Supplemental Figures

Figure S1: Hierarchical clustering of the gene data for (top) IPF and (bottom) control datasets are shown. Red lines on dendrograms refer to the threshold that was set for identifying outliers. We identified 1 outlier in each IPF group and 3 and 1 outliers in the two control groups.

Figure S2: Module Eigengene clustering for the two IPF groups. Comparison of Module Eigengenes between the two groups shows good preservation.

Figure S3: A t-SNE plot is shown using the 6425 differentially expressed genes we identified for IPF on 3 IPF datasets. (A) GSE53845 consists of 40 IPF samples and 8 control samples. (B) GSE110147 consists of 22 IPF, 10 NSIP and 11 control samples. (C) The complete LTRC dataset comprised of IPF (n=160), COPD (n=220), respiratory bronchiolitis interstitial lung disease (RB-ILD) (n=13), non-specific interstitial pneumonia (NSIP) (n=17), hypersensitivity pneumonitis (HP) (n=30), and control (n=108) subjects. Subjects with IPF were distinctly separated from control samples using these genes in all datasets. There appears to be some overlap between NSIP and HP with IPF but a distinct separation for other disease phenotypes. Ellipses denote a 67% confidence interval for each phenotype.

Figure S4-S7: Correlations between all modules and phenotypic traits are shown for the two control groups (S4 and S5) and two IPF groups (S6 and S7). Numbers are the R-values determined by Spearman's correlation between the module eigenvector and the trait data. Number in parenthesis is the FDR adjusted *P*-value calculated for the correlation.

Figure S8: Module associated with specific cell types by GO pathway analysis was localized to specific cells using a single cell dataset. Markers for specific cell types consist of VWF (endothelial cells), EPCAM (epithelial cells), and FOXJ1 (ciliated epithelial cells). The marker used to identify fibroblasts is collagen 1 which was also the marker used for module ME6. We localized the most highly connected genes for these modules to specific cluster of cells to confirm the validity of the GO pathway analysis. Colour scale ranges from low (purple) to high (yellow) expression.

Figure S9: The transcription factor ZBTB7B was found to be a novel regulator for epithelial cells as it was the regulator of module ME1 with the strongest enrichment score. (A) We examined the human protein atlas and found ZBTB7B mRNA to be highly expressed in all epithelial cell types (red). (B) Human Protein Atlas showed the ZBTB7B protein expression was also present in lung bronchial epithelial cells. Scale bar = 50 μ m (C) A single cell dataset we had previously generated showed ZBTB7B (right) as being highly expressed in lung epithelial cells (EPCAM positive stained cells, left).

Figure S10: The median value for every gene included in each module was calculated and shown as a boxplot using the peripheral blood sample dataset. While immune response modules showed the highest median gene expression, all modules were detectable in the blood.

Table S1: Transcription factor regulators associated with each module are listed with the number of genes within each module they regulate. Merged number of regulated genes column shows the total number of overlapping genes these transcription factors regulate within the module. Asterisk denotes transcription factors which are also present within the module gene list.

Table S2: A list of miRNAs correlated with each module and the target genes they regulate based on the validated miRNA-target database (miRTarBase). Negative correlation identifies miRNA with a negative correlation to the module Eigengene. MM columns show the module membership of each gene for its respective module in both IPF group 1 and group 2.

Table S3: A listing of all GEO datasets using IPF tissue samples with transcriptomics data, including the dataset used in this study. The number of IPF and Control subjects included in each dataset are shown with the platform used for analysis and the date the data was submitted.

3

COPD NA + ILD 2-UIP/IPF ILD 5-Respiratory bronchiolitis-interstitial lung disease RB-ILD
CTRL NA + ILD 3-NSIP ILD 9-Hypersensitive Pneumonitis HP

Module-trait relationships in Control Group 1

Module-trait relationships in Control Group 2

ME13	0.25 (1)	-0.00083 (1)	-0.043 (1)	
ME9	-0.074 (1)	-0.32 (1)	-0.19 (1)	
ME15	-0.25 (1)	-0.13 (1)	-0.01 (1)	
ME16	0.083 (1)	0.12 (1)	-0.033 (1)	
ME2	0.16 (1)	0.063 (1)	-0.071 (1)	- 0.5
ME10	-0.12 (1)	0.00032 (1)	-0.045 (1)	
ME8	0.21 (1)	-0.011 (1)	-0.031 (1)	
ME12	0.2 (1)	0.075 (1)	-0.0083 (1)	
ME7	-0.12 (1)	-0.14 (1)	-0.12 (1)	-0
ME11	-0.15 (1)	-0.076 (1)	-0.15 (1)	
ME1	0.15 (1)	0.11 (1)	0.064 (1)	
ME14	-0.0075 (1)	-0.19 (1)	-0.02 (1)	
ME3	0.04 (1)	-0.17 (1)	-0.082 (1)	0.5
ME6	0.16 (1)	-0.15 (1)	-0.092 (1)	
ME4	-0.0043 (1)	0.056 (1)	0.11 (1)	
ME5	-0.027 (1)	-0.11 (1)	-0,087 (1)	
ME0	-0.11 (1)	-0.058 (1)	-0.018 (1)	-
	01-COPR	FEV109	FUCR	

7

Module-trait relationships in IPF Group 1

Module-trait relationships in IPF Group 2

ME13	0.23 (0.1)	0.17 (0.3)	0.18 (0.3)	
ME9	-0.5 (28-04)	-0.49 (2e-04)	-0.51 (1e-04)	1
ME15	-0.021 (0.9)	-0.039 (0.8)	-0.015 (0.9)	
ME16	0.39 (0.007)	0.23 (0.1)	0.33 (0.03)	
ME2	0.31 (0.05)	0.1 (0.5)	0.17 (0.3)	- 0.5
ME10	0.25 (0.1)	0.17 (0.3)	0.23 (0.1)	
ME8	-0.084 (0.6)	-0.28 (0.08)	-0.2 (0.2)	
ME12	0.15 (0.4)	-0.051 (0.8)	0.033 (0.9)	
ME7	0.17 (0.3)	0.025 (0.9)	0.071 (0.7)	-0
ME11	0.24 (0.1)	-0.11 (0.5)	-0.048 (0.8)	
ME1	-0.11 (0.5)	-0.032 (0.9)	-0.044 (0.8)	
ME14	-0.32 (0.05)	-0.086 (0.6)	-0.1 (0.5)	
ME3	-0.4 (0.007)	-0.076 (0.7)	-0.17 (0.3)	0.5
ME6	-0.014 (0.9)	0.1 (0.5)	0.072 (0.7)	
ME4	-0.27 (0.1)	-0.23 (0.1)	-0.24 (0.1)	
ME5	-0.31 (0.05)	-0.19 (0.2)	-0.27 (0.1)	1
ME0	0.17 (0.3)	0.2 (0.2)	0.21 (0.2)	·
	0).COPP	FENTOP	Ences	

Figure S10

Tabl	e	S1
------	---	----

Module	Number Genes in Module	Merged Number Regulated Genes	Transcription Factor	Regulated Genes in Module
ME1	1579	541	RFX2	506
			ZBTB7B	376
ME4	380	258	E2F4	190
			SIN3A	161
			TFDP1	123
			MYBL2*	97
			FOXM1*	93
			E2F7	30
ME6	207	89	EP300	74
			TCF12	65
ME7	204	133	SPI1	123
			EBF1	23
			JUN	23
ME8	188	98	CREB1	98
ME9	163	82	NR3C1	57
			CHD1	54
ME10	158	30	SREBF1	18
			ZEB1	13
ME11	116	85	EBF1	65
			STAT1	39
			IRF1*	30
			STAT2*	21
			RFX5	19
ME13	80	26	EB300	23
			TCF12	18
ME14	75	58	SRF	38
			TCF12*	36
ME15	58	15	ATF3	15
ME16	39	24	ZEB1	10
			EP300	22
			TEAD4	8

Table	S2
-------	----

Modulo	miRNA	Targot gono	Negative	MM IPF	MM IPF
would		Talget gene	correlation	group 1	group 2
ME1	hsa-miR-200a-3p	MACC1		0.314	0.421
ME1	hsa-miR-200a-3p	RPL12		0.526	0.368
ME1	hsa-miR-200a-5p	METTL7A		0.468	0.317
ME1	hsa-miR-200b-3p	AVPR1A		0.362	0.278
ME1	hsa-miR-200b-3p	UNC119B		0.863	0.826
ME1	hsa-miR-200b-5p	C11orf74		0.891	0.897
ME1	hsa-miR-205-5p	TRAF3IP1		0.929	0.927
ME1	hsa-miR-31-5p	FOXC1		0.721	0.739
ME1	hsa-miR-34b-3p	MET		0.727	0.800
ME1	hsa-miR-34b-5p	MET		0.727	0.800
ME1	hsa-miR-34b-5p	RPS19		0.255	0.539
ME1	hsa-miR-34c-3p	GALK2		0.686	0.664
ME1	hsa-miR-34c-5p	RUNX2		0.558	0.590
ME2	hsa-miR-126-3p	KRAS		0.313	0.406
ME2	hsa-miR-126-3p	VEGFA		0.674	0.785
ME2	hsa-miR-126-5p	VEGFA		0.674	0.785
ME2	hsa-miR-132-3p	BDNF	*	0.761	0.817
ME2	hsa-miR-132-3p	PARP10	*	0.290	0.310
ME2	hsa-miR-132-3p	TSPAN12	*	0.839	0.728
ME2	hsa-miR-205-3p	HS2ST1	*	0.254	0.384
ME2	hsa-miR-205-5p	TAF11	*	0.268	0.630
ME2	hsa-miR-30a-3p	FOXP1		0.322	0.467
ME2	hsa-miR-30a-3p	PLA2G16		0.582	0.535
ME2	hsa-miR-30a-3p	SULT1C4		0.628	0.372
ME2	hsa-miR-30a-3p	TMEM2		0.496	0.513
ME2	hsa-miR-30a-5p	MOGAT1		0.696	0.599
ME2	hsa-miR-30a-5p	RAB14		0.647	0.428
ME2	hsa-miR-30a-5p	TBC1D4		0.528	0.597
ME2	hsa-miR-30a-5p	ZNRF1		0.636	0.566
ME2	hsa-miR-30b-3p	C19orf47		0.271	0.396
ME2	hsa-miR-30b-3p	FAM105A		0.852	0.872
ME2	hsa-miR-30b-3p	NCOR2		0.486	0.475
ME2	hsa-miR-30b-3p	PLCD3		0.402	0.286
ME2	hsa-miR-30b-3p	PPFIBP1		0.534	0.581
ME2	hsa-miR-30b-3p	RBMS2		0.399	0.480
ME2	hsa-miR-30d-5p	DCTN4		0.344	0.308
ME2	hsa-miR-30d-5p	IER5		0.616	0.456
ME2	hsa-miR-30d-5p	LDLR		0.485	0.497
ME2	hsa-miR-30d-5p	ZMPSTE24		0.185	0.181
ME2	hsa-miR-31-5p	KLF13	*	0.584	0.657

ME2	hsa-miR-31-5p	MED12	*	0.211	0.230
ME2	hsa-miR-31-5p	PRKCE	*	0.806	0.846
ME2	hsa-miR-31-5p	RDX	*	0.759	0.742
ME2	hsa-miR-31-5p	ZC3H12C	*	0.454	0.593
ME2	hsa-miR-338-3p	RNF8		0.320	0.332
ME3	hsa-miR-127-3p	RGMA		0.590	0.647
ME3	hsa-miR-203a-3p	EGLN1	*	0.595	0.539
ME3	hsa-miR-203a-5p	CALU	*	0.769	0.728
ME3	hsa-miR-203b-3p	SEC24D	*	0.828	0.780
ME3	hsa-miR-203b-3p	TIMM8A	*	0.470	0.658
ME3	hsa-miR-30a-3p	FXN	*	0.467	0.563
ME3	hsa-miR-30a-3p	SLITRK4	*	0.558	0.385
ME3	hsa-miR-30a-5p	CDC123	*	0.279	0.315
ME3	hsa-miR-30a-5p	LOX	*	0.786	0.503
ME3	hsa-miR-30a-5p	PLA2G4A	*	0.397	0.343
ME3	hsa-miR-30a-5p	PPP1CC	*	0.263	0.235
ME3	hsa-miR-30a-5p	SH3GL1	*	0.729	0.748
ME3	hsa-miR-30a-5p	ХРОТ	*	0.339	0.308
ME3	hsa-miR-30b-5p	ATG12	*	0.284	0.416
ME3	hsa-miR-30b-5p	ELOVL4	*	0.647	0.476
ME3	hsa-miR-30b-5p	TMEM106B	*	0.610	0.497
ME5	hsa-miR-30a-5p	NOL8	*	0.320	0.405
ME5	hsa-miR-30a-5p	NXT1	*	0.398	0.511
ME5	hsa-miR-30a-5p	PAICS	*	0.531	0.520
ME5	hsa-miR-30a-5p	PLIN3	*	0.518	0.481
ME5	hsa-miR-30a-5p	SLC38A1	*	0.462	0.561
ME5	hsa-miR-30a-5p	SPCS3	*	0.901	0.890
ME5	hsa-miR-30a-5p	TNFRSF10B	*	0.515	0.557
ME5	hsa-miR-30a-5p	TXNDC5	*	0.844	0.819
ME5	hsa-miR-30b-3p	COX6B1	*	0.514	0.551
ME5	hsa-miR-30b-3p	CSTF1	*	0.253	0.304
ME5	hsa-miR-30b-3p	DPM2	*	0.492	0.499
ME5	hsa-miR-30b-3p	SNRPD1	*	0.375	0.612
ME5	hsa-miR-30b-3p	TIAL1	*	0.558	0.227
ME5	hsa-miR-30b-3p	TNFRSF13C	*	0.847	0.787
ME5	hsa-miR-30b-5p	CASP3	*	0.779	0.606
ME5	hsa-miR-30b-5p	CHST15	*	0.735	0.717
ME5	hsa-miR-30b-5p	LARP1	*	0.463	0.587
ME5	hsa-miR-30b-5p	SMAD1	*	0.405	0.466
ME10	hsa-miR-338-3p	GPRC5A		0.686	0.707
ME10	hsa-miR-652-3p	QSOX1		0.756	0.702
ME14	hsa-miR-133b	PTBP2		0.473	0.564

Table S3

GEO Dataset	# Subjects	Platform		Submission Date
GSE10667	23 IPF/8 IPF+acute exacerbations;	GPL4133	Agilent-014850 Whole Human Genome Microarray	28-Feb-08
	15 Control		4x44K G4112F (Feature Number version)	
GSE21369	11 IPF/5 NSIP/7 uncharacterized ILD;	GPL570	[HG-U133_Plus_2] Affymetrix Human Genome U133	16-Apr-10
	6 Control		Plus 2.0 Array	
GSE24206	11 IPF; 6 Control	GPL570	[HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array	17-Sep-10
GSE31934	3 IPF; 3 Control	GPL11097	[Glyco_v4_Hs] Custom Affymetrix Glyco v4 GeneChip	06-Sep-11
GSE32537	119 IPF/17 NSIP/31 other ILD;	GPL6244	[HuGene-1_0-st] Affymetrix Human Gene 1.0 ST Array	01-Oct-11
	50 Control (LTRC)		[transcript (gene) version]	
GSE35145	4 IPF; 4 Control	GPL10558	Illumina HumanHT-12 V4.0 expression beadchip	17-Jan-12
GSE47460	160 IPF/30 HP/17 NSIP/47 other ILD;	GPL6480	Agilent-014850 Whole Human Genome Microarray	29-May-13
	108 Control (LTRC)		4x44K G4112F (Probe Name version)	
GSE48149	13 IPF; 9 Control	GPL16221	Illumina HumanRef-8 v3.0 expression beadchip	20-Jun-13
			(Search Key version)	
GSE52463	8 IPF; 7 Control	GPL11154	Illumina HiSeq 2000 (Homo sapiens)	18-Nov-13
GSE53845	40 IPF; 8 Control	GPL6480	Agilent-014850 Whole Human Genome Microarray	06-Jan-14
			4x44K G4112F (Probe Name version)	
GSE72073	5 IPF; 3 Control	GPL17586	[HTA-2_0] Affymetrix Human Transcriptome Array 2.0	14-Aug-15
			[transcript (gene) version]	
GSE83717	7 IPF; 5 Control	GPL11154	Illumina HiSeq 2000 (Homo sapiens)	24-Jun-16
GSE92592	20 IPF; 19 Control (LTRC)	GPL11154	Illumina HiSeq 2000 (Homo sapiens)	19-Dec-16
GSE99621	3 IPF; 3 Control	GPL16791	Illumina HiSeq 2500 (Homo sapiens)	02-Jun-17
GSE110147	22 IPF/10 NSIP/5 mixed IPF-NSIP;	GPL6244	[HuGene-1_0-st] Affymetrix Human Gene 1.0 ST Array	05-Feb-18
	11 Control		[transcript (gene) version]	