Partially methylated domains are hypervariable in breast cancer and fuel widespread CpG

island hypermethylation
Arie B. Brinkman ef al.
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Supplementary Figure 1 | Sample characteristics: WGBS coverage, major pathological subtypes, copy-

number profiles, expression of DNA methylation-related genes.

(A), CpG coverage in WGBS DNA methylation profiles of 30 breast tumor samples used in this study (see
also Supplementary Table 1). Boxplots represent the median and 25th and 75th percentiles, whiskers 1.5
times the interquartile range, outliers are not shown. (B), Clinicopathological features of the 30 tumor
samples (see also Supplementary Table 2). (C), Mean copy-number profiles of 25/30 tumor samples used in
this study. Copy-number data was taken from our previous work!. (D), Association between mean PMD
methylation and expression of genes involved in writing, erasing, or reading the 5-methylcytosine
modification. Each dot represents one tumor sample. Linear regression was used to determine the variation
explained (R?) and the p-value of the association. Expression data was taken from our previous work?. (E),

Mean PMD methylation (y-axis) is not associated with the fraction of aberrant cells (ASCAT?, x-axis).
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Supplementary Figure 2 | Visualization of inter-tumor variation at genome-wide scale, including non-

tumor tissues.

Visualization of inter-tumor variation at genome-wide scale, as in main Figure 1, but including WGBS data
from 72 additional, non-tumor tissues (Roadmap Epigenomics Project and ref.#). (A), Genome-wide and (B),
chromosome-wide maps. Mean methylation is displayed in consecutive tiles of 10 kb (see Methods). For

breast tumors of this study, the ER-status is indicated at the right (A).
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Supplementary Figure 3 | Visualization of inter-tumor variation at genome-wide scale, solo-WCGW

CpGs only.

(A), Genome-wide and (B), chromosome-wide maps of WGBS DNA methylation profiles from 30 breast
tumor samples. Exactly as in Fig. 1AB, but using only solo-WCGW CpGs>. Mean methylation is displayed
in consecutive tiles of 10 kb (see Methods). Ordering of tumor samples is the same as in Fig. 1. (C), WGBS
DNA methylation visualization at megabase-scale, exactly as in Fig. 1C, but using only solo-WCGW CpGs.
Pink coloring indicates common methylation loss (PMDs) as in Fig. 1, although tumor-specific PMD borders
vary. A scale bar (100 kb) is shown at the top of each panel. CpG islands are indicated in green.
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Supplementary Figure 4 | Association between DNA methylation variation and clinical features, PMD

calling using solo-WCGW CpGs.

(A), Association between principal component 1 and 2 scores (PCI, PC2, see Fig. 1D) and major
pathological subtypes. Significance testing was done as described in ref.®. Left panels, ER-status; right panels,
AIMS intrinsic subtypes’. (B,C), The same analysis as in Fig. 2AB, but using PMDs detected with only solo-
WCGW CpGs®. Boxplots represent the median and 25th and 75th percentiles, whiskers 1.5 times the
interquartile range. (B), Fraction of the genome covered by PMDs. Each dot represents one tumor sample,
the boxplot summarizes this distribution. (C), Fraction of the genome covered by PMDs that are common
between breast tumors. PMD frequency: the number of tumors in which a genomic region is a PMD. (D),
Venn-diagram showing the overlap between the union of all breast cancer PMDs (“all-CpGs’) and the union
of all breast cancer solo-WCGW PMDs. (E), Bimodal distribution of cross-sample standard deviation of
mean methylation in 100 kb genomic windows. Only solo-WCGW CpGs were used to calculate window
means. As described in°, a mixed gaussian was fitted to determine a cutoff for genome segmentation. (F),
Overlaps between the cross-sample s.d. based PMDs (E) and PMDs called on individual samples in this
study, using all CpGs.
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Supplementary Figure 5 | Gene expression and somatic mutations inside breast cancer PMDs, full

cohort.

(A), Gene expression as a function of PMD frequency, as in main Figure 2F, but here extended to all 266
cases of the breast tumor (RNA-seq) transcriptomes cohort’. Top, gene expression; bottom, standard
deviation. (B), Somatic mutations plotted as a function of PMD frequency, as in main Figure 2G, but here
extended to all 560 cases of the breast tumor full genomes cohort!. Boxplots represent the median and 25th

and 75th percentiles, whiskers 1.5 times the interquartile range, outliers are not shown.
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Supplementary Figure 6 | Expression change of non-CGI-promoter genes and X-linked genes inside

PMDs, association of X-linked methylation loss with expression of PRC2 subunits.

(A), Expression change of non-CGl-promoter genes inside vs. outside of PMDs, as a function of PMD
frequency. (B), Expression change of non-CGI-promoter genes of tumor vs. normal, as a function of PMD
frequency. From the TCGA breast cancer dataset, matched tumor/normal pairs were selected. PMD
frequency for each gene was taken from our own dataset. (C,D), Multivariate linear regression was
performed with expression levels of genes involved in XCI as explanatory variables and PMD abundance on
chrX as response variable. The variable importance of each XCI gene is plotted in (C), and their expression
levels in two PMD abundance bins is plotted in (D). (E), Expression of X-linked genes when inside or
outside PMDs. Genes were grouped according their consensus X-inactivation status (E, escape; S, subject to
XCI; VE, variably escaping; PAR, pseudoautosomal region)® and further stratified over their copy-number
status (gain, loss, unchanged) as determined previously'. All boxplots in this figure represent the median and

25th and 75th percentiles, whiskers 1.5 times the interquartile range, outliers are not shown.
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Supplementary Figure 7 | Expression change of tumor suppressor genes and breast cancer driver

mutated genes inside PMDs.

(A), Expression change of TSGs/breast cancer driver mutated genes when inside PMDs. 31 of such genes are
located inside PMDs in a subset of tumor samples. ‘“TSGs all cancers’, genes annotated as TSGs regardless of
cancer type; ‘TSGs breast cancer’, genes annotated as TSG in breast cancer; ‘Nik-Zainal breast cancer driver
mutations’, genes with driver mutations in breast cancer!. (B), Examples of genes from panel (A) being
repressed when inside PMDs. Blue line, DNA methylation (WGBS); green bars, CGls; red bars, PMDs.
Gene expression (RNA-seq) of the corresponding gene is represented at the right of each panel. (C), Pearson
correlation between CGIl-promoter methylation and expression. Gene classes are indicated as in panel (A).
(D), Expression changes (RNA-seq) of genes in panel (B), breast tumor vs. normal. Data is from an
independent cohort (TCGA). Left panels, non-matched normal (n=88) and tumor samples (n=769); right
panels, matched normal/tumor samples (n=86). p-values were calculated using a ¢-test. Boxplots represent the

median and 25th and 75th percentiles, whiskers 1.5 times the interquartile range.
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Supplementary Figure 8 | Gene set enrichment analysis (GSEA) of genes downregulated when inside

PMDs.

(A), Gene set enrichment analysis (GSEA) of genes downregulated when inside PMDs (>2.5 log2-fold, 400
genes, Supplementary Table 4). (B), Examples of downregulated genes inside PMDs. CD3D encodes the
gamma polypeptide of the T-cell receptor-CD3 complex (gene sets ‘signalling’, ‘adhesion’, and ‘breast
cancer luminal B down’); RBP4 encodes retinol binding protein 4 (gene set ‘signalling’, and ‘breast cancer
luminal B down’). Blue line, DNA methylation (WGBS); green bars, CGIs; red bars, PMDs. Gene
expression (RNA-seq) of the corresponding gene is represented at the right of each panel. (C), Overall
survival of patient groups stratified according expression of the 400 PMD-downregulated genes (see

Methods).
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Supplementary Figure 9 | Mean PMD methylation of
normal tissues and tumors, CpG island methylation

of tumors from various tissues.

(A), Boxplot summarizing mean PMD methylation of
normal tissues and tumors of various tissues (summary
of Fig. 4B). Boxplots represent the median and 25th and
75th percentiles, whiskers 1.5 times the interquartile
range. (B), Distribution of CGI methylation, represented
as the fraction of all CGls (x-axis). Each horizontal bar
represents one tumor sample (WGBS). Top panel,
tumor samples other than breast cancer (TCGA,
BLUEPRINT, the Roadmap Epigenomics Project,
refs. 410 abbreviations are given on the right); bottom

panel, repeated from main Figure 3B for comparison.
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