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Supplementary Figure 1 | The putative catalytic motif of IcsB is necessary
for intercellular spread of S. flexneri. a, b, HeLa cells were infected with S.
flexneri WT, ΔicsB, ΔvirA, ΔvirAΔicsB (a) or ΔvirAΔicsB complemented with
WT, icsB or an indicated catalytically inactive mutant (b), and then subjected
to plaque formation assay. The left panels (scale bar, 1 mm) show plaques
formed by each strain and the graphs on the right indicates average area of
plaques formed by each strain. To measure the plaque area, 15 plaques for each
strain were examined and the data are shown as mean ± s.d. The two-tailed
unpaired Student’s t-test was performed in a and b (**** P < 0.0001; ns, not
significant). c, The bacteria used in b were lysed and analyzed by anti-Flag
immunoblotting (IB) to confirm the expression of IcsB. Data (a-c) are
representative of three independent experiments.
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Supplementary Figure 2 | Ectopic expression of IcsB disrupts the
binding of RhoGTPases to RhoGDI. a, Inactivation of RhoA by IcsB.
293T cells were co-transfected with Flag-RhoA and Myc-IcsB expression
constructs as indicated. Cell lysates were subjected to GST-RBD pulldown
assay. b, Disruption of RhoGDI binding to RhoA by IcsB. 293T cells were
co-transfected with 3xFlag-RhoA Q63L and an indicated IcsB expression
plasmid. Cell lysates were subjected to GST-RhoGDI pulldown assay. c,
IcsB does not affect the activation state of Rac1/Cdc42. 293T cells were co-
transfected with Myc-Rac1/Cdc42 and an indicated IcsB expression
construct. Cell lysates were subjected to GST-PBD pulldown assay. d,
Disruption of RhoGDI binding to Rac1/Cdc42 by IcsB. 293T cells were co-
transfected with Myc-Rac1/Cdc42 and an indicated IcsB expression
construct. Cell lysates were subjected to GST-RhoGDI pulldown assay. e,
Effects of mutation of the prenylated cysteine in RhoA on its inactivation by
IcsB. 293T cells were co-transfected with HA-RhoA Q63L (or Flag-RhoA
Q63L/C190A) and an indicated IcsB expression construct. Cell lysates were
subjected to GST-RBD pulldown assay. Shown in a-e are immunoblots of
samples eluted from the GST beads (upper panels) and the input (lower
panels). All data (a-e) are representative of three independent experiments.
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Supplementary Figure 3 | Mass spectrometry of in vitro modification of
RhoA by IcsB. a, Total molecular mass measurement of in vitro IcsB-
modified RhoA. Farnesylated RhoA Q63L was incubated with/without
purified IcsB in the presence of stearoyl-CoA and IP6. The total molecular
mass was analyzed by ESI mass spectrometry. b, Extracted ion
chromatograms of RhoA modified by IcsB in vitro. Shown are graphs for the
stearoylated peptide RGKKK (m/z = 441.8). c, MS/MS mass spectrum of the
stearoylated peptide RGKKK from in vitro IcsB-modified RhoA. All data (a-
c) are representative of two independent experiments.
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Supplementary Figure 4 | Proteomic profiling of IcsB-dependent fatty acylation
modification of host proteins. a, Schematic diagram of click reaction-based quantitative
proteomic profiling of host proteins modified under the IcsB-transfection or Shigella-
infection condition. Experimental details are described in the Method session. b, Gene
Ontology-based clustering analysis of the proteomic substrates of IcsB. The analysis was
based on DAVID Bioinformatics Resources 6.7 (https://david.ncifcrf.gov) with
modifications in consideration of the bacterial infection context used here.
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Supplementary Figure 5 | The fatty acyltransferase activity of IcsB
mediates Shigella escape from autophagy and analyses of host autophagic
response to S. flexneri infection. a, S. flexneri ΔicsB or DicsBDmxiH
harboring pME6032-IcsB WT/C306A-24xSuntag-Flag and pBAD24-IpgA
were cultured in 2xYT broth containing 1 mM IPTG and 0.02% L-(+)-
arabinose, and treated with or without 30 µg/mL Congo Red (to activate the
T3SS). The supernatants of bacteria culture containing were subjected to anti-
Flag immunoprecipitation followed by anti-Flag immunoblotting analyses. The
pellets were also lysed and analyzed by anti-Flag immunoblotting analyses. b,
c, Effects of IcsB catalytic residues mutation on Shigella escape from
autophagy. HeLa cells stably expressing EGFP-LC3 were infected with S.
flexneri WT, ΔicsB or ΔicsB complemented with WT IcsB or a catalytically
inactive mutant. b, Fluorescence images taken at 2 h post-infection (scale bar,
3 μm). c, Percentages of infected cells containing LC3-positive Shigella. At
least 200 infected cells were examined for each experiment and data are
presented as mean ± s.d. from three replicates. d, e, Analyses of host
autophagic response to S. flexneri infection. WT or indicated knockout HeLa
cells stably expressing EGFP-LC3 were infected with S. flexneri ΔicsB. d,
Fluorescence images taken at 2 h post-infection are (scale bar, 3 μm). e,
Percentages of infected cells containing LC3-positive Shigella. At least 200
infected cells were examined for each experiment and data are presented as
mean ± s.d. from three replicates. Two-tailed unpaired Student’s t-test was
performed (c, e) (** P < 0.01; *** P < 0.001; **** P < 0.0001). All data (a-e)
are representative of three independent experiments.
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Supplementary Figure 6 | CHMP5 is required for S. flexneri-induced
autophagy but not S. flexneri invasion into host cells. a, b, Effects of CHMP5
deficiency on bacterial autophagosome formation in response to S. flexneri
infection. Indicated HeLa cells expressing EGFP-LC3 were infected with S.
flexneri ΔicsB (MOI=8). Extracellular bacteria were stained by the antibody
against Shigella LPS. a, Representative fluorescence images (scale bar, 7 μm). b,
Percentages of LC3-positive intracellular bacteria at 2 h post-infection. At least
100 intracellular bacteria were examined for each experiment and the data are
presented as mean ± s.d. from three replicates. c, d, Effects of CHMP5
deficiency on S. flexneri invasion. Indicated HeLa cells were infected with WT
or ΔicsB mutant of S. flexneri (MOI=8) for 2 h. Total S. flexneri are indicated by
the Hoechst 33342 signal and extracellular S. flexneri were stained by the
antibody against Shigella LPS. c, Representative fluorescence images (scale bar,
10 μm). d, The number of intracellular S. flexneri in one cell was counted and
the statistics is shown (mean± s.d., n=30). Two-tailed unpaired Student’s t-test
was performed (** P < 0.01; *** P < 0.001; ns, not significant). Data (a-d) are
representative of at least two independent experiments.
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Supplementary Figure 7 | CHMP5 is specifically involved in host
autophagy targeting intracellular S. flexneri. a, Lysine mutation analyses of
CHMP5 in its modification by IcsB. 293T cells were co-transfected with IcsB
and Flag-CHMP5 (WT or an indicated K to R mutant). Transfected cells were
metabolized with Alk-16 for and then subjected to in-gel fluorescence assay. b,
c, Effects of CHMP5 deficiency on autophagosome formation in response to
other bacterial infections. WT or CHMP5-/- HeLa cells stably expressing EGFP-
LC3 were infected with S. flexneri ΔicsB, S. Typhimurium SL1344, Y.
pseudotuberculosis IP2666 (ΔHEMOJ(T)) or L. monocytogenes EGD strain. b,
Fluorescence images taken at 2 h post-infection (scale bar, 1.5 μm). c,
Percentages of infected cells containing LC3-positive Shigella. At least 200
infected cells were examined for each experiment and data are presented as
mean ± s.d. from three replicates. Two-tailed unpaired Student’s t-test was
performed (*** P < 0.001; ns, not significant). All data (a-c) are representative
of three independent experiments.
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