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Reviewer #1 (Remarks to the Author):  

 

Dear authors,  

 

First of all, thank you for the detailed and matching response to my comments. I very much enjoyed 

the direct and bona fide debate. I respond further only to the issues which I believe to be 

outstanding.  

 

C-1. I agree that whilst real systems are dirty and may not fit a certain stable probabilistic structure, 

it doesn't mean there cannot be a useful abstraction. Certainly some of the references given in the 

response seems to indicate that there can be a degree of consistency in attack behaviour. On a more 

philosophical point, one may wish to see if there is a need to distinguish network formation laws 

(e.g. a decentralised complexity) with attacks (which maybe a form of centralised complexity). What 

would be useful is to perhaps set out 1-2 mechanics for real-world attacks that obey a certain 

pattern in the SI. This would help to motivate readers and also expand on the impact of the paper.  

 

F. I would suggest also pointing out where this approach might not work in the paper (which also 

relates to some C-1 points). Often knowing its limitations is very helpful for end users and also 

enables others to follow up on further research. It maybe the case that limitations are better 

demonstrated with simpler examples (which chimes with another reviewer's comments I believe).  

 

H. I am very happy that the paper is better worded and when adding in my recommendation for 

setting clear limits for the graph and attack structure boundaries (see C-1 and F), I think it makes a 

solid and impactful contribution to this body of important literature.  

 

In summary, I recommend an accept (subject to minor changes recommended above).  

 

Best  

 

 

Reviewer #2 (Remarks to the Author):  

 



This is a follow up on my first review (I was reviewer 2). I read the reply to my comments carefully. If 

I am trying to be witty, I would say that the problem with "Catching the invisible" is that the authors 

want to "have their cake and eat it too".  

 

The authors argue in their reply that their manuscript is providing a first step on a new approach to 

uncover the presence and impact of hidden, antagonistic networks of agents. This is a good and 

important goal. However, then authors then write their manuscript as if they have made a much 

greater advance than they actually achieved. This is my problem!  

 

The paper is written as if their approach is going to make visible what happened in the 2016 US 

Presidential Elections and the 2016 Brexit Referendum. This is extremely misleading and something 

that I hope Nature Communications will not condone.  

 

If the authors want to write an serious paper, then they should consider several network models of 

increasing complexity and several attacking strategies of increasing complexity, and several attempts 

at guessing the parameters of the attacks. And then, they should write about the conditions under 

which one can or cannot "catch the invisible".  

 

As is, the manuscript is a misleading exercise whose aim appears to be getting press attention.  

 

 

Reviewer #3 (Remarks to the Author):  

 

The authors have tried to address all my issues and to improve the presentation of their work.  

In particular, adding Fig. 1 in the main text with an introductory example made the article clearer.  

I also appreciate the addition of the part about the algorithmic complexity in the Supplementary 

Material.  

 

I think that the novel method proposed in this work represents an important advance in the field of 

network reconstruction and could also be of interest for a broader audience dealing with complex 

network and may be suited for publication in Nature Communications.  

However, I think the current version of the manuscript should still be improved.  

In particular, the authors could do a better job of taking into account the issues raised by the 

referees and integrating their answers in the manuscript.  

Firstly, it is difficult to understand what changes were done to the new version of the manuscript 

since they do not indicate it clearly. They could have provided a version of the article with the 



changes highlighted and reported all the changes and their location in the answer to the referees 

letter (they did it for some changes but not consistently).  

Even if this is, in a sense, a new submission (since it was transferred from Nature), this would have 

made their work much clearer.  

 

 

Concerning their answers to my questions:  

 

- About the example of the election manipulation:  

 

I appreciate the clearer introduction of this example on page 6. However I still think that this 

example is misleading.  

 

I agree that, in a very idealized model of election manipulation, their method may be used to 

"discover the hidden subnetwork of attackers who try to manipulate people’s opinion with a social 

network", but I don't see how it could be used to measure the real influence of the attackers on the 

vote in a real world scenario. While they addressed some of my remarks concerning this point in the 

answer to the referees letter, they did not include the remarks about the limitations of their method 

in the article.  

 

If they persist in wanting to use this case as an example of application of their method, they need to 

clearly explain which questions it can answers and which it cannot. They need to stipulate that their 

simulation is highly idealized and clarify the limitations of this example in order to not mislead 

readers into thinking that their approach solves the problem of opinion manipulation as this is a 

much more complex problem that what they simulate.  

 

They use the case of Cambridge Analytica to justify their example, saying "We simulate a similar 

opinion manipulation  

attack as the reported case of Cambridge Analytica on Facebook users with the difference being that 

we assume there exists a  

multitude of running agents that try to influence voting decisions."  

However, the case of Cambridge Analytica is not very similar to their scenario. The app used by 

Cambridge Analytica was only used to gather information on people using it (and on their friends) in 

order to build psychological profiles.  

This was then used to target users based on their personality traits with digital ads and fundraising 

appeals (see https://www.nytimes.com/2018/03/17/us/politics/cambridge-analytica-trump-

campaign.html).  



Comparing their simulation to the case of Cambridge Analytical shows that a realistic simulation 

should in fact include a targeting that depends on psychological profiles and influence outside of just 

the neighbors of a users (ads).  

 

I think this is what the author mean in the answer to referee letter, when they say "Another 

important note here is that there is no influence propagation or opinion/rumor spreading in this 

type of social network interventions. They can be triggered by the actions performed by the data 

firms after the attack but they are not participating in it through the ”agent apps” by themselves." 

But this is not precised in the main text.  

 

Their scenario is closer to the case of opinion manipulation using bots which I don't think we have 

proof that Cambridge Analytical used. If I understand correctly, this is what they mean by automated 

apps in the answer to referee letter.  

They should clarify this point in the manuscript.  

 

For an empirical investigation of opinion manipulation with bots, see for example : Ferrara, Emilio, et 

al. "The rise of social bots." Communications of the ACM 59.7 (2016): 96-104 and Bessi, Alessandro, 

and Emilio Ferrara. "Social bots distort the 2016 US Presidential election online discussion." (2016).  

 

Their explanation of the simulation could also be improved. For example, they speak about "the 

fraction of population being biased" (also in Figure 5) without clearly defining what they consider a 

biased user (is it the neighbors of the planted influencers?).  

 

What is really unclear for me is how they can measure the "number of biased vote" (Figure 7) and at 

same time say that "there is no influence propagation or opinion/rumor spreading in this type of 

social network interventions". If they measure the number of biased vote, they assume that the 

opinion of the voters was influenced. Otherwise, what they measure may be better describe as the 

number agent passively collecting data? or the number of user potentially influenced?  

But in this case, they need to specify that we have no idea how successful the opinion manipulation 

is, which means that their result is of little practical use.  

This sentence: "Last but not least, we report the estimated votes potentially influenced by the 

agents who directly interacted with people. This represents a lower bound of biased votes without 

including the magnifying effect of opinion propagation." is also particularly misleading. "The number 

of votes potentially influenced" is not equivalent to the number of "biased vote", since we don't 

know how successful the opinion manipulation is. A potentially influenced vote is not necessarily a 

biased vote. Not everybody will change their opinion when they are in contact with a opinion 

manipulator. So the number is in fact an upper bond on the number of biased votes (without taking 

into account the possibility of opinion propagating farther than to immediate neighbors).  

I would appreciate if the authors could clarify this point in the main text.  



 

They also need to discuss in the main text the fact that, as they recognize in their answer to the 

referees, their model does not take into the possibility that several actors could be competing for 

influencing the outcome of the elections, which is certainly the case in any real example.  

 

Also in the text we read "With the agents being 1% of the population when α == 1, 61.28% of 

population is already covered", but in Fig. 5 the proportion seems to be rather just below 50% for 

alpha=1 and a share of spreaders of 0.01. Unless I am misreading the figure.  

 

The value of alpha used in Figs 6 and 7 should be mentioned in the caption (I think it's 1).  

 

 

- Concerning the issue of algorithmic complexity and running time:  

 

I appreciate the answer of the referee and the supplementary material they added. However, I don't 

see any reference to this discussion in the main text (apart for a short sentence at the very end of 

the manuscript).  

 

I am not blaming the authors for not running their algorithms on more powerful machines, but I 

think they should mention in the main text up to which order magnitude of network size their 

framework could reasonably be applied. This has direct implication on the type of problems that can 

be solved with their framework.  

 

 

- For questions C-6, C-7, C-8 and C-9:  

 

I thank the authors for their answer, but again, a small mention of these points in the main text 

would improve the manuscript for readers that may have the same questions.  

 

 

Finally, there still are some inconsistencies in the manuscript.  

For example:  

p.3 "As a case study, we propose to employ the multi-fractal network generative (MFNG) model (see 

Supplementary Material S6) as the underlying network model." "S6" Should be S4.  

 



eq. 17 still uses alpha while eq. 18 uses beta.  

 

eq. 6 the differential is still missing.  

 

- Concerning the ability of a researcher to reproduce the work:  

 

The authors used publicly available datasets and provide the source codes for generating the results 

on github. This is very nice except for the fact that there is very little explanation on how to run the 

code. 



We appreciate again all the comments and suggestions from the anonymous reviewers.

We believe all the interactive discussions in the reviewing process greatly help us enhance

our manuscript and recognize the key things to improve in both our current work and future

research. We would like to present our sincere gratitude to all reviewers for their efforts.

Thank you very much for your consideration,

Yuankun Xue and Paul Bogdan
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To avoid the confusion when pointing to the figures in our reproduced changes from the
main text, we refer them by their index in our response letter rather than the index in the main
text.

Referee 1:

Dear authors,
First of all, thank you for the detailed and matching response to my comments. I very much

enjoyed the direct and bona fide debate. I respond further only to the issues which I believe to
be outstanding.
C-1.: I agree that whilst real systems are dirty and may not fit a certain stable probabilistic
structure, it doesn’t mean there cannot be a useful abstraction. Certainly some of the references
given in the response seems to indicate that there can be a degree of consistency in attack be-
haviour. On a more philosophical point, one may wish to see if there is a need to distinguish
network formation laws (e.g. a decentralised complexity) with attacks (which maybe a form
of centralised complexity). What would be useful is to perhaps set out 1-2 mechanics for real-
world attacks that obey a certain pattern in the SI. This would help to motivate readers and
also expand on the impact of the paper.

Our Response: We thank the reviewer for all the insightful comments and we do share the
same joy as the reviewer in this interactive process of learning and discussion to improve our
manuscript.

We have followed the reviewer’s suggestion to add discussion in SI (see S6) on an identified
instance of social network attack by Russian Internet Research Agency on twitter networks. We
also put pointers in our main discussion to motivate the readers for further reading on relevant
topics.

F:I would suggest also pointing out where this approach might not work in the paper (which
also relates to some C-1 points). Often knowing its limitations is very helpful for end users
and also enables others to follow up on further research. It maybe the case that limitations are
better demonstrated with simpler examples (which chimes with another reviewer’s comments
I believe).

Our Response: We thank the reviewer for this important comment . We have followed the
suggestion and added the discussion of limitation of our approach in the section ”Discussion
and Future work” which is highlighted in red. In addition, we also discussed the limitations
and possible improvement as we analyze the results.

For convenience, we reproduce them as below.
There are several key aspects that could be improved by our future work. While the as-

sumptions made in the attack model seem plausible, the real attacks may not follow a consis-
tent statistical pattern as the one described in Equation (2). For instance, the causal structure of
the attacking sequence considered in our framework can be more sophisticated by the coordi-
nation / interaction (sharing of information) among multiple attackers co-existing in the net-
work. Attackers may not necessarily operate under the same strategy which makes it challeng-
ing to construct consistent and accurate models to characterize their behavior. Consequently,
it is important to incorporate attack strategies as part of the network inference framework
(e.g., either estimating the unknown parameters of the attack model together with the network
model in an EM approach or estimate them separately based on additional information when
available). Since real networks can change their growth rules and possibly their self-similar
structure over time (e.g., co-existence or emergent transition of small-world and multi-fractal
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Figure 1: Inference runtime as a function of missing nodes with a network of size 4049 and

1015

scaling observed in complex networks), a generative model that captures all the structural fea-
tures of interested networks can be difficult to build. Finally, applying the inference framework
to large scale networks would require more efficient computational techniques. As detailed in
the Methods section, the overall computation complexity of one EM iteration is O(KS|E0|)
where |E0| is the number of links in the original network, K is the number of samples and S

denotes optimization steps. In the worst case, |E0| is a quadratic function of network size and
the number of samples required to identify the network model also grows exponentially. This
can be shown in Figure 9 that runtime is dominated by the network size and slowly increases
as the |Zt| grows where |Zt| is the number of latent nodes. The algorithm is written in Matlab
and runs on i7-4790K with 32GB memory where K = 40000, B = 10000 and S = 10.

While extending the inference framework to larger scales requires further work, we also
need to be very cautious about the interpretation of the worst-case computational complexity.
Firstly, many real networks are sparse, which makes the runtime of proposed algorithm run
much faster than the worse-case computational complexity implies. Secondly, the size of many
biological networks varies from a few hundreds to a few thousands of nodes, which makes the
proposed framework suitable for use and further extension to specific biological investiga-
tions. Thirdly, social networks are known to possess small world and scale free properties,
as well as rich in the degree of locality (related to occupation, age, or geographic proxim-
ity). Also, attackers can hardly grasp the global information about the networks. This means
that a targeted attack usually happens to a localized subnetwork (observable part of the net-
work for the attacker) rather than the entire network. Combining these important aspects with
more realistic attack strategies and opinion / information diffusion models opens up a rich yet
challenging class of network reconstruction and inference problems for the network science
research community.

H. I am very happy that the paper is better worded and when adding in my recommendation
for setting clear limits for the graph and attack structure boundaries (see C-1 and F), I think it
makes a solid and impactful contribution to this body of important literature.

In summary, I recommend an accept (subject to minor changes recommended above).

Our Response: We thank again very much the reviewer for all the improvement suggestions
and sincere support.
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Referee 2:

C-1: This is a follow up on my first review (I was reviewer 2). I read the reply to my comments
carefully. If I am trying to be witty, I would say that the problem with ”Catching the invisible”
is that the authors want to ”have their cake and eat it too”.

The authors argue in their reply that their manuscript is providing a first step on a new
approach to uncover the presence and impact of hidden, antagonistic networks of agents. This
is a good and important goal. However, then authors then write their manuscript as if they
have made a much greater advance than they actually achieved. This is my problem!

The paper is written as if their approach is going to make visible what happened in the
2016 US Presidential Elections and the 2016 Brexit Referendum. This is extremely misleading
and something that I hope Nature Communications will not condone.

If the authors want to write a serious paper, then they should consider several network
models of increasing complexity and several attacking strategies of increasing complexity, and
several attempts at guessing the parameters of the attacks. And then, they should write about
the conditions under which one can or cannot ”catch the invisible”.

As is, the manuscript is a misleading exercise whose aim appears to be getting press atten-
tion.

Our Response: We are thankful to the reviewer’s comment. We recognize that our presented
election example is an idealized scenario where our proposed method can help reveal the struc-
tural properties of latent network structures under a class of attacks, which are abstractions of
real attacks that are far more complicated in terms of their scales, dynamics and statistical
consistency. Following the reviewer’s suggestions, we have thoroughly rewritten and reintro-
duced our study on the social network to minimize any possible claims and arguments that
might trigger confusion and misinterpretation. For convenience, we have reproduced the rel-
evant discussion here in highlight.
I.Reintroduction of the social network example:

In the second experiment, we use our framework to discover the hidden subnetwork in a
simulated removal process that mimics the social network interventions in an abstracted set-
ting. This study is inspired by the recent social network user privacy and information breaches.
For instance, automated applications run by data firms or malicious attackers are injected into
the social networks. These injected applications become part of the social networks and either
(i) act as collectors to gather privacy related user profiles under a camouflaged data acquisi-
tion interface (e.g., ”This is your digital life” that collects user profiles, which are later used for
political purpose) or (ii) launch campaigns to propagate designed information to target social
groups. Together with the user nodes, they form an extended network that is usually not fully
unveiled. The ultimate challenge is to estimate their structural formation and influence on
various social events.

It should be noted that assessing the impact of these automated information dissemina-
tors and collectors comprehensively requires a sophisticated integration of network inference
framework, opinion diffusion dynamics under various attack strategies and scales, geometry
and statistical physics, network science and even psychological profiling and modeling. As
one of the key enablers towards a reliable toolset against such information manipulations, we
evaluate, from a structural perspective, the inference capability of a properly built framework
that admits and exploits the knowledge of the attack and how it can be leveraged to boost the
fidelity of recovered network structures.

II.Reintroduced result analysis according to reviewer’s suggestion:
Discover the hidden social networks.

4



In the following experiment, we connect our case study to the social network interventions
that are related to recent ever-increasing privacy and information manipulation concerns. We
focus on the capability of our framework to retrieve with fidelity the structure of a subnetwork
removed under our targeted attack assumption in Equation (2). This targeted removal process
mimics the removal of automated applications deployed intentionally to either collect or in-
ject information into social networks. In the extended social network consisting of both such
hidden applications and user nodes, such a removal process can be understood as a defen-
sive strategy of the launchers (e.g., data firms) to get minimal exposure to the investigation by
pulling the deployed applications offline. Different from the attack in previous experiments,
the removal process now obstructs our observations rather than sabotaging the network enti-
ties.

Although real social network attacks can be much more sophisticated by involving multi-
ple parties at the same time (as opposed to a coordinated sequence of operations as in Equation
(2) and evolving in a statistically inconsistent way (as opposed to a stabilized and consistent
stochastic behavior), here we consider an idealized abstraction of a class of real attacks that
prioritize the degree centrality. The considered attack model and its variants have been widely
adopted as an abstraction of the targeted attacks for the study of robustness, stability, resilience
and defensive/attack strategies of networks [26, 30, 38-44] ranging from mathematically con-
structed complex network to traffic network [45] , brain network [46-48] , computer network
[13] and also social networks [49, 50]. Of particular note is the fact that the lack of global infor-
mation in a social network attack is common whereas the probability of reaching a particular
vertex by following a randomly chosen edge in a graph is proportional to the vertex’s degree
[30] , making the degree centrality an important factor that contributes to the vulnerability of
the nodes even though the attacker has only extremely localized information (e.g., connectiv-
ity). Moreover, the study [26] suggests that the choice of α in the Equation (2) can be used to
incorporate the intrinsic network vulnerability and external knowledge of the system, which
helps the model and its variants become a good abstraction of a wide range of real attacks in
complex networks.

Starting out from this motivation, we consider an extended social network with 4049 nodes
(including hidden nodes injected for information manipulation, referred as injected nodes, and
ordinary user nodes) built from Facebook network dataset [51]. Due to the small-worldness of
the social network (see Supplementary Material S2), only a small group of injected nodes is re-
quired to make sure all user nodes have at least one injected node as their immediate neighbor
(i.e., all users are subject to data security issues and/or manipulated information even without
information propagation among them). We define coverage to be the chance of a user node
to have an immediate neighboring injected node. Figure 10 visualizes the coverage of injected
nodes against their share in the network under different α from −10 to 10. In this figure, α
has a different meaning and Aα(di) now is a proxy of the likelihood of an injected node of
degree di being the highest connected node in the network. The higher α is, the larger portion
of the highest connected nodes will be represented by the injected nodes and the bigger cover-
age they will have. Figure 10 suggests that 48.6% of population have at least one neighboring
injected node when the injected nodes account for only 1% of total nodes with α = 1. The
coverage goes up to 98.44% when injected nodes account for 15% of the network as shown in
Figure 10. This suggests that a full-scale information manipulation/collection requires only a
small injection of designed agents (i.e., disseminators/collectors) into the network and these
agents do not have to be significantly more connected than an average node.

Motivated by this observation, we simulate the removal process by setting α = 1 and vary
the share of injected nodes from 5% to 45%. Baseline method and our framework are applied
to recover the original extended social network. Similarly, ROC-AUC and PR-AUC are used as
metrics for quantifying the inference capability and shown in Figure 11.(a) and (c). Resonating
with our previous experiments, the ROC-AUC and PR-AUC scores of our proposed inference
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Figure 2: Coverage as a function of α and share of injected nodes in total network of 4049 nodes

framework are significantly improved over that of the baseline, suggesting a boost in capa-
bility to infer the missing network more accurately. This is further corroborated by assessing
the structural similarity of networks generated by the retrieved network models. Similarly, we
estimate the Kolmogorov-Smirnov (KS) distance eKS between the empirical degree distribu-
tion of the original network F ∗(x) and networks generated by both methods F (x). The results
are averaged over 1000 network instances and reported in Figure 11.(c). In addition, we also
report the log-likelihood (LL) in Figure 11.(d) as a global metric for goodness-of-fit to compare
the model identified by both methods. Even though the absolute value of LL strongly varies as
a function of a particular model choice for the network, the relative difference given the fixed
model provides a good performance comparison between different identification techniques.
As expected, Figure 11.(b) and (d) suggest that our proposed method retrieves a model that is
more globally consistent with the true one with smaller eKS and larger LL values compared to
the baseline.

The statistics of both the intervention process and the complex network structure play a
crucial role in these observations. First, in small-world networks, the hub nodes account for
a small fraction of the network. Lower degree nodes are unaffected by hub-prioritized inter-
ventions. The baseline method ignores the influence of the intervention and therefore is biased
by the observed part towards the retrieval of a model that explains better a network without
the hub nodes. As demonstrated by our studies, the baseline method has poor performance
on inferring the missing network. Second, due to the time-varying nature of the interventions,
the hub-prioritized interventions induce a random sampling behavior after the removal of hub
nodes. This behavior change can be demonstrated by the small variance of the degree distri-
bution, reshaped by the conducted intervention (see Transitional behavior of interventions in
Supplementary Material). Consequently, the performance of baseline and proposed methods
exhibit a plateau since a small-world network is robust against random removals. We present
the investigation of small-world-ness of all networks considered in our work in Supplemen-
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Figure 3: Evaluation of the capability to recover the Facebook social network (α = 1). (a,
c) Compare the capability to infer the missing network via AUC scores. (b) Goodness-of-the-
fit comparison as reported by Kolmogorov-Smirnov distance between the true degree distri-
bution and the one retrieved by baseline and proposed methods. (d) Quantification of the
capability of both methods to recover the global property of the example social network via
log-likelihood.

tary Material (S2).
Last but not least, we report the estimated number of user nodes (later referred as ”affected

users”) with at least one injected node as their immediate neighbor. Without considering the
opinion diffusion dynamics, this measurement serves as an upper bound on the number of
users being exposed to designed information or personal data breaches. To consider a more
realistic setting, this assessment should also incorporate the propagation of information among
users, which is left as an important extension in our future work. Varying the share of injected
nodes in the extended social network from 1% to 15%, Figure 12 visualizes the estimation
averaged over 5000 network instances drawn from both models retrieved by baseline and pro-
posed methods. As expected, the baseline underestimates affected users as it did not exploit
the knowledge of the targeted removal process. More interestingly, when compared to Fig-
ure 10, we found that the curve corresponding to the estimated votes by the baseline is almost
identical to the coverage curve obtained under a random intervention (i.e., the degree of an
injected node being statistically the same as a randomly chosen node in the original network
without injected nodes). This suggests again that the baseline method works only if the inter-
vention is purely randomized and easily fails when this assumption does not hold.

We have also added a detailed discussion on the limitation of our proposed framework to
clearly state its applicability and scalability. Please kindly see the text highlighted in red on
Page 4-5, Page 6-7 and Page 8-9 and we have also reproduced here in highlight.
Discussion of the limitation of proposed framework:

There are several key aspects that could be improved by our future work. While the as-
sumptions made in the attack model seem plausible, the real attacks may not follow a con-
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Figure 4: Comparison of capability to estimate affected users (α = 1)

sistent statistical pattern as the one described in Equation (2). For instance, the causal struc-
ture of the attacking sequence considered in our framework can be more sophisticated by the
coordination / interaction (sharing of information) among multiple attackers co-existing in
the network. Attackers may not necessarily operate under the same strategy which makes it
challenging to construct consistent and accurate models to characterize their behavior. Conse-
quently, it is important to incorporate attack strategies as part of the network inference frame-
work (e.g., either estimating the unknown parameters of the attack model together with the
network model in an EM approach or estimate them separately based on additional informa-
tion when available). Since real networks can change their growth rules and possibly their
self-similar structure over time (e.g., co-existence or emergent transition of small-world and
multi-fractal scaling observed in complex networks [55,56], a generative model that captures
all the structural features of interested networks can be difficult to build. Finally, applying
the inference framework to large scale networks would require more efficient computational
techniques. As detailed in the Methods section, the overall computation complexity of one EM
iteration is O(KS|E0|) where |E0| is the number of links in the original network, K is the num-
ber of samples and S denotes optimization steps. In the worst case, |E0| is a quadratic function
of network size and the number of samples required to identify the network model also grows
exponentially. This can be shown in Figure 9 that runtime is dominated by the network size
and slowly increases as the |Zt| grows where |Zt| is the number of latent nodes. The algorithm
is written in Matlab and runs on i7-4790K with 32GB memory where K = 40000, B = 10000
and S = 10.

While extending the inference framework to larger scales requires further work, we also
need to be very cautious about the interpretation of the worst-case computational complexity.
Firstly, many real networks are sparse, which makes the runtime of proposed algorithm run
much faster than the worse-case computational complexity implies. Secondly, the size of many
biological networks varies from a few hundreds to a few thousands of nodes, which makes the
proposed framework suitable for use and further extension to specific biological investiga-
tions. Thirdly, social networks are known to possess small world and scale free properties,
as well as rich in the degree of locality (related to occupation, age, or geographic proxim-
ity). Also, attackers can hardly grasp the global information about the networks. This means
that a targeted attack usually happens to a localized subnetwork (observable part of the net-
work for the attacker) rather than the entire network. Combining these important aspects with
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Figure 5: Inference runtime as a function of missing nodes with a network of size 4049 and

1015

more realistic attack strategies and opinion / information diffusion models opens up a rich yet
challenging class of network reconstruction and inference problems for the network science
research community.
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Referee 3:

C-1: The authors have tried to address all my issues and to improve the presentation of their
work. In particular, adding Fig. 1 in the main text with an introductory example made the
article clearer. I also appreciate the addition of the part about the algorithmic complexity in
the Supplementary Material.

Our Response: We are very thankful to the reviewer’s comments. All the suggestions and
discussion helped us improve our work. We also hope to address all the further comments as
best as we can.

C-2: I think that the novel method proposed in this work represents an important advance
in the field of network reconstruction and could also be of interest for a broader audience
dealing with complex network and may be suited for publication in Nature Communications.
However, I think the current version of the manuscript should still be improved. In particular,
the authors could do a better job of taking into account the issues raised by the referees and
integrating their answers in the manuscript. Firstly, it is difficult to understand what changes
were done to the new version of the manuscript since they do not indicate it clearly. They
could have provided a version of the article with the changes highlighted and reported all the
changes and their location in the answer to the referees letter (they did it for some changes but
not consistently). Even if this is, in a sense, a new submission (since it was transferred from
Nature), this would have made their work much clearer.

Our Response: We are very thankful to the reviewer for guiding us to better present our
changes between revision by highlighting and integration. We have followed the suggestion
and incorporated the key discussions on relevant topics to the manuscript. In addition, we
have prepared two versions of our revised manuscript (one with changes merged and another
one with all the changes highlighted) for better readability. To help the reviewer easily identify
the new revisions, we also reproduce the relevant changes in accordance to each individual
comment.

About the example of the election manipulation

C-3: I appreciate the clearer introduction of this example on page 6. However I still think that
this example is misleading.

I agree that, in a very idealized model of election manipulation, their method may be used
to ”discover the hidden subnetwork of attackers who try to manipulate people’s opinion with
a social network”, but I do not see how it could be used to measure the real influence of the
attackers on the vote in a real world scenario. While they addressed some of my remarks
concerning this point in the answer to the referees letter, they did not include the remarks
about the limitations of their method in the article.

If they persist in wanting to use this case as an example of application of their method,
they need to clearly explain which questions it can answers and which it cannot. They need to
stipulate that their simulation is highly idealized and clarify the limitations of this example in
order to not mislead readers into thinking that their approach solves the problem of opinion
manipulation as this is a much more complex problem that what they simulate.

Our Response: We are very thankful to the reviewer’s comment on this example. We recog-
nize that our presented election example is an idealized scenario where our proposed method
can help reveal the structural properties of latent network structures under a class of attacks,
which are abstractions of real attacks that are far more complicated in terms of their scales,
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dynamics and statistical consistency. Following the suggestion from the reviewer, we have
reintroduced our case study on the social network and added the detailed discussion on the
current limitations of our framework for future extension and improvement. To minimize any
possible claims and arguments that might trigger confusion and misinterpretation, we have
followed the suggestion of the reviewers to clearly state the applicability and scalability of our
framework. Please kindly see highlighted text on Page 4-9. For convenience, we reproduced
them here comprehensively. We will refer to them more specifically in our response to the fol-
lowing comments.

I.Reintroduction of the social network example:
In the second experiment, we use our framework to discover the hidden subnetwork in a

simulated removal process that mimics the social network interventions in an abstracted set-
ting. This study is inspired by the recent social network user privacy and information breaches.
For instance, automated applications run by data firms or malicious attackers are injected into
the social networks. These injected applications become part of the social networks and either
(i) act as collectors to gather privacy related user profiles under a camouflaged data acquisi-
tion interface (e.g., ”This is your digital life” that collects user profiles, which are later used for
political purpose) or (ii) launch campaigns to propagate designed information to target social
groups. Together with the user nodes, they form an extended network that is usually not fully
unveiled. The ultimate challenge is to estimate their structural formation and influence on
various social events.

It should be noted that assessing the impact of these automated information dissemina-
tors and collectors comprehensively requires a sophisticated integration of network inference
framework, opinion diffusion dynamics under various attack strategies and scales, geometry
and statistical physics, network science and even psychological profiling and modeling. As
one of the key enablers towards a reliable toolset against such information manipulations, we
evaluate, from a structural perspective, the inference capability of a properly built framework
that admits and exploits the knowledge of the attack and how it can be leveraged to boost the
fidelity of recovered network structures.

II.Reintroduced result analysis according to reviewer’s suggestion:
Discover the hidden social networks.

In the following experiment, we connect our case study to the social network interventions
that are related to recent ever-increasing privacy and information manipulation concerns. We
focus on the capability of our framework to retrieve with fidelity the structure of a subnetwork
removed under our targeted attack assumption in Equation (2). This targeted removal process
mimics the removal of automated applications deployed intentionally to either collect or in-
ject information into social networks. In the extended social network consisting of both such
hidden applications and user nodes, such a removal process can be understood as a defen-
sive strategy of the launchers (e.g., data firms) to get minimal exposure to the investigation by
pulling the deployed applications offline. Different from the attack in previous experiments,
the removal process now obstructs our observations rather than sabotaging the network enti-
ties.

Although real social network attacks can be much more sophisticated by involving multi-
ple parties at the same time (as opposed to a coordinated sequence of operations as in Equation
(2) and evolving in a statistically inconsistent way (as opposed to a stabilized and consistent
stochastic behavior), here we consider an idealized abstraction of a class of real attacks that
prioritize the degree centrality. The considered attack model and its variants have been widely
adopted as an abstraction of the targeted attacks for the study of robustness, stability, resilience
and defensive/attack strategies of networks [26, 30, 38-44] ranging from mathematically con-
structed complex network to traffic network [45] , brain network [46-48] , computer network

11



[13] and also social networks [49, 50] . Of particular note is the fact that the lack of global infor-
mation in a social network attack is common whereas the probability of reaching a particular
vertex by following a randomly chosen edge in a graph is proportional to the vertex’s degree
[30] , making the degree centrality an important factor that contributes to the vulnerability of
the nodes even though the attacker has only extremely localized information (e.g., connectiv-
ity). Moreover, the study [26] suggests that the choice of α in the Equation (2) can be used to
incorporate the intrinsic network vulnerability and external knowledge of the system, which
helps the model and its variants become a good abstraction of a wide range of real attacks in
complex networks.

Starting out from this motivation, we consider an extended social network with 4049 nodes
(including hidden nodes injected for information manipulation, referred as injected nodes, and
ordinary user nodes) built from Facebook network dataset [51]. Due to the small-worldness of
the social network (see Supplementary Material S2), only a small group of injected nodes is re-
quired to make sure all user nodes have at least one injected node as their immediate neighbor
(i.e., all users are subject to data security issues and/or manipulated information even without
information propagation among them). We define coverage to be the chance of a user node
to have an immediate neighboring injected node. Figure 10 visualizes the coverage of injected
nodes against their share in the network under different α from −10 to 10. In this figure, α
has a different meaning and Aα(di) now is a proxy of the likelihood of an injected node of
degree di being the highest connected node in the network. The higher α is, the larger portion
of the highest connected nodes will be represented by the injected nodes and the bigger cover-
age they will have. Figure 10 suggests that 48.6% of population have at least one neighboring
injected node when the injected nodes account for only 1% of total nodes with α = 1. The
coverage goes up to 98.44% when injected nodes account for 15% of the network as shown in
Figure 10. This suggests that a full-scale information manipulation/collection requires only a
small injection of designed agents (i.e., disseminators/collectors) into the network and these
agents do not have to be significantly more connected than an average node.

Motivated by this observation, we simulate the removal process by setting α = 1 and vary
the share of injected nodes from 5% to 45%. Baseline method and our framework are applied
to recover the original extended social network. Similarly, ROC-AUC and PR-AUC are used as
metrics for quantifying the inference capability and shown in Figure 11.(a) and (c). Resonating
with our previous experiments, the ROC-AUC and PR-AUC scores of our proposed inference
framework are significantly improved over that of the baseline, suggesting a boost in capa-
bility to infer the missing network more accurately. This is further corroborated by assessing
the structural similarity of networks generated by the retrieved network models. Similarly, we
estimate the Kolmogorov-Smirnov (KS) distance eKS between the empirical degree distribu-
tion of the original network F ∗(x) and networks generated by both methods F (x). The results
are averaged over 1000 network instances and reported in Figure 11.(c). In addition, we also
report the log-likelihood (LL) in Figure 11.(d) as a global metric for goodness-of-fit to compare
the model identified by both methods. Even though the absolute value of LL strongly varies as
a function of a particular model choice for the network, the relative difference given the fixed
model provides a good performance comparison between different identification techniques.
As expected, Figure 11.(b) and (d) suggest that our proposed method retrieves a model that is
more globally consistent with the true one with smaller eKS and larger LL values compared to
the baseline.

The statistics of both the intervention process and the complex network structure play a
crucial role in these observations. First, in small-world networks, the hub nodes account for
a small fraction of the network. Lower degree nodes are unaffected by hub-prioritized inter-
ventions. The baseline method ignores the influence of the intervention and therefore is biased
by the observed part towards the retrieval of a model that explains better a network without
the hub nodes. As demonstrated by our studies, the baseline method has poor performance
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Figure 6: Coverage as a function of α and share of injected nodes in total network of 4049 nodes

on inferring the missing network. Second, due to the time-varying nature of the interventions,
the hub-prioritized interventions induce a random sampling behavior after the removal of hub
nodes. This behavior change can be demonstrated by the small variance of the degree distri-
bution, reshaped by the conducted intervention (see Transitional behavior of interventions in
Supplementary Material). Consequently, the performance of baseline and proposed methods
exhibit a plateau since a small-world network is robust against random removals. We present
the investigation of small-world-ness of all networks considered in our work in Supplemen-
tary Material (S3).

Last but not least, we report the estimated number of user nodes (later referred as ”affected
users”) with at least one injected node as their immediate neighbor. Without considering the
opinion diffusion dynamics, this measurement serves as an upper bound on the number of
users being exposed to designed information or personal data breaches. To consider a more
realistic setting, this assessment should also incorporate the propagation of information among
users, which is left as an important extension in our future work. Varying the share of injected
nodes in the extended social network from 1% to 15%, Figure 12 visualizes the estimation
averaged over 5000 network instances drawn from both models retrieved by baseline and pro-
posed methods. As expected, the baseline underestimates affected users as it did not exploit
the knowledge of the targeted removal process. More interestingly, when compared to Fig-
ure 10, we found that the curve corresponding to the estimated votes by the baseline is almost
identical to the coverage curve obtained under a random intervention (i.e., the degree of an
injected node being statistically the same as a randomly chosen node in the original network
without injected nodes). This suggests again that the baseline method works only if the inter-
vention is purely randomized and easily fails when this assumption does not hold.

III.Discussion of the limitation of proposed framework:
There are several key aspects that could be improved by our future work. While the as-

13



Percentage of missing network

0.65

0.7

0.75

0.8

0.85

R
O

C
-A

U
C

 s
c
o
re

Proposed

Baseline

Percentage of missing network

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

K
S

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.450.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

(a) (b)

(d)

Proposed

Baseline

-5.2

-5

-4.8

-4.6

-4.4

-4.2

-4

-3.8
10

5

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Percentage of missing network

L
o

g
-l

ik
e

li
h

o
o

d

Proposed

Baseline

Percentage of missing network
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

( )c

Proposed

Baseline

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

P
R

-A
U

C
 s

c
o
re

Figure 7: Evaluation of the capability to recover the Facebook social network (α = 1). (a,
c) Compare the capability to infer the missing network via AUC scores. (b) Goodness-of-the-
fit comparison as reported by Kolmogorov-Smirnov distance between the true degree distri-
bution and the one retrieved by baseline and proposed methods. (d) Quantification of the
capability of both methods to recover the global property of the example social network via
log-likelihood.

sumptions made in the attack model seem plausible, the real attacks may not follow a con-
sistent statistical pattern as the one described in Equation (2). For instance, the causal struc-
ture of the attacking sequence considered in our framework can be more sophisticated by the
coordination / interaction (sharing of information) among multiple attackers co-existing in
the network. Attackers may not necessarily operate under the same strategy which makes it
challenging to construct consistent and accurate models to characterize their behavior. Conse-
quently, it is important to incorporate attack strategies as part of the network inference frame-
work (e.g., either estimating the unknown parameters of the attack model together with the
network model in an EM approach or estimate them separately based on additional informa-
tion when available). Since real networks can change their growth rules and possibly their
self-similar structure over time (e.g., co-existence or emergent transition of small-world and
multi-fractal scaling observed in complex networks [55,56], a generative model that captures
all the structural features of interested networks can be difficult to build. Finally, applying
the inference framework to large scale networks would require more efficient computational
techniques. As detailed in the Methods section, the overall computation complexity of one EM
iteration is O(KS|E0|) where |E0| is the number of links in the original network, K is the num-
ber of samples and S denotes optimization steps. In the worst case, |E0| is a quadratic function
of network size and the number of samples required to identify the network model also grows
exponentially. This can be shown in Figure 9 that runtime is dominated by the network size
and slowly increases as the |Zt| grows where |Zt| is the number of latent nodes. The algorithm
is written in Matlab and runs on i7-4790K with 32GB memory where K = 40000, B = 10000
and S = 10.

While extending the inference framework to larger scales requires further work, we also
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Figure 9: Inference runtime as a function of missing nodes with a network of size 4049 and
1015

need to be very cautious about the interpretation of the worst-case computational complexity.
Firstly, many real networks are sparse, which makes the runtime of proposed algorithm run
much faster than the worse-case computational complexity implies. Secondly, the size of many
biological networks varies from a few hundreds to a few thousands of nodes, which makes the
proposed framework suitable for use and further extension to specific biological investiga-
tions. Thirdly, social networks are known to possess small world and scale free properties,
as well as rich in the degree of locality (related to occupation, age, or geographic proxim-
ity). Also, attackers can hardly grasp the global information about the networks. This means
that a targeted attack usually happens to a localized subnetwork (observable part of the net-
work for the attacker) rather than the entire network. Combining these important aspects with
more realistic attack strategies and opinion / information diffusion models opens up a rich yet
challenging class of network reconstruction and inference problems for the network science
research community.

C-4: They use the case of Cambridge Analytica to justify their example, saying ”We simulate
a similar opinion manipulation attack as the reported case of Cambridge Analytica on Face-
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book users with the difference being that we assume there exists a multitude of running agents
that try to influence voting decisions.” However, the case of Cambridge Analytica is not very
similar to their scenario. The app used by Cambridge Analytica was only used to gather infor-
mation on people using it (and on their friends) in order to build psychological profiles.

This was then used to target users based on their personality traits with digital ads and
fundraising appeals (see https://www.nytimes.com/2018/03/17/us/politics/cambridge-analytica-
trump-campaign.html). Comparing their simulation to the case of Cambridge Analytical shows
that a realistic simulation should in fact include a targeting that depends on psychological pro-
files and influence outside of just the neighbors of a users (ads).

I think this is what the author mean in the answer to referee letter, when they say ”Another
important note here is that there is no influence propagation or opinion/rumor spreading in
this type of social network interventions. They can be triggered by the actions performed by
the data firms after the attack but they are not participating in it through the ”agent apps” by
themselves.” But this is not precised in the main text.

Their scenario is closer to the case of opinion manipulation using bots which I don’t think
we have proof that Cambridge Analytical used. If I understand correctly, this is what they
mean by automated apps in the answer to referee letter. They should clarify this point in the
manuscript.

For an empirical investigation of opinion manipulation with bots, see for example : Ferrara,
Emilio, et al. ”The rise of social bots.” Communications of the ACM 59.7 (2016): 96-104 and
Bessi, Alessandro, and Emilio Ferrara. ”Social bots distort the 2016 US Presidential election
online discussion.” (2016).

Our Response: We are very thankful to the reviewer for helping us clarify our claims with
respect to the automated apps that try to influence the voting decisions. As the reviewer men-
tioned, we were motivated by the attack scenario where political campaigns are deployed by
means of automated apps (e.g., news bots) running on top of social media platforms like Face-
book or Twitter, based on the collected psychological profiles of users.

To support a campaign that targets millions of users on the social network (https://www.the
guardian.com/news/2018/may/06/cambridge-analytica-how-turn-clicks-into-votes-christopher-
wylie), we believe that data firms like Cambridge Analytica have to take advantage of auto-
mated deployment/broadcasting algorithms and utilities provided by social media platforms
to build user profiles and inject designed information based on that. This is also corroborated
by a recent study [R1] on the electoral manipulation that is using trolls (malicious accounts
created for the purpose of manipulation) and bots (automated accounts) to spread misinfor-
mation and politically biased information. Note that these algorithms are not only the social
bots as in the reference but also built-in services of social media platforms that are being uti-
lized in a wrong way (e.g., Reveal: https://revealbot.com; Zalster, https://zalster.com).

[R1] Badawy, Adam, Emilio Ferrara, and Kristina Lerman. ”Analyzing the Digital Traces
of Political Manipulation: The 2016 Russian Interference Twitter Campaign.” arXiv preprint
arXiv:1802.04291 (2018).

As mentioned in our response to the previous comment, we have followed the suggestion
of the reviewer to make our discussion of this precise with a clear scope to minimize confusion.
We have also included the recommended work in our reference. Please kindly see highlighted
text on Page 4-9 for a full view of the change. Specifically, please see I.Reintroduction of the social
network example: and III.Discussion of the limitation of proposed framework: of our response to C-3.

C-5: Their explanation of the simulation could also be improved. For example, they speak
about ”the fraction of population being biased” (also in Figure 5) without clearly defining
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what they consider a biased user (is it the neighbors of the planted influencers?).
What is really unclear for me is how they can measure the ”number of biased vote” (Figure

7) and at same time say that ”there is no influence propagation or opinion/rumor spreading
in this type of social network interventions”. If they measure the number of biased vote, they
assume that the opinion of the voters was influenced. Otherwise, what they measure may be
better describe as the number agent passively collecting data? or the number of user poten-
tially influenced?

But in this case, they need to specify that we have no idea how successful the opinion
manipulation is, which means that their result is of little practical use. This sentence: ”Last
but not least, we report the estimated votes potentially influenced by the agents who directly
interacted with people. This represents a lower bound of biased votes without including the
magnifying effect of opinion propagation.” is also particularly misleading. ”The number of
votes potentially influenced” is not equivalent to the number of ”biased vote”, since we don’t
know how successful the opinion manipulation is. A potentially influenced vote is not neces-
sarily a biased vote. Not everybody will change their opinion when they are in contact with an
opinion manipulator. So the number is in fact an upper bond on the number of biased votes
(without taking into account the possibility of opinion propagating farther than to immediate
neighbors). I would appreciate if the authors could clarify this point in the main text.

Our Response: We thank the reviewer for the suggestion. We have thoroughly reintroduced
our social network study to reflect our efforts to apply the suggested changes. More specif-
ically, we presented our analysis of the results with full awareness of the fact that accurate
assessment of bias propagation would require an integration of network inference and opin-
ion diffusion dynamics in a more sophisticated setting, which serves as a key extension of our
current work in the future (e.g., one possible extension to consider is to adopt the label prop-
agation method similar to the one used in [R1] to employ the subnet of attackers as seeds and
propagate the labels or ideology). We have highlighted our changes in red in the reproduced
result analysis below (II.Reintroduced result analysis according to reviewer’s suggestion).

With the awareness of the future challenges to improve our method, we would like to
also emphasize that opinion dynamics methods that try to understand the influence of social
network attackers (e.g., trolls) rely on the knowledge of full network structure. Estimating
the influences in a partially observed network by opinion diffusion dynamics requires first to
either promote its observability (by enhanced sensing) or make reliable inference on its latent
subnet which our proposed framework tries to address. In other words, our work tries to serve
as the very first step to solve the challenge and we are looking forward to its integration with
other methods towards building a reliable estimation tool for complex network attacks.

As a further validation of proposed framework and the attack model adopted in our case
studies, we added a study in our Supplementary Material on the retweet network formed by
the identified trolls of Russia Internet Research Agency that tries to compromise the integrity
of US 2016 election and reproduced here for the convenience of the reviewer.

The dataset used in the analysis can be downloaded via:

https://about.twitter.com/en us/values/elections-integrity.html

The list of twitter handles believed to be Russian trolls can be found:

https://www.recode.net/2017/11/2/16598312/russia-twitter-trump-twitter-deactivated-handle-
list

The processing script is available also on github:
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https://github.com/urashima9616/NetworkReconstruction/NetworkReconstruction/twitter
processing/data process.py

For convenience, we have highlighted our changes in red in the following reproduced re-
sult analysis.

S6:Structural properties study of a real-world Russian Twitter attack by trolls in US 2016 election
To corroborate our assumption that degree centrality plays a key role in the attack and

validate the adoption of the attack model class in our case study by a real social network inter-
vention instance, we are considering the on-going investigation by Twitter and US congress on
the electoral intervention conducted by Internet Research Agency (IRA) of Russia. Both Twit-
ter and US congress have confirmed the use of trolls (automated malicious bots) by IRA and
identified the twitter accounts that helped propagate the manipulated information. Specifi-
cally, we measured the degree centrality of trolls identified by US congress as compared to the
rest of relevant twitter accounts in a collected tweets dataset.

The election integrity dataset we use is publicly released by Twitter and updated as the
investigation proceeds. This dataset consists of 1.8 million Russia-intervention related tweets
that involve 71938 users, who formed a retweet network of 703467 links. Among these users,
we have identified 100 accounts that are confirmed by US congress as malicious trolls injected
by IRA, who is believed to be the main driver of the social media campaign against the US
election integrity.

To understand whether these confirmed trolls formed hubs of manipulated information
(as assumed by the model in our case study of the social network) in this retweet network, we
have measured the out degree of both the identified trolls and the rest of nodes that interacted
with trolls (referred as spreaders). We have performed the two-sample t-test with significance
level of 0.95 and KS test to compare their degree distributions. The results are summarized in
Table 2. Combining the results from both tests, several observations are due.

1. The two degree distributions are significantly different. This corroborates our argument
that the distribution of the latent network formed by the injected trolls are not necessarily
similar to the observed one. Inference of latent network without the relevant knowledge of the
attack might result in large structural deviation.

2. The mean degree of the trolls is much higher (655) than that of the spreaders (9.7788).
This supports our assumption that social network attackers are injected in a way to maximize
the information spreading by forming hubs with much higher degrees (i.e., significantly higher
volume of posts and retweets).

These two observations in this real social network attack suggest that (i) the knowledge
about the attack is important to infer the latent network with good fidelity and (ii) attack model
based on degree centrality can potentially serve as a reasonable abstraction of their behavior
and capture the structural properties of subnetworks formed by these attackers.

Statistics Trolls Spreaders

K-S test p-value 3.3191 ∗ 10−59

t-test p-value 3.2240 ∗ 10−234

mean out degree 655 9.7788

Table 1: Comparison of degree centrality statistics of injected Russian Trolls and spreaders in a
retweet network

II.Reintroduced result analysis according to reviewer’s suggestion:
Discover the hidden social networks.

In the following experiment, we connect our case study to the social network interventions
that are related to recent ever-increasing privacy and information manipulation concerns. We
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focus on the capability of our framework to retrieve with fidelity the structure of a subnetwork
removed under our targeted attack assumption in Equation (2). This targeted removal process
mimics the removal of automated applications deployed intentionally to either collect or in-
ject information into social networks. In the extended social network consisting of both such
hidden applications and user nodes, such a removal process can be understood as a defen-
sive strategy of the launchers (e.g., data firms) to get minimal exposure to the investigation by
pulling the deployed applications offline. Different from the attack in previous experiments,
the removal process now obstructs our observations rather than sabotaging the network enti-
ties.

Although real social network attacks can be much more sophisticated by involving multi-
ple parties at the same time (as opposed to a coordinated sequence of operations as in Equation
(2) and evolving in a statistically inconsistent way (as opposed to a stabilized and consistent
stochastic behavior), here we consider an idealized abstraction of a class of real attacks that
prioritize the degree centrality. The considered attack model and its variants have been widely
adopted as an abstraction of the targeted attacks for the study of robustness, stability, resilience
and defensive/attack strategies of networks [26, 30, 38-44] ranging from mathematically con-
structed complex network to traffic network [45] , brain network [46-48] , computer network
[13] and also social networks [49, 50] . Of particular note is the fact that the lack of global infor-
mation in a social network attack is common whereas the probability of reaching a particular
vertex by following a randomly chosen edge in a graph is proportional to the vertex’s degree
[30] , making the degree centrality an important factor that contributes to the vulnerability of
the nodes even though the attacker has only extremely localized information (e.g., connectiv-
ity). Moreover, the study [26] suggests that the choice of α in the Equation (2) can be used to
incorporate the intrinsic network vulnerability and external knowledge of the system, which
helps the model and its variants become a good abstraction of a wide range of real attacks in
complex networks.

Starting out from this motivation, we consider an extended social network with 4049 nodes
(including hidden nodes injected for information manipulation, referred as injected nodes, and
ordinary user nodes) built from Facebook network dataset [51]. Due to the small-worldness of
the social network (see Supplementary Material S2), only a small group of injected nodes is re-
quired to make sure all user nodes have at least one injected node as their immediate neighbor
(i.e., all users are subject to data security issues and/or manipulated information even without
information propagation among them). We define coverage to be the chance of a user node
to have an immediate neighboring injected node. Figure 10 visualizes the coverage of injected
nodes against their share in the network under different α from −10 to 10. In this figure, α
has a different meaning and Aα(di) now is a proxy of the likelihood of an injected node of
degree di being the highest connected node in the network. The higher α is, the larger portion
of the highest connected nodes will be represented by the injected nodes and the bigger cover-
age they will have. Figure 10 suggests that 48.6% of population have at least one neighboring
injected node when the injected nodes account for only 1% of total nodes with α = 1. The
coverage goes up to 98.44% when injected nodes account for 15% of the network as shown in
Figure 10. This suggests that a full-scale information manipulation/collection requires only a
small injection of designed agents (i.e., disseminators/collectors) into the network and these
agents do not have to be significantly more connected than an average node.

Motivated by this observation, we simulate the removal process by setting α = 1 and vary
the share of injected nodes from 5% to 45%. Baseline method and our framework are applied
to recover the original extended social network. Similarly, ROC-AUC and PR-AUC are used as
metrics for quantifying the inference capability and shown in Figure 11.(a) and (c). Resonating
with our previous experiments, the ROC-AUC and PR-AUC scores of our proposed inference
framework are significantly improved over that of the baseline, suggesting a boost in capa-
bility to infer the missing network more accurately. This is further corroborated by assessing
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Figure 10: Coverage as a function of α and share of injected nodes in total network of 4049
nodes

the structural similarity of networks generated by the retrieved network models. Similarly, we
estimate the Kolmogorov-Smirnov (KS) distance eKS between the empirical degree distribu-
tion of the original network F ∗(x) and networks generated by both methods F (x). The results
are averaged over 1000 network instances and reported in Figure 11.(c). In addition, we also
report the log-likelihood (LL) in Figure 11.(d) as a global metric for goodness-of-fit to compare
the model identified by both methods. Even though the absolute value of LL strongly varies as
a function of a particular model choice for the network, the relative difference given the fixed
model provides a good performance comparison between different identification techniques.
As expected, Figure 11.(b) and (d) suggest that our proposed method retrieves a model that is
more globally consistent with the true one with smaller eKS and larger LL values compared to
the baseline.

The statistics of both the intervention process and the complex network structure play a
crucial role in these observations. First, in small-world networks, the hub nodes account for
a small fraction of the network. Lower degree nodes are unaffected by hub-prioritized inter-
ventions. The baseline method ignores the influence of the intervention and therefore is biased
by the observed part towards the retrieval of a model that explains better a network without
the hub nodes. As demonstrated by our studies, the baseline method has poor performance
on inferring the missing network. Second, due to the time-varying nature of the interventions,
the hub-prioritized interventions induce a random sampling behavior after the removal of hub
nodes. This behavior change can be demonstrated by the small variance of the degree distri-
bution, reshaped by the conducted intervention (see Transitional behavior of interventions in
Supplementary Material). Consequently, the performance of baseline and proposed methods
exhibit a plateau since a small-world network is robust against random removals. We present
the investigation of small-world-ness of all networks considered in our work in Supplemen-
tary Material (S3).
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Figure 11: Evaluation of the capability to recover the Facebook social network (α = 1).

(a, c) Compare the capability to infer the missing network via AUC scores. (b) Goodness-
of-the-fit comparison as reported by Kolmogorov-Smirnov distance between the true degree
distribution and the one retrieved by baseline and proposed methods. (d) Quantification of
the capability of both methods to recover the global property of the example social network
via log-likelihood.

Last but not least, we report the estimated number of user nodes (later referred as ”affected
users”) with at least one injected node as their immediate neighbor. Without considering the
opinion diffusion dynamics, this measurement serves as an upper bound on the number of
users being exposed to designed information or personal data breaches. To consider a more
realistic setting, this assessment should also incorporate the propagation of information among
users, which is left as an important extension in our future work. Varying the share of injected
nodes in the extended social network from 1% to 15%, Figure 12 visualizes the estimation
averaged over 5000 network instances drawn from both models retrieved by baseline and pro-
posed methods. As expected, the baseline underestimates affected users as it did not exploit
the knowledge of the targeted removal process. More interestingly, when compared to Fig-
ure 10, we found that the curve corresponding to the estimated votes by the baseline is almost
identical to the coverage curve obtained under a random intervention (i.e., the degree of an
injected node being statistically the same as a randomly chosen node in the original network
without injected nodes). This suggests again that the baseline method works only if the inter-
vention is purely randomized and easily fails when this assumption does not hold.

C-6: Also in the text we read ”With the agents being 1% of the population when α == 1, 61.28%
of population is already covered”, but in Fig. 5 the proportion seems to be rather just below
50% for α = 1 and a share of spreaders of 0.01. Unless I am misreading the figure.

The value of alpha used in Figs 6 and 7 should be mentioned in the caption (I think it’s 1).

Our Response: We thank the reviewer for mentioning this typo we made in the figure due
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Figure 12: Comparison of capability to estimate affected users (α = 1)

to an earlier version of figures. The coverage measured at Figure 6.(c) should be corrected
to be consistent with Figure 6.(b) to be 48.6% for α = 1 and a share of spreaders of 0.01 and
80.1% for a share of spreaders of 0.05. We have also applied the changes to the main text
when they are discussed (Page 7, paragraph 2 highlighted in red). Please see the excerpt of our
response II.Reintroduced result analysis according to reviewer’s suggestion: to C-3 with respect to
our changes:

Starting out from this motivation, we consider an extended social network with 4049 nodes
(including hidden nodes injected for information manipulation, referred as injected nodes, and
ordinary user nodes) built from Facebook network dataset [51]. Due to the small-worldness of
the social network (see Supplementary Material S2), only a small group of injected nodes is re-
quired to make sure all user nodes have at least one injected node as their immediate neighbor
(i.e., all users are subject to data security issues and/or manipulated information even without
information propagation among them). We define coverage to be the chance of a user node
to have an immediate neighboring injected node. Figure 10 visualizes the coverage of injected
nodes against their share in the network under different α from −10 to 10. In this figure, α
has a different meaning and Aα(di) now is a proxy of the likelihood of an injected node of
degree di being the highest connected node in the network. The higher α is, the larger portion
of the highest connected nodes will be represented by the injected nodes and the bigger cover-
age they will have. Figure 10 suggests that 48.6% of population have at least one neighboring
injected node when the injected nodes account for only 1% of total nodes with α = 1. The
coverage goes up to 98.44% when injected nodes account for 15% of the network as shown in
Figure 10. This suggests that a full-scale information manipulation/collection requires only a
small injection of designed agents (i.e., disseminators/collectors) into the network and these
agents do not have to be significantly more connected than an average node.

Concerning the issue of algorithmic complexity and running time:

C-7: I appreciate the answer of the referee and the supplementary material they added. How-
ever, I don’t see any reference to this discussion in the main text (apart for a short sentence at
the very end of the manuscript).

I am not blaming the authors for not running their algorithms on more powerful machines,
but I think they should mention in the main text up to which order magnitude of network
size their framework could reasonably be applied. This has direct implication on the type of
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problems that can be solved with their framework.

Our Response: We thank the reviewer very much for his comment. We have added the dis-
cussion together with analysis of the limitations of our framework. They are highlighted in red
on Page 8-9 and we have reproduced it in our response III.Discussion of the limitation of proposed
framework to C-3.

For questions C-6, C-7, C-8 and C-9:

C-8: I thank the authors for their answer, but again, a small mention of these points in the main
text would improve the manuscript for readers that may have the same questions.

Our Response: We thank the reviewer very much for his comment. We followed carefully
all reviewers suggestions and strived to make changes to the best of our ability. To avoid
being verbose, we would like to invite the reviewer kindly visit our response to C-3 to see the
reproduced changes based on the suggestions. A comprehensive view of these changes can
also be found in highlighted text on Page 4-9 of the manuscript.

C-9:There still are some inconsistencies in the manuscript.For example: p.3 ”As a case study,
we propose to employ the multi-fractal network generative (MFNG) model (see Supplemen-
tary Material S6) as the underlying network model.” ”S6” Should be S4.

eq. 17 still uses alpha while eq. 18 uses beta.
eq. 6 the differential is still missing.

Our Response: We really appreciate the detailed proofreading of the reviewer and apologize
sincerely for these previously uncaptured typos. We have made the changes accordingly.

Concerning the ability of a researcher to reproduce the work:

C-10: The authors used publicly available datasets and provide the source codes for generating
the results on github. This is very nice except for the fact that there is very little explanation on
how to run the code.

Our Response: We thank the reviewer for the comment. We have added more detailed in-
struction to run the code in github repo and Supplementary Materials (S7).
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Reviewer #1 (Remarks to the Author):  

 

My comments are mostly addressed in the last round and I accept this paper.  

 

 

Reviewer #2 (Remarks to the Author):  

 

I think the manuscript has improved dramatically and thank the authors for damping some of the 

claims from previous versions.  

 

The paper is well organized and the results are indeed interesting and of possible interest to a broad 

set of researchers.  

 

I note, however, that the English needs improvements in some places were sentences are 

constructed awkwardly.  

 

Of more significance, I think the Figure 1 and the description of the situation in the text is not totally 

clear to me. First, the notation for the different possible graphs is not clear. The text refers to 

$G_{0'}$ but the figure show $G_{01'}$ for the inference by network model. Which is correct?  

 

Also, unless the nodes are not labelled, there should be an additional inferred graph by network 

model (with A being connected to node in the left instead of in the right) and an additional inferred 

graph by attack model (similar to $G_{0',2}$ but with connection to leftmost node instead of 

rightmost node).  

 

Whether I am missing something or not, the figure and explanation are not clear.  

 

Luis Amaral  

 

 

Reviewer #3 (Remarks to the Author):  

 

I am very happy with the review of the manuscript. The authors have done a tremendous job at 

answering my questions and clarifying my issues.  



In particular, I appreciate the new introduction and discussion about the example of inference in a 

social network which is now much clearer.  

 

However, I still have an issue about the new material added in the Supplementary Information: S6 

Structural properties study of a real-world Russian Twitter attack by trolls in US 2016 election.  

 

In the main text, they write "To further corroborate our assumption that degree centrality plays a 

key role in the attack and validate the adoption of the attack model, we have analyzed the degree 

centrality statistics of a real social network attack by Internet Research Agency (IRA) of Russia in 

Supplementary Material S6 that shows a attack model based on degree centrality can potentially 

serve as a reasonable abstraction of their behavior and capture the structural properties of 

subnetworks formed by these attackers."  

 

My problem is that I don't understand how their analysis in the SI supports their assumption.  

 

Indeed, the datasets they used (provided by Twitter) "include all public, nondeleted Tweets and 

media (e.g., images and videos) from accounts we believe are connected to state-backed 

information operations" (see https://about.twitter.com/en_us/values/elections-integrity.html).  

 

This means that all users in the dataset are believed to be connected with the IRA.  

However, the authors then identify only 100 accounts that are linked to the IRA (by cross-checking 

the list of users with an other list of IRA-backed account, if I understand correctly) who turn up to 

have very high degrees compared to the rest of the users.  

But the comparison is not valid since all users in the original datasets are suspected to be Russian 

trolls. 

 

It seems that the authors believed that the Twitter dataset contained all tweets sharing information 

fabricated by IRA trolls sent by all Twitter users, but, as Twitter explains on their website, the dataset 

contains all the tweets sent only by users believed to be IRA trolls.  

 

It is true that when building the retweet network some users not necessarily included in the dataset 

will be added (people retweeted by users in the dataset, but not people having tweeted users in the 

dataset), but I don't think this will help the authors to support their assumption.  

 

Unless I have made a mistake in my reasoning that the authors can explain, I would suggest to simply 

remove this part (I don't think there is really a need to support their assumption about the centrality 

of attackers anyway).  



 

 

Minor remarks:  

 

- I think the paper would be even clearer If the authors could succinctly answer the following 

question in the main text: "If one wants to use their method to investigate the Russian inference 

during the 2016 US election (for example), what kind of data would one need (from Facebook or 

Twitter for example) and what could their method tell us exactly?"  

 

- In the main text, they write: "This observation is corroborated by a recent study of Russian trolls 

attack on Twitter[52] which found that the trolls only account for 4.9% and 6.2% of total liberal and 

conservative spreaders, respectively." The numbers reported in this study are about the proportion 

of bots, which is not necessarily the same thing than trolls, since trolls can also be real people. 



We appreciate all the comments and suggestions from the reviewers. Under their guid-

ance, we have come a long way to improve the manuscript to a much better shape. We would

like to present our sincere gratitude to all reviewers and editors for their efforts.

Thank you very much for your consideration,

Yuankun Xue and Paul Bogdan
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Referee 1:

My comments are mostly addressed in the last round and I accept this paper.
Our Response: We thank the reviewer for all the insightful comments, interactive discussion
and all the encouragement.
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Referee 2:

C-1: I think the manuscript has improved dramatically and thank the authors for damping
some of the claims from previous versions. The paper is well organized and the results are in-
deed interesting and of possible interest to a broad set of researchers. I note, however, that the
English needs improvements in some places were sentences are constructed awkwardly. Of
more significance, I think the Figure 1 and the description of the situation in the text is not to-
tally clear to me. First, the notation for the different possible graphs is not clear. The text refers
to G0′ but the figure show G01′ for the inference by network model. Which is correct? Also,
unless the nodes are not labelled, there should be an additional inferred graph by network
model (with A being connected to node in the left instead of in the right) and an additional
inferred graph by attack model (similar to G0′,2 but with connection to leftmost node instead
of rightmost node). Whether I am missing something or not, the figure and explanation are
not clear.

Our Response: We are grateful to the reviewer’s suggestions which guided us to significantly
improve our manuscript. We thank the reviewer for helping us to capture this typo with re-
spect to the notation G01′ . To make it consistent, we have changed it G0,1′ in both main text
and in the figure.

In addition, we agree with the reviewer that there can be other recovered network struc-
tures inferred by the network model. In fact, we have also mentioned this in the text:

According to the Bayesian inference principle, we infer the missing node and its links

that maximize the likelihood based on the network model and the attacker’s statistical be-

havior. By assumption (ii), the missing node inferred based on the network model will be

less likely to have a higher degree. G0,1′ therefore can be one of possible outcomes (G0,2′

represents another possibility). Although G0,1′ is not unique, one must choose it over many

other possible configurations where node A has a higher degree. By assumption (i), the

missing node inferred based on the attack can be G0′,1, G0′,2 or G0′,3 (other outcomes re-

moved due to symmetry). However, node A is not the unique most connected node in G0′,1

and G0′,2 (i.e., only 50% chance to be chosen). Therefore, G0′,3 is the most probable outcome.

Interestingly, neither G0,1′ nor G0′,3 represents the true configuration. From the perspective
of the network model, G0′,3 is a less likely structure due to the highly connected node. G0,1′

is less likely (1/3 chance) to be the target of the attacker. Combining the knowledge of both

leads us to the true G0 in this simple case.

To make this more clear, we have regenerated the graph and added another possible in-
ferred network to clarify our argument in the main text. We also show the modified figure
here in our response.

We also thank the reviewer for the suggestion to improve English wording of our manuscript.
While being limited by our written english skills as non-native speakers, we followed the sug-
gestion and have tried our best to proofread the manuscript and improve the presentation
everywhere we deem necessary.
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Figure 1: A motivating example. An illustrative example to show the importance of combined
consideration of network model and interventional behavior.
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Referee 3:

C-1: I am very happy with the review of the manuscript. The authors have done a tremendous
job at answering my questions and clarifying my issues. In particular, I appreciate the new
introduction and discussion about the example of inference in a social network which is now
much clearer. However, I still have an issue about the new material added in the Supplemen-
tary Information: S6 Structural properties study of a real-world Russian Twitter attack by trolls
in US 2016 election. In the main text, they write ”To further corroborate our assumption that
degree centrality plays a key role in the attack and validate the adoption of the attack model,
we have analyzed the degree centrality statistics of a real social network attack by Internet Re-
search Agency (IRA) of Russia in Supplementary Material S6 that shows a attack model based
on degree centrality can potentially serve as a reasonable abstraction of their behavior and
capture the structural properties of subnetworks formed by these attackers.”

My problem is that I don’t understand how their analysis in the SI supports their assump-
tion. Indeed, the datasets they used (provided by Twitter) ”include all public, nondeleted
Tweets and media (e.g., images and videos) from accounts we believe are connected to state-
backed information operations”. This means that all users in the dataset are believed to be
connected with the IRA. However, the authors then identify only 100 accounts that are linked
to the IRA (by cross-checking the list of users with an other list of IRA-backed account, if I un-
derstand correctly) who turn up to have very high degrees compared to the rest of the users.
But the comparison is not valid since all users in the original datasets are suspected to be
Russian trolls. It seems that the authors believed that the Twitter dataset contained all tweets
sharing information fabricated by IRA trolls sent by all Twitter users, but, as Twitter explains
on their website, the dataset contains all the tweets sent only by users believed to be IRA trolls.
It is true that when building the retweet network some users not necessarily included in the
dataset will be added (people retweeted by users in the dataset, but not people having tweeted
users in the dataset), but I don’t think this will help the authors to support their assumption.
Unless I have made a mistake in my reasoning that the authors can explain, I would suggest to
simply remove this part (I don’t think there is really a need to support their assumption about
the centrality of attackers anyway).

Our Response: We are very thankful to the reviewer’s comments that helped us improve sig-
nificantly our manuscript throughout the entire review process. We agree with the reviewer
that this retweeted network made public by Twitter is not inclusive and generated based on the
identified trolls and accounts that have direct connections to them. The inclusion of this degree
centrality study on this retweet network, as the reviewer insightful mentioned, is to demon-
strate that trolls and bots that are injected to the social network tend to have much higher
connectivity compared to regular users whose in- and out-degree as a node are mostly con-
strained by social exposure. However, due to the privacy and personal information protection
of regular users, this dataset indeed only include trolls and Twitter accounts with immediately
close ties to them. The interactions between these spreaders and regular accounts are not ex-
posed and protected intentionally. This indeed leads to an underestimated degree centrality
measurement especially for the spreaders. While searching for alternative data sources upon
receipt of the review comment, we were unable to gain the access to other relevant data sources
that are totally free of similar sampling bias. To avoid any scientific bias and claims based on it,
we followed the reviewer’s suggestion and have removed it from our Supplementary Materi-
als. In the meantime, we will continue our search offline and perform the appropriate analysis
upon the availability of expected datasets in our follow-up extension to this work. Again, we
are very thankful to the reviewer’s suggestion and help.
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C-2: I think the paper would be even clearer If the authors could succinctly answer the fol-
lowing question in the main text: ”If one wants to use their method to investigate the Russian
inference during the 2016 US election (for example), what kind of data would one need (from
Facebook or Twitter for example) and what could their method tell us exactly?”

Our Response: We are very thankful to the reviewer’s comments. We added the suggested
change to ”Discussion”. We also reproduce it here for the reviewer.

There are several key aspects that could be improved by our future work. While the as-
sumptions made in the attack model seem plausible, the real attacks may not follow a con-
sistent statistical pattern as the one described in Equation (2). For instance, the causal struc-
ture of the attacking sequence considered in our framework can be more sophisticated by the
coordination / interaction (sharing of information) among multiple attackers co-existing in
the network. Attackers may not necessarily operate under the same strategy which makes it
challenging to construct consistent and accurate models to characterize their behavior. Conse-
quently, it is important to incorporate attack strategies as part of the network inference frame-
work (e.g., either estimating the unknown parameters of the attack model together with the
network model in an EM approach or estimate them separately based on additional informa-
tion when available). Since real networks can change their growth rules and possibly their
self-similar structure over time (e.g., co-existence or emergent transition of small-world and
multi-fractal scaling observed in complex networks [56,57], a generative model that captures
all the structural features of interested networks can be difficult to build. As a result, applying
the proposed method to retrieve the latent subnetwork resulted from attacks on real-world
networked systems (e.g., social network manipulation and intervention) requires time-labeled
data collection. This data collection should enable reliable identification of and estimation on
the statistical behavior of attackers and its variations over time (e.g., through multiple piece-
wise temporal windows that correspond to different statistical modes/patterns of the attacker).
Towards this end, an integration of continuous anomaly detection and data monitoring sys-
tem is a must to interface with the proposed framework and other analytical tools (e.g., opinion
diffusion dynamics) for identification, influence assessment and source tracking of the adver-
sarial interventions on real-world networks.

C-3: - In the main text, they write: ”This observation is corroborated by a recent study of
Russian trolls attack on Twitter[52] which found that the trolls only account for 4.9% and 6.2%
of total liberal and conservative spreaders, respectively.” The numbers reported in this study
are about the proportion of bots, which is not necessarily the same thing than trolls, since trolls
can also be real people.

Our Response: We are very thankful to the reviewer for helping us to clarify the concept. We
have corrected this statement to the following:

This observation is corroborated by a recent study of Russian trolls attack on Twitter[52]
which found that the injected tweet bots only account for 4.9% and 6.2% of total liberal and
conservative spreaders, respectively.
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