Supplementary materials for

S-nitrosylation of the Peroxiredoxin-2 promotes S-nitrosoglutathione-mediated lung cancer cells apoptosis via AMPK-SIRT1 pathway

Yihan Zhang^{1, 2, 3}, Changning Sun^{1, 2, 3}, Guokai Xiao^{1, 2, 3}, Hui Shan^{1, 2, 3}, Luyao

Tang^{1, 2, 3}, Yujiao Yi^{1, 2, 3}, Wengong Yu^{1, 2, 3,*}, Yuchao Gu^{1, 2, 3,*}

¹ Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine

and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003 China.

² Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200 China.

³ Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao, 266003 China. Supplementary Figure 1. GSNO induces lung cancer cell NCI-H1299 apoptosis.

(a) NCI-H1299 cells were treated with different concentrations of GSNO (0-0.5 mM) (Bar = 20 μ m). (b) Cell viability analysis of NCI-H1299 cells after GSNO treatment. (c) Flow cytometry analysis of live cells after treating with GSNO. (d) Expression of Cleavage of Caspase-3 in NCI-H1299 cells was probed by western blot. (e) Colony formation of NCI-H1299 cells treated with GSNO. (f) The synergistic effects of GSNO (0.3 mM) with cisplatin (10 μ M) or paclitaxel (20 μ M) on NCI-H1299 cells. The data are expressed as the mean ± SD of three independent experiments. **P* < 0.05, ***P* < 0.01, ****P* < 0.001, using one-way ANOVA followed by Bonferroni's multiple comparisons test.

Supplementary Figure 2. SNAP or LPS induces A549 cell apoptosis.

(a) Cell viability analysis of lung cancer cells (A549 and NCI-H1299) and normal cells (WI38 and BEAS-2B) treated with GSNO for 24 h (***P < 0.001, using two-way ANOVA followed by Bonferroni's multiple comparisons test). (b) Cell viability analysis of A549 treated with GSNO (0.3 mM) or/and SNAP (200 μ M) for 24 h (*P < 0.05, using one-way ANOVA followed by Bonferroni's multiple comparisons test). (c) Induction of Cleavage of Caspase-3 in A549 cells treated with GSNO or/and SNAP for 24 h (*P < 0.05, ***P < 0.001, using one-way ANOVA followed by Bonferroni's multiple comparisons test). (d) The NO production in A549 cells after SNAP or GSNO treatment (*P < 0.05, **P < 0.01, ***P < 0.001, using one-way ANOVA followed by Bonferroni's multiple comparisons test). (e) Cell viability analysis of A549 treated with SNAP compared with GSNO (***P < 0.001, using two-way ANOVA followed by Bonferroni's multiple comparisons test). (f) The NO production in A549 cells after LPS treatment (**P < 0.01, ***P < 0.001, using one-way ANOVA followed by Bonferroni's multiple comparisons test). (g) Cell viability analysis of A549 treated with LPS for 24 h (*P < 0.05, **P < 0.01, ***P < 0.001, using one-way ANOVA followed by Bonferroni's multiple comparisons test). (g) Cell viability analysis of A549 treated with LPS for 24 h (*P < 0.05, **P < 0.01, ***P < 0.001, using one-way ANOVA followed by Bonferroni's multiple comparisons test). (h) Induction of Cleavage of Caspase-3 in A549 cells treated with GSNO or/and LPS (150 µg/ml) for 24 h (*P < 0.05, using one-way ANOVA followed by Bonferroni's multiple comparisons test). The data are expressed as the mean ± SD of three independent experiments.

Supplementary Figure 3. GSNO nitrosylates Prdx2 in NCI-H1299 cells.

(a) Effect of GSNO on cell number with or without ODQ (25 μ M) for 24 h in A549 cells (ns, not significant, using two-way ANOVA followed by Bonferroni's multiple comparisons test). (b) Effect of GSNO on cell number with or without DTT (0.5 mM) for 24 h in A549 cells (****P* < 0.001, using two-way ANOVA followed by Bonferroni's multiple comparisons test). (c) Effect of GSNO on cell viability with or without DTT (0.5 mM) for 24 h in NCI-H1299 cells (***P* < 0.01, using two-way ANOVA followed by Bonferroni's multiple comparisons test). (c) Effect of GSNO on cell viability with or without DTT (0.5 mM) for 24 h in NCI-H1299 cells (***P* < 0.01, using two-way ANOVA followed by Bonferroni's multiple comparisons test). (d-h) mRNA expression level of Prdx1, Prdx3, Prdx4, Prdx5, Prdx6 in different kinds of human lung cancer tissues and normal tissues (**P* < 0.05, ****P* < 0.001, using one-way ANOVA followed by Bonferroni's multiple comparisons

test). (i, j) mRNA expression level of Prdx2 and Prdx4 in human lung cancer cells (A549 and NCI-H1299) and normal lung cells (WI38 and BEAS-2B, *P < 0.05, **P < 0.01, ***P < 0.001, ns, not significant, using one-way ANOVA followed by Bonferroni's multiple comparisons test). (k) Prdx2 protein expression in human lung cancer cells (A549 and NCI-H1299) and normal lung cells (WI38 and BEAS-2B) (**P* < 0.05, ***P* < 0.01, ****P* < 0.001, using one-way ANOVA followed by Bonferroni's multiple comparisons test). (I) Detection of Prdx2 nitrosylation by biotin-switch assay in NCI-H1299 cells (*P < 0.05, **P < 0.01, ns, not significant, using one-way ANOVA followed by Bonferroni's multiple comparisons test). (m) Detection for the nitrosylation of total protein and Prdx2 by saville-Griess assay (*P < 0.05, **P < 0.01, using unpaired two-tailed Student's *t*-test). (n) The cell viability of A549 cells transfected with pCMV-Prdx2 was detected by MTT assay (**P < 0.01, using two-way ANOVA followed by Bonferroni's multiple comparisons test). The data are expressed as the mean \pm SD of three independent experiments.

Supplementary Figure 4. GSNO induces apoptosis in lung cancer cells via H_2O_2 accumulation.

(a) Detection of intracellular H₂O₂ after GSNO treatment for 24 h in NCI-H1299 cells (*P < 0.05, ***P < 0.001, using one-way ANOVA followed by Bonferroni's multiple comparisons test). (b) The effect of H₂O₂ (50 µM) on A549 cells (Bar = 20 µm). (c) Flow cytometry analysis of live A549 cells after treating A549 cells with H₂O₂ (50 µM). (d) Cell number analysis of A549 cells cultured in the

presence of H₂O₂ for 24 h (***P* < 0.01, using unpaired two-tailed Student's *t*-test). (e) The effect of H₂O₂ (50 μ M) on NCI-H1299 cells (Bar = 20 μ m). (f) Flow cytometry analysis of live NCI-H1299 cells after treating with H₂O₂ (50 μ M). (g, h) Cell viability and number analysis of NCI-H1299 cells cultured in the presence of H₂O₂ (50 μ M) for 24 h (***P* < 0.01, using unpaired two-tailed Student's *t*-test). The data are expressed as the mean ± SD of three independent experiments.

Supplementary Figure 5. GSNO induces cell death via activating the phosphorylation of AMPK.

(a) Expression of AMPK phosphorylation after GSNO treatment in NCI-H1299 cells (*P < 0.05, **P < 0.01, ***P < 0.001, using one-way ANOVA followed by Bonferroni's multiple comparisons test). (b) Expression of p-ACC and p-AMPK/AMPK in A549 cells treated with GSNO (0.3 mM) or/and SNAP (200 μ M) (*P < 0.05, **P < 0.01, using one-way ANOVA followed by Bonferroni's multiple comparisons test). (c) Expression of p-ACC and p-AMPK/AMPK in A549 cells treated with GSNO of p-ACC and p-AMPK/AMPK in A549 cells treated with GSNO or/and LPS (150 μ g/ml) (*P < 0.05, **P < 0.01, using one-way ANOVA followed by Bonferroni's multiple comparisons test). (c) Expression of p-ACC and p-AMPK/AMPK in A549 cells treated with GSNO or/and LPS (150 μ g/ml) (*P < 0.05, **P < 0.01, using one-way ANOVA followed by Bonferroni's multiple comparisons test). (d) Expression of AMPK phosphorylation after H₂O₂ (50 μ M) treatment in NCI-H1299 cells (**P < 0.01, using unpaired two-tailed Student's *t*-test). (e, f) The effect of AICAR (1 mM) or Compound C (20 μ M) on AMPK phosphorylation in GSNO-treated A549 cells (***P < 0.001, using one-way ANOVA followed by Bonferroni's multiple comparisons test). (g) The effect of

GSNO on cell viability with AICAR or Compound C in NCI-H1299 cells (*P < 0.05, **P < 0.01, using two-way ANOVA followed by Bonferroni's multiple comparisons test). (h, i) The effect of GSNO on p-ACC and p-AMPK/AMPK expression in AMPK-WT and AMPK-T172A mutant groups (**P < 0.01, using two-way ANOVA followed by Bonferroni's multiple comparisons test). (j) The effect of GSNO on Cleaved-Caspase 3 expression in AMPK-WT and AMPK-T172A mutant groups (**P < 0.01, using two-way ANOVA followed by Bonferroni's multiple comparisons test). (j) The effect of GSNO on Cleaved-Caspase 3 expression in AMPK-WT and AMPK-T172A mutant groups (**P < 0.01, using two-way ANOVA followed by Bonferroni's multiple comparisons test). The data are expressed as the mean \pm SD of three independent experiments.

Supplementary Figure 6. The activation of AMPK phosphorylates SIRT1 to inhibit its activity.

(a) SIRT1 was immunoprecipitated and analyzed for threonine phosphorylation with AICAR (1 mM) or Compound C (20 μ M) in NCI-H1299 (**P* < 0.05, ***P* < 0.01, using one-way ANOVA followed by Bonferroni's multiple comparisons test). (b) The threonine phosphorylation of SIRT1 in AMPK-WT and AMPK-T172A mutant groups (****P* < 0.001, ns, not significant, using unpaired two-tailed Student's *t*-test). (c) The effect of GSNO on the activity of SIRT1 in NCI-H1299 cells (**P* < 0.05, ***P* < 0.01, using one-way ANOVA followed by Bonferroni's multiple comparisons test). (d) Detection for the activity of SIRT1 after resveratrol (50 μ M) or suramin (50 μ M) treatment (***P* < 0.01, using one-way ANOVA followed by Bonferroni's multiple comparisons test). (e, f) The effect of SIRT1 overexpression on cell viability in A549 cells (e) and NCI-H1299 cells (f) after GSNO treatment (**P < 0.01, ***P < 0.001, using two-way ANOVA followed by Bonferroni's multiple comparisons test). (g, h) Threonine phosphorylation of SIRT1 after H₂O₂ treatment in A549 cells (*P < 0.05, using unpaired two-tailed Student's *t*-test). (i) Co-immunoprecipitation of AMPK with SIRT1 after H₂O₂ (50 μ M) treatment in A549 cells (**P < 0.01, using unpaired two-tailed Student's *t*-test). (j) The activity of SIRT1 after H₂O₂ treatment in A549 cells (**P < 0.01, using unpaired two-tailed Student's *t*-test). (k) Detection of SIRT1 nitrosylation by biotin-switch assay. The data are expressed as the mean ± SD of three independent experiments.

Supplementary Figure 7. GSNO induces A549 cells apoptosis via p53-dependent p21 induction.

(a) Expression of p53 acetylation and p21 after GSNO (0.3 mM) or/and LPS (150 μ g/ml) treatment (**P* < 0.05, ***P* < 0.01, using one-way ANOVA followed by Bonferroni's multiple comparisons test). (b, c) DTT attenuated the increased expression of p53 acetylation and p21 induced by GSNO in A549 cells (***P* < 0.01, using two-way ANOVA followed by Bonferroni's multiple comparisons test). The data are expressed as the mean ± SD of three independent experiments.

Supplementary Figure 8. GSNO induces NCI-H1299 apoptosis via FOXO1 activation.

(a, b) The interaction between SIRT1 and PTEN after treating NCI-H1299 cells

with GSNO (*P < 0.05, **P < 0.01, using unpaired two-tailed Student's *t*-test). (c) Detection of PTEN acetylation by immunoprecipitation after treating NCI-H1299 cells with GSNO (**P < 0.01, using unpaired two-tailed Student's *t*-test). (d) Expression of AKT phosphorylation after GSNO treatment (*P < 0.05, **P < 0.01, ***P < 0.001, using one-way ANOVA followed by Bonferroni's multiple comparisons test). (e) Detection of PTEN acetylation by immunoprecipitation in GSNO treatment or SIRT1 knockdown groups (*P < 0.05, **P < 0.01, using unpaired two-tailed Student's *t*-test). (f) Detection of PTEN nitrosylation by biotin-switch assay in indicated groups. The data are expressed as the mean ± SD of three independent experiments.

Supplementary Figure 9. GSNO induces A549 cells apoptosis independent of FOXO1 activation.

(a) The interaction between SIRT1 and FOXO1 after treating A549 with GSNO (ns, not significant, using unpaired two-tailed Student's *t*-test). (b) Detection of FOXO1 acetylation by immunoprecipitation after treating A549 with GSNO (ns, not significant, using unpaired two-tailed Student's *t*-test). (c) The interaction of SIRT1 with PTEN after treating A549 with GSNO (ns, not significant, using unpaired two-tailed Student's *t*-test). (c) The interaction of SIRT1 with PTEN after treating A549 with GSNO (ns, not significant, using unpaired two-tailed Student's *t*-test). (d) Detection of PTEN acetylation by immunoprecipitation after treating A549 with GSNO (ns, not significant, using unpaired two-tailed Student's *t*-test). (e) The effect of GSNO on cell viability when VO-Ohpic trihydrate (50 nM), AS1842856 (0.5 μ M) or MK2206 (10 μ M) was added to NCI-H1299 cells (****P* < 0.001, using two-way ANOVA followed

by Bonferroni's multiple comparisons test). (f) Induction of Cleavage of Caspase-3 in NCI-H1299 cells treated with GSNO or/and AS1842856 (0.5 μ M) (**P* < 0.05, using one-way ANOVA followed by Bonferroni's multiple comparisons test). (g) The effect of GSNO (0.5 mM) on cell viability when Pifithrin- β (10 μ M) or AS1842856 (0.5 μ M) was added to A549 cells (***P* < 0.01, ns, not significant, using two-way ANOVA followed by Bonferroni's multiple comparisons test). (h) Induction of Cleavage of Caspase-3 in A549 cells treated with GSNO (0.5 mM) or/and Pifithrin- β (10 μ M) (***P* < 0.01, using one-way ANOVA followed by Bonferroni's multiple comparisons test). (h) Induction of Cleavage of Caspase-3 in A549 cells treated with GSNO (0.5 mM) or/and Pifithrin- β (10 μ M) (***P* < 0.01, using one-way ANOVA followed by Bonferroni's multiple comparisons test). The data are expressed as the mean ± SD of three independent experiments.

Supplementary Figure 10. The efficiency of overexpression for Prdx2 or SIRT1 and knockdown for SIRT1 or AMPK α 2.

(a) Representative fluorescence images for transfection in lung cancer cells (Bar = 20 μ m). (b-d) SIRT1 and Prdx2 expression levels were detected using western blot after cells were transfected with pCDH-SIRT1 or pCMV-Prdx2 plasmids (****P* < 0.001, using unpaired two-tailed Student's *t*-test). (e) SIRT1 and AMPK α 2 expression levels were detected after cells were transfected with sh-RNA (****P* < 0.001, using unpaired two-tailed Student's *t*-test). The data are expressed as the mean ± SD of three independent experiments.

С

pCMV-Control pCMV-Prdx2 pCDH-Control pCDH-SIRT1 KDa SIRT -130 β-actin pCDH-Control pCDH-SIRT1 -43 d е KDa 4.0₇ 1.0 *** *** -130 SIRT1 3.0 β-actin -43

b