take the edge and node sets, respectively. For instance, hom(F,G) = |V (G)| if F is a single
node.6 proves that any convergent graph sequence can be represented by a symmetric measurable 2D function 0 ≤W (x,y)≤ 1
defined on the unit square. This 2D function gives the linking probability for pair of nodes randomly mapped to [0,1]. The
average degree of a network generated from predefined W (x,y) can thus be derived by

< d >= N
∫ ∫

W (x,y)dxdy (8)

Intuitively, W (x,y) can be understood as a probability measure that quantifies the linking probability of two nodes contained
in the box defined by [x,x+dx] and [y,y+dy]. The probability to find two nodes in this box is equal to the area of the box (as
they are defined on a unit square). It is noted that in the limit that N becomes infinity, < d > is also unbounded, suggesting
the graph converges to a dense graph in contrast to the fact that real networks are usually sparse. To account for the sparsity
of real networks, MFNG replaces the W (x,y) with a multi-fractal measure defined on the unit square.

Let Gk = (m,k,P0,L ) be the multi-fractal network generative model (MFNG). A network G is a realization of Gk if G is
sampled from the following stochastic procedure:

(1) A MFNG Gk = (m,k,P0,L ) partition the interval [0,1] into m intervals of length L = {l1, l2, ..., lm} where L forms
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Supplementary Figure 5. Transitional behavior of interventions (α = 10) on the facebook social network over time.

a categorical distribution over interval [0,1] such that:

P{S(1)(x) = i}= li,x ∈ [0,1] (9)

where S(i) : R → {1,2, ...,m}i is an indexing function that assigns recursively the index of the intervals to a real number x
∈ [0,1]. It should be noted that S(i) is uniquely determined by L and k. S(0) is mathematically interchangeable to L .

(2) For each interval li, a MFNG Gk induces k-th order recursive partition such that [0,1] is eventually partitioned by mk

intervals sampled from a generalized Bernoulli distribution,

P{S(k)(x) = i1, i2, ..., ik}= Πk
t=1lit ,x ∈ [0,1] (10)

(3) Distribute N nodes to mk intervals arbitrarily. Define the linking probability measure to be P such that two nodes in
interval li and interval l j, respectively, are joined by a link with a probability pi, j ∈ P . The linking probability P is obtained
by the k-th order tensorial product of the generative measure P0,

P = P(k) = P(k−1)⊗P0 (11)

P(0) = P0 (12)
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Supplementary Figure 6. Transitional behavior of interventions (α = 10) on the human protein complex
interaction network over time.

where ⊗ is the Kronecker product. A generative measure P0 is a m by m matrix with its entry p0(i, j) ≤ 1. Procedure (1-3)
denotes a generative process to construct a network from a multi-fractal measure defined on the unit square. By construction,
any pair of nodes lying at the same interval li links to a node in j with the same probability pi, j ∈ P . This construction
is aligned with the network motif and clusters in real systems where nodes within same community share similar interacting
patterns with nodes outside the community. Reversely, one can expect to generate such network motifs during the inference
process by prioritizing the assignment of the same interval index to a particular group of missing nodes (e.g., by optimizing
over mapping function ψ). This is critically important if such network motifs exist in the original network.

Throughout our experiments, we assume the partition L (k) on the interval [0,1] is equally sized and each corresponds to at
most one node in the network. As a result, an entry pi, j(k) in P(k) can be simply understood as the linking probability between
a pair of nodes i and j. We set m to be 2 with a proper choice of k. We keep these experimental setups for all our experiments.

Supplementary Note 5: Derivation of the gradient of log-likelihood function
The complete likelihood function given the network model G is defined by,

P(Gt ,Mt ,ψ,π|G ,A ) =(Π(i, j)∈E0 pψ(i),ψ( j)+Π(i′, j′)/∈E0(1− pψ(i′),ψ( j′)))∗ γΠt−1
s=0Aα(d(π−1(s)),s) (13)

The log-likelihood function LL is thus,

LL = ∑
(i, j)∈E0

log(pψ(i),ψ( j))+ ∑
(i′, j′)/∈E0

log(1− pψ(i′),ψ( j′))+
t−1

∑
s=0

γAα(d(π−1(s)),s) (14)
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Supplementary Figure 7. Transitional behavior of interventions (α = 10) on the human consensus brain
connectome over time.

We notice the gradient of LL in terms of the generative measure p0 does not depend on γAα(d(π−1(s)),s). Therefore, we
define LL′ as,

LL′ = ∑
(i, j)∈E0

log(pψ(i),ψ( j))+ ∑
(i′, j′)/∈E0

log(1− pψ(i′),ψ( j′))

=∑
i, j

log(1− pψ(i),ψ( j))+ ∑
(i, j)∈E0

log(
pψ(i),ψ( j)

1− pψ(i′),ψ( j′)
)

=A1 +A2 (15)

Taking the derivative of the first term A, we have,

∂A1

∂ p0(u,v)
=−∑

i, j
t

pψ(i),ψ( j)

1− pψ(i),ψ( j)

1
p0(u,v)

(16)

where t is the number of p0(u,v) that pψ(i),ψ( j) consists of (see Equation (22, 23) in Methods). Similarly, we have,

∂A2

∂ p0(u,v)
= ∑

(i, j)∈E0

1
1− pψ(i),ψ( j)

t
p0(u,v)

(17)
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Supplementary Figure 8. Instruction to run the code.

Thus,

∂LL
∂ p0(u,v)

=
∂A

∂ p0(u,v)
+

∂B
∂ p0(u,v)

(18)

We have an important note here. Given a large number of samples, the amortized computational complexity of Equation (18)
is O(|E0|). We notice Equation (16) does not depend on the original network G0 as it is a function of upper/lower triangle
of P for undirected networks (and P is symmetric) and the whole P for directed networks, irrespective of ψ . As a result,
the gradient is a constant given the fixed generative measure p0 and thus its computational can be amortized by all samples
of {Zt ,ψ}. Equation (17) is clearly a function of {Zt ,ψ} and it takes O(|E0|) to compute. Consequently, the amortized
computation cost to calculate the gradient is O(|E0|).

Supplementary Note 6: Code tutorial
We have included the code tutorial as Supplementary Figure 8.
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