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Supplementary Experimental Procedures 

Samples and iPSC reprogramming 

The 18 iPSC lines analyzed in this study are part of the iPSCORE resource (Panopoulos et al., 2017). 273 

individuals of diverse ethnicities and ages were recruited into the iPSCORE study and whole genome sequencing of 

their blood or skin fibroblast DNA (254 DNA samples isolated from blood and 19 DNA samples isolated from skin 

fibroblasts) was conducted as previously described (DeBoever et al., 2017; Jakubosky et al., In preparation). 

Written informed consent was obtained from all the individuals. The iPSCORE iPSC lines were systematically 

derived as described in Panopoulos et al. (Panopoulos et al., 2017). Briefly, cultures of primary skin fibroblast cells 

were expanded for approximately 3 passages, plated at a density of 2.5 x 105 cells/well of 6-well plate, and infected 

with the Cytotune Sendai virus (Life Technologies) per manufacturer’s protocol. The Sendai infected cells were 

maintained with 10% FBS/DMEM (Invitrogen) for Days 4-7 until the cells recovered and repopulated the well. 

These cells were enzymatically dissociated using TrypLE (Life Technologies) and seeded onto a 10-cm dish pre-

coated with mitotically inactive-mouse embryonic fibroblasts (MEFs) at a density of 5 x 105 per dish and 

maintained with hESC medium, as previously described(Ruiz et al., 2010). Emerging iPSC colonies were manually 

picked after Day 21 and maintained on Matrigel (BD Corning) with mTeSR1 medium (Stem Cell Technologies) as 

previously described (Panopoulos et al., 2012). Clones were cultured to passage 12-16 (typically passage 12). All 

iPSC lines have good genomic integrity and express pluripotency markers at high levels (Panopoulos et al., 2017).  

The iPSCORE resource was established as part of the Next Generation Consortium of the National Heart, Lung and 

Blood Institute and the iPSC lines are available through the biorepository at WiCell Research Institute 

(www.wicell.org; NHLBI Next Gen Collection). 

Whole genome sequencing 

Genomic DNA was isolated from the 18 iPSC lines (AllPrep DNA/RNA Mini Kit, Qiagen) and WGS was 

performed as described in DeBoever et al. (DeBoever et al., 2017). The reads were aligned to human genome hg19 

with decoy sequences (Genomes Project et al., 2015) using BWA-MEM with default parameters (Li and Durbin, 

2009). Duplicate reads were marked using Biobambam2 (Tischler and Leonard, 2014), and reads were sorted by 

genomic coordinate using Sambamba (Tarasov et al., 2015) in BAM format. The 18 iPSC WGS data (and the 

previously generated matched blood WGS) were high quality, having 4-20% duplicates and a minimum of 700M 

reads after duplicate removal (Figure S3). Inherited variants in the 18 iPSC lines were called together with the 273 

iPSCORE blood and fibroblast WGS (254 blood and 19 skin fibroblasts) using GATK best practices (DeBoever et 

al., 2017; Jakubosky et al., In preparation; McKenna et al., 2010), including indel-realignment, base-recalibration, 

genotyping using HaplotypeCaller, as well as joint genotyping using GenotypeGVCFs (DePristo et al., 2011; Van 

der Auwera et al., 2013). 

http://www.wicell.org/
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Somatic SNVs and indel calling 

We used Mutect (Cibulskis et al., 2013) to detect somatic SNVs and Strelka (Saunders et al., 2012) to detect SNVs 

and small indels that were present in DNA isolated from the 18 iPSC lines but not in the DNA isolated from 

matched blood. Results from the two variant callers were intersected and only SNVs called with both methods were 

considered as valid somatic mutations. DNVs were identified by merging two SNVs with distance = 1 bp between 

each other. For indels, it was not possible to accurately estimate allelic fraction from Strelka calls, so they were not 

included in the analysis of subclonal variants. Additional filters were added to exclude likely false positives. First, 

only variants with at least 14X coverage in iPSCs, 8X in the matched blood and with an allelic fraction higher than 

10% in the iPSC line were retained. Second, since a visual inspection of the variants with low allelic fraction 

(<30%) showed that several occur next to homonucleotide stretches, all variants with allelic fraction <30% that 

were next to a sequence of five or more identical nucleotides were considered as false positives and eliminated 

from the analysis. We identified 603 SNVs and DNVs with allelic fraction > 80%, of which 513 are hemizygous 

and occurred on chromosome X or Y in iPSCs derived from males, 18 were in regions where the sister 

chromosome contained a large CNA deletion (Table S2), and 72 of which were likely false positives given the 

extremely low likelihood that two independent events would cause the same mutation on both alleles.  

Somatic CNA detection  

To investigate the effects of somatic CNAs on gene expression, we used the population level read-depth and split-

read caller Genome STRiP (svtoolkit 2.00.1611) to discover and genotype CNAs (duplications, deletions and multi-

allelic CNAs) in the 18 iPSCs and their matched blood genomes (Handsaker et al., 2015). We ran Genome STRiP 

using the suggested settings for high coverage genomes (window size: 1000 bp, window overlap: 500 bp, minimum 

refined length: 500 bp, boundary precision: 100 bp, reference gap length: 1000). We considered the CNAs as 

somatic mutations if they: 1) were present in the iPSC line but not the matched blood genome and; 2) they were 

singleton, i.e. present only in one iPSC genome and not present in any of the additional 256 genomes without 

matched iPSCs (Jakubosky et al., In preparation). 

Detection of CNAs using HumanCoreExome array 

The detection of CNAs in iPSC lines in the iPSCORE resource using the HumanCoreExome BeadChip has been 

previously described (Panopoulos et al., 2017). Briefly, genomic DNA from the iPSCs and from their matched 

blood samples, was normalized to 200 ng, hybridized in pairs to Illumina HumanCoreExome arrays (Illumina), and 

stained per Illumina’s standard protocol. BeadChips were scanned on the Illumina HiScan and processed in 

GenomeStudio (v 1.9.4) using the supplied cluster files for SNP calling on the HumanCoreExome arrays (average 

call rate 0.99, GenCall threshold 0.15). Processed SNP array data for all 18 iPSCs underwent both computerized 

and manual analysis for CNA detection. Computerized analysis was performed using Nexus CN (version 7.5). We 

used the following Nexus files and settings: Systematic Correction File: Catlg_ILM_HumanCoreExome-12v1-

1_B_20140311.bed_hg19_ilum_correction.txt (as supplied by Biodiscovery Inc), Recenter Probes to Median, 

Analysis performed with the SNPRank Segmentation algorithm. Significance threshold 5.0 x 10-9, Min Number of 
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probes per segment = 7, High Gain 0.75, Gain 0.22, Loss -0.2, Big Loss -1.1. CNAs shorter than 100 kb were 

removed. All Nexus calls underwent systematic manual inspection of B allele frequencies and log R rations. All 

Nexus calls that were not visually consistent with a CNA based on B allele frequencies and log R ratios were 

removed. Manual inspection of the entire genome was also performed for each iPSC line and its associated blood 

sample.  

Somatic mutations in adult stem cells and cancer 

Somatic mutations in adult stem cells (ASCs) from three different tissue types (liver, small intestine and colon) 

derived from 45 subjects were obtained from Blokzijl et al. (Blokzijl et al., 2016). Since the number of somatic 

mutations in ASCs depends on the subject’s age, we divided ASCs in three categories: 1) ASCs from 11 young 

subjects (< 15 years old); ASCs from 19 subjects between 16 and 60 years old; and 3) ASCs from 15 subjects older 

than 60 years.  

The number of somatic mutations in each subject for each tumor were obtained from three collections: 1) 507 

tumors (four tumor types) from Alexandrov et al. (Alexandrov et al., 2013a); 2) 25 melanomas from Berger et al. 

(Berger et al., 2012); and 3) 3,011 tumors (11 tumor types) from the International Cancer Genomics Consortium 

(ICGC) (Alexandrov et al., 2013a; International Cancer Genome et al., 2010; Nik-Zainal et al., 2016). Tumors are 

divided into mutagens, adult solid tumors, liquid and pediatric following the same criteria as in Vogelstein et 

al.(Vogelstein et al., 2013). 

Comparing the mutational landscape of iPSCs with 30 cancer mutational signatures 

Somatic SNVs were divided into 96 substitution classes defined by the substitution type (C>A, C>G, C>T, T>A, 

T>C or T>G) and the sequence context immediately upstream and downstream of the mutated base. The total 

possible number of 96 substitution classes is given by the number of substitution types (6), multiplied by four 

possible upstream bases and four possible downstream bases. The distribution of mutations across the 96 

substitution classes was compared with their associated distributions in 30 different mutational signatures included 

in COSMIC (Alexandrov et al., 2013a; Alexandrov et al., 2013b) (http://cancer.sanger.ac.uk/cosmic/signatures). 

Correlation was calculated between the mutational landscape of each of the 18 iPSC lines and each of the 30 

mutational signatures.  

Annotation of functional effects of somatic SNVs and DNVs  

Mutations were annotated using SnpEff v. 4 (Cingolani et al., 2012). Gene and transcript data were derived from 

Gencode v. 19(Harrow et al., 2012), while transcription factor binding sites were derived from the default 

annotations included in SnpEff. Mutations were grouped according to their impact, as defined by SnpEff (Table 

S6), and lists of mutated genes group for each impact category were retrieved from SnpEff annotations (Table S7).  

Cancer gene enrichment analysis 

http://cancer.sanger.ac.uk/cosmic/signatures
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We downloaded a list of 248 known cancer genes from the Cancer Gene Census (frozen at April 21 2016), 

including 141 tumor suppressors and 110 oncogenes (Forbes et al., 2015; Futreal et al., 2004). Three genes are 

considered both as oncogenes and tumor suppressors and are included in both lists. These gene lists were 

intersected with the mutated genes in Table S7. GOseq v. 1.24.0 (Young et al., 2010) was used to examine if cancer 

genes were enriched for being mutated in the iPSC lines.  

Detection of associations between mutations and chromatin states 

The whole genome was divided into 200-bp bins and the bins with similar sequence characteristics (and thus 

similar mutation rates) were clustered together using four covariates (D'Antonio et al., 2017; Lawrence et al., 

2013): 1) DNA replication timing derived from the ENCODE wgEncodeUwRepliSeq track on the UCSC Genome 

browser (Hansen et al., 2010; Thurman et al., 2007); 2) open vs. closed chromatin status as measured by Hi-C 

mapping (Lawrence et al., 2013; Lieberman-Aiden et al., 2009) in iPSCs (see ”Hi-C data processing” section 

below); 3) GC content; and 4) gene density, measured as the number of base-pairs that overlap Gencode V. 19 

genes (Harrow et al., 2012) in the 500 kb surrounding each bin. The values of all covariates were normalized to 

have mean = 0 and standard deviation = 1. Normalized covariate values were used to cluster all 200-bp bins in each 

chromosome using k-means clustering, where k was selected to have on average 200 bins in each cluster. A BED 

file was created for each cluster. Each somatic variant (including SNVs and small indels) was assigned to its 200 bp 

bin and its position was permuted 100 times within all the sequences in its cluster. The number of variants 

associated with each chromatin mark was determined in all permutations, then mean and standard deviation were 

calculated. Enrichment for each mutation class in each chromatin state was determined on a per tissue basis as Z-

scores against the 100 permutations by subtracting from the observed value its corresponding mean across the 100 

permutations and dividing by the standard deviation.  

Hi-C data processing for clustering of 200-bp bins 

To use open vs. closed chromatin status as a covariate for clustering of the 200-bp bins, we processed Hi-C data as 

described by the MutSigCV method (Lawrence et al., 2013). Hi-C experiments were performed as described (Li et 

al., In preparation) in iPSCs from 7 individuals in Family 2 of the iPSCORE resource (Panopoulos et al., 2017). 

Sequencing data from the Hi-C experiments for all 7 individuals were combined for analysis and a total of ~3 

billion raw reads were obtained. We applied the Juicer pipeline (Rao et al., 2014) to align and quality check (QC) 

the read pairs. After QC, ~1 billion intra-chromosome read pairs were kept for the analysis, resulting in map 

resolutions of 2kb, defined as > 80% of the bins with > 1000 contacts. Contact domains were determined using the 

Arrowhead algorithm in Juicer at 5 kb-resolution (Durand et al., 2016; Rao et al., 2014). Chromatin contact 

intensity for each contact domain was used as a measure of open vs. closed chromatin status, as defined by the 

MutSigCV method (Lawrence et al., 2013; Lieberman-Aiden et al., 2009).  

RNA-seq data processing and gene expression analysis 
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To analyze the effects of somatic mutations on gene expression in the 18 iPSC lines, we relied on our previously 

published collection of RNA-seq data in iPSC lines at passage 12 (DeBoever et al., 2017). Briefly, we determined 

total RNA quality using an Agilent Tapestation, and samples determined to have an RNA Integrity Number (RIN) 

of 7 or greater were used to generate RNA libraries using Illumina’s TruSeq Stranded Total RNA Sample Prep Kit. 

RNA libraries were multiplexed and sequenced with 125 bp paired end reads (PE100) to a depth of approximately 

25 million reads per sample on an Illumina HiSeq2500. We aligned RNA-seq reads to the human genome (hg19) 

with STAR 2.4.0h (outFilterMultimapNmax 20, outFilterMismatchNmax 999, outFilterMismatchNoverLmax 0.04, 

outFilterIntronMotifs RemoveNoncanonicalUnannotated, outSJfilterOverhangMin 6 6 6 6, seedSearchStartLmax 

20, alignSJDBoverhangMin 1) using a splice junction database constructed from Gencode v19 (Dobin et al., 2013; 

Harrow et al., 2012). Reads overlapping genes were counted using HTSeq-count (-s reverse -a 0 -t exon -i gene_id -

m union) (Anders et al., 2015; Anders et al., 2012). For each gene, TPM values were normalized using the 

calcNormFactors function in the preprocessCore package in R, which resulted in having all genes with mean 

expression = 0 and standard deviation = 1. For 18,284 genes with mean TPM >0, we calculated the distance 

between their TSS and their closest upstream mutation. For each gene, we determine the normalized expression 

value in the mutated sample, expressed in Z-scores (defined as the number of standard deviations from the mean).  

To determine enrichment between different mutational classes, we calculated the fraction of genes with Z-score >2 

or < -2 and compared it with clonal SNVs for all mutations within 500 kb from the TSS.   

Somatic CNA impact on gene expression 

To assess overlap between CNAs and genes, first, we intersected the coordinates of each CNA with the coordinates 

of GENCODE genes using Bedtools intersect and found 1,325 genes that overlapped the 255 CNAs, of which 

1,049 overlapped the 50 Mb chromosome 1q duplication in iPSCORE_3_4 (Table S10). For each gene that 

overlapped a CNA, we compared its normalized expression level (calculated for each gene by subtracting its mean 

expression level and dividing by the standard deviation across all samples) in the iPSC line that harbored the CNA 

with respect to all other lines. 

To analyze the large duplication on chromosome 1, allelic-bias was determined using WASP (van de Geijn et al., 

2015) and allele specific expression was calculated using MBASED (Mayba et al., 2014) as described in DeBoever 

et al. (DeBoever et al., 2017) .  

Assessing clonal evolution of iPSCs using RNA-seq 

To assess evolution of somatic mutations in iPSCs, we used 71 independent RNA-seq data sets from three other 

iPSCORE studies (Benaglio et al., Submitted; DeBoever et al., 2017; Panopoulos et al., 2017). The RNA-seq data 

were generated from iPSCs at varying passages ~12-25, and iPSC-derived cardiomyocytes (iPSC-CMs) at 

differentiation day 15 for four subjects (iPSCORE_2_1, iPSCORE_2_2, iPSCORE_2_3 and iPSCORE_2_9) and a 

time course analysis of iPSC-CM differentiation (days 2, 5 and 9) in three subjects (iPSCORE_2_2, iPSCORE_2_3 

and iPSCORE_2_9) (Table S11). In order to examine the evolution of subclonal mutations at different iPSC 

passages and during differentiation, we used the RNA-seq approach recently developed to study subclonal somatic 
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mutations in embryonic stem cells (ESCs) (Merkle et al., 2017), on the basis of the observation that the allelic 

fraction of coding mutations from RNA-seq is highly correlated with the allelic fraction determined with WGS for 

the same mutations. For each of the 71 RNA-seq BAM files associated with the four subjects, we used Samtools 

mpileup (Li et al., 2009) at the positions of all somatic mutations to derive read count and allelic fraction 

(determined as the ration between the number of reads with non-reference nucleotides divided by the total number 

of reads at a mutated position). Only 146 mutations with read count > 10 were considered. Cochran-Armitage Test 

for trend (R package DescTools V. 0.99.23, https://CRAN.R-project.org/package=DescTools) was performed on 

reference and alternative read counts for each mutation to determine whether allelic frequency changed over time. 

Heatmaps in Figure 7 were made using the pheatmap package in R. 

 

Supplementary Figures 

Figure S1: Description of the individuals from which the whole-genome sequenced iPSCs 

were derived. Related to Figure 1.  

 

Figure S1: Description of the individuals from which the whole-genome sequenced iPSCs were derived. 

Related to Figure 1. (A) Age and gender of each subject. (B) Pedigrees showing the familial relationships among 

twelve of the 18 analyzed subjects. For the 18 subjects, the subject ID and family ID are shown (for example 3_4 = 

family 3, subject 4). The two siblings in family 3 are identical twins. Two subjects with Long QT Syndrome Type 

II (LQT2) in family 2 are colored in black.   

https://cran.r-project.org/package=DescTools
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Figure S2: Mutational signatures in the 18 iPSCs. Related to Figure 2  

 

Figure S2: Mutational signatures in the 18 iPSC lines. Related to Figure 2. The percentage of mutations in each 

of the 96 substitution classes defined by the substitution type (C>A, C>G, C>T, T>A, T>C or T>G) and the 

sequence context immediately upstream and downstream of the mutated base. The X axis represents the somatic 

substitution type, divided by sequence context (one base pair upstream and one downstream) (Alexandrov et al., 

2013b). The Y axis represents the percentage of all mutations associated with each substitution type. The last two 

columns represent CC>TT DNVs and all other DNVs (depicted in purple and dark blue, respectively). 
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Figure S3: Whole genome sequencing quality. Related to Figure 1. 

 

Figure S3: Whole genome sequencing quality. Related to Figure 1. The number of reads that result from WGS 

of the 36 samples: 18 from blood (left) and 18 from iPSCs (right) is shown. The number of high quality properly 

mapped with duplicates removed are shown in green. 
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Supplementary Tables 

Table S1: Description of all subjects in the study. Related to Figure 1.  

Subject UUID, subject ID, family ID and family UUID are provided (Panopoulos et al., 2017). Self-reported race 

was directly obtained by the subject or physician (denoted by asterisk) and was translated into one of seven groups 

(African American, Asian, European, Hispanic, Indian, Middle Eastern, and Multiple ethnicities reported) and 

defined as recorded ethnicity grouping (column G). 

Table S2: Variant counts in iPSCs. Related to Figure 1. 

Subject UUID, subject ID and iPSC ID are the same as in Panopoulos et al. (Panopoulos et al., 2017). The 18 iPSC 

lines are available through WiCell Research Institute and the corresponding WiCell iPSC ID is provided. The 

whole genome sequencing UUID for blood is the same as in DeBoever et al.(DeBoever et al., 2017). For some 

subjects, multiple iPSC clones were derived, so we indicate both the clone number and the passage at which it was 

sequenced. 

Shown is the number of somatic variants per iPSC line. SNVs are divided in three classes, based on their allelic 

frequency: 1) clonal SNVs have allelic frequency between 30% and 80%; 2) subclonal SNVs have allelic frequency 

<30%; and 3) homozygous SNVs have allelic frequency >80%. Homozygous SNVs were subsequently divided into 

three categories, in order to identify possible false positives: 1) SNVs overlapping deletions are likely true positives 

and are seen as “homozygous” because one copy is lost; 2) SNVs not overlapping deletions in autosomes are likely 

false positives, and account for 72 mutations overall (0.16% of all SNVs); and 3) SNVs on sex chromosomes in 

males are likely true positives. Row 22 (the last row) shows the total number of variants of the given variant type 

over all 18 iPSC lines. Column T shows the total number of point and indel mutations (SNVs + DNVs +indels).  

Table S3: Description of somatic CNAs. Related to Figure 1. 

Shown are the ID of the iPSC line harboring the somatic CNA, the CNA coordinates, type and length. 

Table S4: Agreement between HumanCoreExome array and Genome STRiP calls. Related 

to Figure 1. 

Subject ID CNA Type Chromosome 

CNA coordinates 

SNP array Genome STRiP 

Start End Start End 

iPSCORE_1_13 Loss chr4 143,094,811 143,212,870 143,109,554 143,130,189 

iPSCORE_1_3 Loss chr16 78,744,299 78,863,714 
  

iPSCORE_2_1 Loss chr5 128,294,900 128,536,973 128,294,673 128,536,788 

iPSCORE_2_9 Allelic Imbalance* chr3 30,048,710 30,249,375 30,061,327 30,244,478 

iPSCORE_3_3 Gain chr10 135,656 1,948,065 92,349 1,961,954 

iPSCORE_3_3 Trisomy Xp chrX 181,779 54,864,853 
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iPSCORE_3_4 Gain chr1 201,105,488 249,212,430 201,175,747 249,195,464 

iPSCORE_3_4 Loss chr12 80,681,608 84,820,483 81,149,622 82,327,509 

iPSCORE_3_4 Loss chr2 156,854,409 156,965,011 
  

iPSCORE_40_2 Gain chr15 32,912,411 33,188,632 32,899,012 33,152,083 

iPSCORE_72_1 Loss chr12 106,267,942 106,561,353 106,266,196 106,560,050 

iPSCORE_72_1 Loss chr14 89,839,550 90,037,290 89,853,329 89,981,640 

iPSCORE_76_1 Loss chr4 183,170,251 183,620,839 183,178,416 183,619,812 

iPSCORE_83_1 Loss chr16 6,488,959 6,817,144 6,484,637 6,799,804 

iPSCORE_83_1 Loss chr2 154,272,758 154,403,750 154,272,514 154,344,735 

iPSCORE_83_1 Loss chr8 121,199,648 121,335,994 121,200,297 121,341,337 

iPSCORE_84_1 Loss chr13 39,737,588 39,997,264 
  

* Genome STRiP defines this CNA as a duplication 

Shown are the 17 CNAs detected by SNP arrays (Panopoulos et al., 2017) and their overlap with Genome STRiP 

calls. 

Table S5: DNV subtypes. Related to Figure 2. 

Shown are the number of DNVs divided by subtype for each of the 18 iPSC lines. 

Table S6: Associations between mutations and impact. Related to Figure 4. 

Mutation type Impact Clonal SNVs Clonal C>T SNVs Clonal CC>TT DNVs Subclonal SNVs Total 

Intergenic No 13947 10061 1136 2836 
45108 

Intronic No 8857 5897 644 1730 

3' UTRs Low 171 105 8 50 

768 

5' UTRs Low 52 32 8 15 

TF binding sites Low 9 21 4 5 

Non-coding exons Low 77 66 12 22 

Synonymous Low 29 44 8 30 

Splice sites Moderate 34 18 5 11 
357 

Missense Moderate 132 108 12 37 

Nonsense High 10 6 3 2 21 

Shown are the number of somatic SNVs and DNVs distributed by impact grouping and the four classes of somatic 

mutations: 1) clonal SNVs (C>G, C>A, T>G, T>C, T>A); 2) clonal C>T SNVs; 3) clonal CC>TT DNVs; and 4) 

subclonal SNVs. Colors correspond to the impact of mutations, as defined by SnpEff (Cingolani et al., 2012).  

Table S7: Genes affected by somatic mutations. Related to Figure 4. 

The table shows the 504 genes carrying a mutation, the classification of that mutation (clonal SNVs, clonal C>T 

SNVs, clonal CC>TT DNVs or subclonal SNVs, in column C, Figure 4), the impact of that mutation and the 

subjects that carry the mutation (Table S6).  
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Table S8: Enrichment of the four classes of point and indel mutations across 15 chromatin 

states. Related to Figure 5. 

For each of the four mutational classes (clonal SNVs, clonal C>T SNVs, clonal CC>TT DNVs and subclonal 

SNVs, in column C), the table shows the enrichment, calculated as Z-scores, compared with 100 random 

permutations for the 15 chromatin states in each of the 127 human tissues (EID number given in column A) (Figure 

5). Columns A-C show the tissue ID as derived from Roadmap, whether or not it is one of the 22 stem cell tissues, 

and the mutational class, respectively. The other columns show the Z-scores for each of the 15 chromatin states.  

Table S9: Associations between gene expression and upstream mutations. Related to Figure 

6. 

The table shows 17,874 genes (including Gencode V.19 gene ID, symbol, gene type, coordinates and strand), their 

closest mutation up to 500 kb (including the sample harboring the mutation, position, mutation class and distance 

from the TSS) and gene expression levels (normalized expression in the mutated sample, TPM in the mutated 

sample and average TPM across all 215 iPSC lines). 

Table S10: Overlap between genes and CNAs. Related to Figure 6. 

Overlap between Gencode V.19 genes and CNAs was determined using BedTools intersect. Column G shows 

whether each gene is included in a deletion, duplication or the large duplication on chromosome 1. “Overlap” refers 

to whether a CNA fully encompasses a gene sequence (complete overlap) or only partially overlaps a gene.  

Table S11: RNA-seq data to assess clonal evolution of iPSCs. Related to Figure 7. 

The table shows the RNA-seq UUID for the 71 RNA-seq datasets generated for the iPSC lines from four subjects 

(iPSCORE_2_1, iPSCORE_2_2, iPSCORE_2_3 and iPSCORE_2_9). For each RNA-seq sample, cell type (either 

iPSC or iPSC-CM), passage (for iPSCs) and day of differentiation (for iPSC-CMs) is shown. These data have also 

been used in other iPSCORE studies (Benaglio et al., Submitted; DeBoever et al., 2017; Panopoulos et al., 2017). 
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