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A Derivation of Conditions for Achieving Different Logic
Responses

In this section we derive the conditions necessary for an MWC molecule modulated by two
ligands (with one binding site for each ligand) to exhibit the behavior of various logic gates
shown in Figure 1. In addition to the three logic gates shown in Figure 1, we will also discuss
the three complimentary gates NAND, NOR, and XNOR depicted in Figure S1.
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Figure S1. Additional logic gates as molecular responses. The (A) NAND, (B) NOR, and
(C) XNOR gates are the compliments of the AND, OR, and XOR gates, respectively, shown in
Figure 1.

To simplify our notation, we define the value of pactive from eq 1 in the following limits,

p0,0 = pactive([L1]→ 0, [L2]→ 0) =
1

1 + e−β∆εAI
, (S1)

p∞,0 = pactive([L1]→∞, [L2]→ 0) =
1

1 + γ1e−β∆εAI
, (S2)

p0,∞ = pactive([L1]→ 0, [L2]→∞) =
1

1 + γ2e−β∆εAI
, (S3)

p∞,∞ = pactive([L1]→∞, [L2]→∞) =
1

1 + γ1γ2e−β∆εAI
, (S4)

where γi =
KA,i
KI,i

is the ratio of the dissociation constants between the ith ligand and the
protein in the active and inactive states. From the ideal logic gate behaviors visualized in
Figure 1 and Figure S1, we can then deduce the desired constraints that model parameters
need to meet for an effective realization of each gate.
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A.1 AND Gate

Starting from the AND gate, we require p0,0 ≈ 0, p0,∞ ≈ 0, p∞,0 ≈ 0 and p∞,∞ ≈ 1, which
yields the following conditions:

e−β∆εAI � 1, (S5)
γ1e−β∆εAI � 1, (S6)
γ2e−β∆εAI � 1, (S7)

γ1γ2e−β∆εAI � 1. (S8)

Combining eqs S6-S8, we obtain the condition for an AND gate, namely,

1

γ1

,
1

γ2

� e−β∆εAI � 1

γ1γ2

. (S9)

Note, that the outer inequalities imply

γ1, γ2 � 1, (S10)

meaning that both ligands bind more tightly to the protein in the active than the inactive
state.

A.2 OR Gate

For pactive to represent an OR gate across ligand concentration space, it must satisfy p0,0 ≈ 0,
p0,∞ ≈ 1, p∞,0 ≈ 1 and p∞,∞ ≈ 1. This requires that the parameters obey

e−β∆εAI � 1, (S11)
γ1e−β∆εAI � 1, (S12)
γ2e−β∆εAI � 1, (S13)

γ1γ2e−β∆εAI � 1. (S14)

Combining eqs S11-S13, we obtain a constraint on the free energy difference,

1� e−β∆εAI � 1

γ1

,
1

γ2

. (S15)

As with the AND gate, the outer inequalities imply that the ligands prefer binding to the
protein in the active state,

γ1, γ2 � 1. (S16)

A.3 NAND and NOR Gates

Because the NAND and NOR gates are the logical complements of AND and OR gates,
respectively, the parameter constraints under which they are realized are the opposites of
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those for AND and OR gates. Hence, the conditions for a NAND gate are given by

1

γ1γ2

� e−β∆εAI � 1

γ1

,
1

γ2

(S17)

while the conditions for NOR gates are

1

γ1

,
1

γ2

� e−β∆εAI � 1. (S18)

We note that in both cases, the outer inequalities imply that both ligands bind more tightly
to the protein in the inactive state than in the active state, γ1, γ2 � 1.

The symmetry between AND/OR and NAND/NOR gates also implies a simple relation
between their quality metrics, namely, QAND/OR (γ1, γ2,∆εAI) = QNAND/NOR

(
1
γ1
, 1
γ2
,−∆εAI

)
.

Here we provide a proof for the AND gate and invite the reader to do the same for the OR
gate. From eq 2, the quality metrics for the AND and NAND gates can be written as

QAND(γ1, γ2, ω) = (1− p0,0)(1− p∞,0)(1− p0,∞)p∞,∞

=

(
1− 1

1 + ω

)(
1− 1

1 + γ1ω

)(
1− 1

1 + γ2ω

)(
1

1 + γ1γ2ω

)
=

γ1γ2ω
3

(1 + ω)(1 + γ1ω)(1 + γ2ω)(1 + γ1γ2ω)
, (S19)

QNAND(γ1, γ2, ω) = p0,0p∞,0p0,∞(1− p∞,∞)

=

(
1

1 + ω

)(
1

1 + γ1ω

)(
1

1 + γ2ω

)(
1− 1

1 + γ1γ2ω

)
=

γ1γ2ω

(1 + ω)(1 + γ1ω)(1 + γ2ω)(1 + γ1γ2ω)
, (S20)

where we introduced ω = e−β∆εAI . Substituting γ1 → γ−1
1 , γ2 → γ−1

2 , ω → ω−1 (equivalent
to ∆εAI → −∆εAI) in eq S20, we obtain

QNAND(γ−1
1 , γ−1

2 , ω−1) =
γ−1

1 γ−1
2 ω−1

(1 + ω−1)(1 + γ−1
1 ω−1)(1 + γ−1

2 ω−1)(1 + γ−1
1 γ−1

2 ω−1)
× γ2

1γ
2
2ω

4

γ2
1γ

2
2ω

4

=
γ1γ2ω

3

(1 + ω)(1 + γ1ω)(1 + γ2ω)(1 + γ1γ2ω)

≡ QAND(γ1, γ2, ω). (S21)

A.4 XOR and XNOR Gates

Here, we show that the XOR gate (and by symmetry the XNOR gate) are not achievable
with the form of pactive given in eq 1. An XOR gate satisfies p0,0 ≈ 0, p0,∞ ≈ 1, p∞,0 ≈ 1
and p∞,∞ ≈ 0 which necessitates the parameter conditions

e−β∆εAI � 1, (S22)
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γ1e−β∆εAI � 1, (S23)
γ2e−β∆εAI � 1, (S24)

γ1γ2e−β∆εAI � 1. (S25)

However, these conditions cannot all be satisfied, as the left-hand side of eq S25 can be
written in terms of the left-hand sides of eqs S22-S24,

γ1γ2e−β∆εAI =

(
γ1e−β∆εAI

) (
γ2e−β∆εAI

)
e−β∆εAI

� 1, (S26)

contradicting eq S25.
The XOR gate could be realized if an explicit cooperativity energy εA,coop is added when

both ligands are bound in the active state and εI,coop when both are bound in the inactive
state. These cooperative interactions modify eq 1 to the form

pactive ([L1], [L2]) =
1 + [L1]

KA,1
+ [L2]

KA,2
+ [L1]

KA,1

[L2]
KA,2

e−βεA,coop

1 + [L1]
KA,1

+ [L2]
KA,2

+ [L1]
KA,1

[L2]
KA,2

e−βεA,coop + e−β∆εAI

(
1 + [L1]

KI,1
+ [L2]

KI,2
+ [L1]

KI,1

[L2]
KI,2

e−βεI,coop

) .
(S27)

Figure S2 demonstrates that the same parameter values from Figure 3B together with the
(unfavorable) cooperativity energy εA,coop = 15 kBT and εI,coop = 0 can create an XOR gate.
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Figure S2. An XOR gate can be achieved by adding cooperativity. The activity profile
defined in eq S27 for the parameter values from Figure 3B, along with the cooperativity energies
εA,coop = 15 kBT and εI,coop = 0, give rise to an XOR response.
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B The General Two-Ligand Response: Transitioning Be-
tween OFF and ON States

In the preceding section, we have been solely concerned with the behavior of the MWC
molecule in the limits of ligand concentration ([Li] = 0 and [Li] → ∞), and have ignored
the details about the transition from ON to OFF (e.g., its shape and steepness) and also
the possibility of pactive 6= 0 or 1. In this section, we examine and derive in greater detail
some of the additional response behaviors that are possible for an MWC molecule regulated
with N = 2 ligands when the locations of transitions between limit responses are taken into
account.

To examine the transitions between pactive levels, we derive expressions for the concen-
trations at which transitions are at their midpoint. Since pactive is a function of two different
ligand concentrations, [L1] and [L2], we define two different midpoint concentrations of ligand
Li: one in the absence of ligand Lj, [L∗i ][Lj]→0, and another when Lj is saturating, [L∗i ][Lj]→∞.
In particular, [L∗i ][Lj]→0 is defined such that

pactive
(
[L∗i ][Lj]→0, [Lj] = 0

)
=

pactive ([Li] = 0, [Lj] = 0) + pactive ([Li]→∞, [Lj] = 0)

2
, (S28)

i.e., the concentration of ligand i where pactive is equal to the mean of the two pactive limit
values being transitioned between. If we evaluate the left hand side of eq S28 with i = 1 and
j = 2 using eq 1, and the right hand side using the limits from Figure 3(A), we obtain(

1 +
[L∗1][L2]→0

KA,1

)
(

1 +
[L∗1][L2]→0

KA,1

)
+ e−β∆εAI

(
1 +

[L∗1][L2]→0

KI,1

) =
1

2

(
1

1 + e−β∆εAI
+

1

1 + γ1 e−β∆εAI

)
. (S29)

Introducing γ1 = KA,1/KI,1, we can solve for [L∗1][L2]→0 to find

[L∗1][L2]→0

KA,1
=

1 + e−β∆εAI

1 + γ1 e−β∆εAI
. (S30)

Eq S30 can be rewritten for [L∗2][L1]→0 by merely interchanging all ligand and parameter
indices, i.e., 1 ↔ 2.

The midpoint concentration when one ligand is saturating can be derived similarly.
Specifically, to find an expression for [L∗i ][Lj]→∞ we can re-write S28 using eq 1 in the case
that [Lj]→∞ with i = 1 and j = 2, resulting in(

1 +
[L∗1][L2]→∞

KA,1

)
(

1 +
[L∗1][L2]→∞

KA,1

)
+ γ2e−β∆εAI

(
1 +

[L∗1][L2]→∞
KI,1

) =
1

2

(
1

1 + γ2 e−β∆εAI
+

1

1 + γ1γ2 e−β∆εAI

)
.

(S31)
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Eq S31 can be solved for [L∗1][L2]→∞ to produce,

[L∗1][L2]→∞

KA,1
=

1 + γ2 e−β∆εAI

1 + γ1γ2 e−β∆εAI
. (S32)

Again, the symmetric expression for [L∗2][L1]→∞ is found by swapping ligand and parameter
indices, 1↔2.

Using this approach to define concentration transition zones can be used to produce
additional MWC behaviors, including the ratiometric response in the BMP pathway recently
analyzed by Antebi et al.,8 which was briefly discussed earlier. Specifically, this response
can be approximated by choosing parameter values that satisfy two desired limits, p∞,0 ≈ 0
(γ1 e−β∆εAI � 1) and p0,∞ ≈ 1 (γ2 e−β∆εAI � 1), as well as produce a large transition region

sensitive to both ligands, i.e., the ratio in eq 7,
[L∗i ][Lj]→∞

[L∗i ][Lj]→0
is far from 1. One way to satisfy

these conditions is to set KI,2 � KA,1 = KA,2 � KI,1 and ∆εAI = 0 in eq 1. Notice that with
these parameter choices and provided the ligand concentrations satisfy

[L1]

KA,1
,

[L2]

KI,2
� 1,

[L1]

KI,1
,

[L2]

KA,2
� 1, (S33)

the probability that the protein is active reduces to

pactive ([L1], [L2]) ≈
[L2]
KA,2

[L2]
KA,2

+ [L1]
KI,1

. (S34)

Hence, only the ratio of [L1] and [L2] matters, as shown in Figure 4B where eq S33 is satisfied
provided that 10−4 . [L1]

KA,1
. 100 . [L2]

KA,2
. 104.

Additionally, we consider the remaining three types of input-output computations shown
by Antebi et al. to exist in the BMP pathway which they called the additive, imbalance,
and balance responses.8 The additive response (which responds more to larger input concen-
trations) is an OR gate which we showed is possible in Figure 3B. The imbalance response
(which responds maximally to extreme ratios of the two input ligands) is similar to an XOR
behavior which, as discussed in Appendix A.4, is only achievable with an explicit coopera-
tivity energy.

The balance response is defined as

pbalanceactive =

{
1 [L1] ≈ [L2]

0 [L1] 6≈ [L2]
(S35)

so that the protein is only ON when both ligands are present in the same amount as shown
in Figure S3A. Such behavior is not possible within the MWC model because starting from
any point [L1] = [L2], pactive in eq 1 must either monotonically increase or monotonically
decrease with [L1] (depending on γ1), whereas eq S35 requires that pactive must decrease for
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both [L1] > [L1] and [L1] < [L1] (with similar contradictory statements for [L2]). The closest
behavior achievable by the MWC model is to zoom into the transition region of an XNOR
gate as shown in Figure S3B. As we zoom out of the concentration ranges shown, the four
square regions of the plot will continue to expand as squares and the behavior will no longer
approximate the ideal balance response.
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Figure S3. Balance response behavior approximated by the MWC model. (A) The
ideal balance response from the BMP pathway and (B) the closest behavior that an MWC
molecule can exhibit using the complementary parameters from Figure S2 (KA,i = 1.5× 10−4 M,
KI,i = 2.5× 10−8 M, ∆εAI = 5 kBT, εA,coop = −15 kBT and εI,coop = 0).
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C Logic Switching by Tuning the Number of Ligand Bind-
ing Sites

In this section, we show how an MWC molecule whose activity is given by eq 9 can switch
between exhibiting AND↔OR or NAND↔NOR behaviors by tuning the number of binding
sites. To begin, we define the probability pactive that the molecule is active in the case when
the ith ligand has ni binding sites, namely,

p0,0 = pactive([L1]→ 0, [L2]→ 0) =
1

1 + e−β∆εAI
, (S36)

p∞,0 = pactive([L1]→∞, [L2]→ 0) =
1

1 + γn11 e−β∆εAI
, (S37)

p0,∞ = pactive([L1]→ 0, [L2]→∞) =
1

1 + γn22 e−β∆εAI
, (S38)

p∞,∞ = pactive([L1]→∞, [L2]→∞) =
1

1 + γn11 γ
n2
2 e−β∆εAI

. (S39)

Note that the only effect of having an arbitrary number of ligand binding sites (as opposed
to ni = 1 as in Appendix A) is that the ratio of dissociation constants always appears raised
to the number of binding sites, γni

i . Hence, the parameter conditions derived for AND and
OR behaviors for ni = 1 can be used in the case of general ni by substituting γi → γni

i .
Now, suppose a molecule with N = 2 ligands and with n′1 and n′2 binding sites for ligands

1 and 2 represents an AND gate, while this same molecule with n1 and n2 binding sites serves
as an OR gate, as in Figure 5B with n′1 = n′2 = 1 and n1 = n2 = 4. From Figure 3B, the
conditions in the former case (AND gate) are

1

γ
n′1
1

,
1

γ
n′2
2

� e−β∆εAI � 1

γ
n′1
1 γ

n′2
2

, (S40)

while the conditions in the latter case (OR gate) are

1� e−β∆εAI � 1

γn11

,
1

γn22

. (S41)

Combining these conditions, we find that the requirements for the AND↔OR switching are
given by

1

γ
n′1
1

,
1

γ
n′2
2

� e−β∆εAI � 1

γn11

,
1

γn22

,
1

γ
n′1
1 γ

n′2
2

, (S42)

where we have used the fact that the outer inequalities imply γ
n′1
1 , γ

n′2
2 � 1 (so that 1 �

1

γ
n′1
1

, 1

γ
n′2
2

). In the limit n′1 = n′2 = 1, eq S42 reduces to the condition shown in Figure 5A.

Lastly, we note that since NAND is the complement of AND while NOR is the complement
of OR, the class switching requirements in S42 become the requirements to change from
NAND↔NOR behavior when γi → 1

γi
and ∆εAI → −∆εAI.
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D Combinatorial Control with Three Regulatory Ligands
In this section, we first present the methodology used to identify the functionally unique
and MWC-compatible 3-ligand logic gates. We then use the full list of admissible gates to
find all possible logic switches that can be induced by increasing the concentration of a third
ligand. We finish the section by deriving the parameter conditions required for achieving the
logic switches AND→OR and AND→YES1 shown in Figure 7D.

D.1 Functionally Unique MWC Gates

To identify the set of functionally unique MWC gates, we first iterate over the 256 possible
responses and eliminate those redundant ones that can be obtained by shuffling the ligand
labels of already selected gates. The Python implementation of this procedure that leaves
80 functionally unique gates can be found in the supplementary Jupyter Notebook 1.

Having singled out the functionally unique responses, we proceed to identify those that
are admissible in the MWC framework. To that end, we first write the analytic forms for the
probability of the protein being active (pactive) at eight different ligand concentration limits
(Figure S4A). Since the functional form in all cases is pactive = (1 + wI/A)−1, where wI/A is
the total weight of the inactive states divided by the total weight of the active states in the
appropriate limit (as seen in Figure 3A), a Boolean response (pactive ≈ 0 or 1) can only be
achieved when wI/A � 1 or wI/A � 1, respectively. Hence, the values of wI/A at the eight
different limits of ligand concentration will determine the full logic response of the protein.

Note that since cooperative interactions between ligands are absent in the MWC frame-
work, the eight different wI/A expressions depend on only four independent MWC param-
eters, namely, {∆εAI, γ1, γ2, γ3}. Therefore, only four of the eight limiting wI/A values can
be independently tuned, and any wI/A limit can be expressed as a function of four differ-
ent and independent wI/A limits, resulting in a constraint condition. Since each wI/A is a
product of some γi’s and e−β∆εAI (Figure S4A), we look for constraint conditions that have
a multiplicative form, namely,

ws∗ =
4∏

i=1

wαn
sn , (S43)

where ws∗ is the target limit, sn 6= s∗(1 ≤ n ≤ 4) are the labels of four different limits and
αn are real coefficients. Searching over all conditions of such form (see the supplementary
Jupyter Notebook 2 for details), we identify a total of eight functionally unique constraints,

wij × w0 = wi × wj, (S44)
w123 × wj = wij × wjk, (S45)
wij × wk = wik × wj, (S46)

w123 × w0 = wij × wk, (S47)
wij × w2

k = w0 × wik × wjk, (S48)
w123 × w2

0 = w1 × w2 × w3, (S49)
w2
123 × w0 = w12 × w13 × w23, (S50)
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w123 × wi × wj = w2
ij × wk, (S51)

where 1 ≤ i, j, k ≤ 3.
Further searching for a minimum set of constraints that can account for all gates in-

compatible with the MWC framework, we identify the constraints in eqs S44-S47 as the
necessary and sufficient ones (see the supplementary Jupyter Notebook 2). Graphical repre-
sentations of these four constraints on a cubic diagram are shown in Figure S4B. Note that
these conditions are all of the form

ws1ws2 = ws3ws4 , (S52)

where si are labels corresponding to different ligand concentration limits. Logic responses
where ws1 ,ws2 � 1 (� 1) while ws3 ,ws4 � 1 (� 1) cannot be achieved, since they contradict
the constraint condition. Conditions 1 and 2 in Figure S4B, for example, demonstrate that
XOR and XNOR gates cannot be realized by any two ligands in the absence (condition 1) or
presence (condition 2) of a third ligand - a result expected from the 2-ligand analysis done
earlier. On the other hand, conditions 3 and 4 are specific to the 3-ligand response.

Checking the 80 functionally unique gates against the four constraints in Figure S4B, we
obtain a set of 34 functionally unique and MWC-compatible gates, 17 of which are shown
in Figure S5A while the other half are their logical complements (i.e. ON↔OFF swapping
is performed for each of the cube elements).
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w123 × w0 = wij × wk

1
1+γ2e-βΔεAI

w2

1+γ1γ2e-βΔεAI

w12

1 11

1+e-βΔεAI

w0

1
1+γ1e-βΔεAI

w1

1 1 1
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0

123ik

j

i ij

k kj

wij × w0 = wi × wj
condition 1: condition 2: condition 3: condition 4:

kj

123ik

0 j

iji

k

Figure S4. Three-ligand logic gates that are incompatible with the MWC framework.
(A) Probability that the protein is active in the 8 different ligand concentration limits. The total
weight of the inactive states relative to the active states is indicated in gray for all limits. (B)
Cubic diagrams of logic responses that are incompatible with the MWC framework, along with the
constraint equations used to obtain them. The limits relevant to the constraint conditions are
shown in color, and a transparent gray plane containing these relevant limits is added for clarity.
In all four diagrams 1 ≤ i, j, k ≤ 3.
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D.2 Logic Switching

Here we describe how the table of all possible logic switches inducible by a third ligand
(Figure 6D) can be obtained from the list of MWC-compatible 3-ligand gates (Figure S5),
and also derive the parameter conditions for AND→OR and AND→YES1 logic switches.

As illustrated in Figure 6C, logic switching can be achieved by increasing the concentra-
tion of any of the three ligands. Following the same procedure, we iterate over the list of gates
shown in Figure S5A and for each of them identify the set of possible logic switches. The
set of all logic switches present in Figure S5A together constitute the entries of the table in
Figure 6D. Note that if a gate is compatible with the MWC framework, then its logical com-
plement is also compatible, and therefore, the possibility of switching between two gates,
Gate 1 → Gate 2, implies the possibility of switching between their logical complements,
NOT (Gate 1)→ NOT (Gate 2).

NONE → NONE (→|

→

| →)

NONE → NOR (→)

OR → NONE (

→

) OR → AND (

→

)
ANDNi → ALL (→)

OR → OR (

→

)
OR → ALL (→|

→

| →)YESi → ALL (→| →)

OR → YESi (

→

)
YESi → ORNi ( →)

ANDNi → ORNj (→| →)ANDNi → NOTi (→| →)

NONE → ORNi (→)
YESi → YESi (

→

| →) YESi → OR (

→

| →)
AND → ALL (→)NONE → ALL (→)

YESi → AND ( →)
ANDNi → YESj (

→

)
YESi → NONE ( →)

NONE → NAND (→)
YESi → ANDNj (

→

| →)
ANDNi → ANDNi (

→

)

NONE → NOTi (→)
ANDNi → NONE (

→

| →)

NONE → AND (→|

→

| →)
AND → AND ( →)

NONE → OR (→) AND → OR (→|

→

| →)
AND → YESi (

→

| →)
NONE → YESi (→|

→

)NONE → ANDNi (→|

→

)
AND → NONE ( →)

AND OR YESi YESj NONE NAND NOR ORNi NOTi ORNj NOTj ALLANDNi ANDNj

Li

Lj

(A)

(B)

Figure S5. Functionally unique 3-ligand MWC gates and possible schemes of logic
switching. (A) List of functionally unique 3-ligand MWC gates that have an inactive base state
(in the absence of ligands). The set of logic switches that can be achieved by increasing the
concentration of one of the ligands is listed on the bottom of each gate, with the gray arrows
indicating the corresponding directions of increasing ligand concentration. Transitions with
swapped labels (i↔ j) are also possible and are not listed. Arrows corresponding to the ligand
axes on different faces of the cube are included to assist the derivation of possible logic switches.
(B) Schematics of 2-ligand gates adapted from Figure 6D for convenience.
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Now, we show how an MWC protein can exhibit the switching behaviors in Figure 7B,D
(AND→OR and AND→YES1) by saturating the concentration of the third ligand. We first
consider the behavior of the protein in the absence of the third ligand ([L3] = 0, with pactive
limits given in Figure S4A, left) and then consider how the protein acts at the saturating
concentration of the third ligand ([L3] → ∞, with pactive limits given in Figure S4A, right).
With [L3] = 0, the protein ignores the third ligand and behaves identically to a protein with
N = 2 ligands. In the limit [L3] → ∞, however, the protein behaves as if it only has two
ligands with an altered free energy difference ∆ε′AI between the active and inactive states
given by

∆ε′AI = ∆εAI − kBT log γ3. (S53)

Suppose that a protein acts as an AND gate when [L3] = 0 and transitions into an OR
gate when [L3]→∞, as in Figure 7B. From Figure 3B, the MWC parameters must satisfy

1

γ1

,
1

γ2

� e−β∆εAI � 1

γ1γ2

(S54)

in the absence of L3 (AND behavior) and

1� e−β∆ε′AI � 1

γ1

,
1

γ2

(S55)

when [L3] is saturating (OR behavior). Using eqs S53, we can rewrite the condition S55 as

1

γ3

� e−β∆εAI � 1

γ1γ3

,
1

γ2γ3

. (S56)

Combining eq S54 and eq S56, we find the second condition reported in Figure 7A, namely,

1

γ1

,
1

γ2

,
1

γ3

� e−β∆εAI � 1

γ1γ2

,
1

γ1γ3

,
1

γ2γ3

. (S57)

The first condition in Figure 7A is then obtained by using the outer inequalities, that is,

1

γk
� 1

γiγj
⇒ γiγj � γk and (S58)

1

γi
� 1

γiγk
⇒ γk � 1. (S59)

Lastly, we derive the parameter conditions needed to achieve an AND→YES1 switching
by saturating the third ligand. Conditions for the AND behavior in the absence of the third
ligand are already known (eq S54). To achieve a YES1 gate, pactive at [L3] → ∞ needs to
meet the following limits:

p0,0,∞ =
1

1 + γ3e−β∆εAI
≈ 0, (S60)
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p0,∞,∞ =
1

1 + γ2γ3e−β∆εAI
≈ 0, (S61)

p∞,0,∞ =
1

1 + γ1γ3e−β∆εAI
≈ 1, (S62)

p∞,∞,∞ =
1

1 + γ1γ2γ3e−β∆εAI
≈ 1. (S63)

These limits suggest constraints on ∆εAI, which, combined with eq S54, result in

1

γ1

,
1

γ2

,
1

γ3

,
1

γ2γ3

� e−β∆εAI � 1

γ1γ2

,
1

γ1γ3

,
1

γ2γ3

,
1

γ1γ2γ3

. (S64)

The outer inequalities, in turn, suggest conditions for the γ parameters, namely,

1

γi
� 1

γiγk
⇒ γk � 1, (S65)

1

γ2γ3

� 1

γ1γ2

⇒ γ1 � γ2, (S66)

1

γ2γ3

� 1

γ1γ3

⇒ γ1 � γ3. (S67)

Accounting for these additional constraints, eq S64 simplifies into

1

γ1

,
1

γ2γ3

� e−β∆εAI � 1

γ1γ2

,
1

γ1γ3

, (S68)

as shown in Figure 7C.
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