
Reviewer #1 (Remarks to the Author):  

 

Polygenic Prediction via Bayesian Regression and Continuous Shrinkage Priors  

Tian Ge et al.  

 

Ge and colleagues introduced a novel genomic prediction method, polygenic risk scores with a 

continuous shrinkage (PRS-CS), using GWAS summary statistics and an external linkage 

disequilibrium panel. With simulations, the authors demonstrated that PRS-CS outperformed 

existing methods (standard PRS with and without LD-pruning and p-value threshold cut-off, LDpred 

and so on). The authors also tested the proposed method for a real data set.  

 

The paper reads well. It is intriguing that the continuous shrinkage approach significantly improves 

the performance. I think the proposed approach is likely to have a large impact on the filed. 

However, I have a number of comments that should be carefully considered to make sure that the 

main conclusion holds in general.  

 

 

The proposed approach used an external LD panel (e.g. 1KG). In the analyses (for simulated as well 

as real data), the authors used imputed data and the imputations were somehow associated with 

1KG data. Were there any confounding effects due to such artefact association such that the 

performance of the methods was influenced? A recent study showed that if LD scores were 

estimated from external reference samples and there was heterogeneity between the external 

reference and in-sample, estimates of genetic variances based on GWAS summary stats could be 

biased (AJHG 102: 1185-1194 (2018)).  

1. I would suggest using raw genotypes in the target data set to see if there is any difference in their 

performance for the real data analyses.  

2. How is the ranking of the methods changed if LD scores were estimated from the in-sample 

reference data (i.e. UK Biobank) in the simulation?  

3. Should the authors comment or discuss about using a misspecified LD panel? For example, there is 

uncertainty about the target sample, i.e. prediction in forensic.  

   

It is a known problem for PRS that the scale of the predictor (x) and response (y) is largely different, 

i.e. regression coefficient of y on x is far from 1. This is particularly important in a clinical practice 

that requires standardized risk profile scores (unbiased scale) across different cohorts.  

4. Does PRS-CS have a better property in the unbiasedness than other existing methods?  

 

Given parameters (Supplementary Table 3), one can quantify what would be an expected accuracy 

from theory (e.g. PLOS ONE 12, e0189775 (2017) and related software web page is 



https://sites.google.com/site/honglee0707/mtg2 (see section 9)). For height, assuming h2 = 0.5, 

sample size in the reference = 693529, # SNPs = 2.3M, and effective number of chromosome 

segment (effectively independent number of SNPs) = 50,000, the expected prediction accuracy 

would be R^2 = 0.41 (quite different from that in Figure 2). I assume that the authors did a 

relatedness cut-off QC (0.025) such that effective number of chromosome segment was as large as 

50,000 (see PLoS Genetics 10, e1004269 (2014)). Otherwise, the expected accuracy could be even 

higher. For BMI, the expected accuracy would be 0.18, assuming h2 = 0.25.  

5. Should the authors check where this difference came from?  

6. It would be informative and clearer if the authors provide SNP-heritability estimation for the data 

in supplementary table 3.  

7. I might miss. But it was not very clear how the authors dealt with high relationships in the 

simulation as well as real data analyses? It was mentioned that 488,377 samples were used for the 

UK Biobank, implying that the analyses included high relationships. It was not clear how these high 

relationships affected the performance of the methods.  

8. Did the authors check if there were no overlapping samples between the reference data and 

Partners HealthCare Biobank genetic data?  

 

A recent study reported that the top 0.5% of the participants according to their PRS were at fivefold 

increased risk for CAD, compared to the general population (Nature Genetics 50: 1219–1224 (2018)). 

Because Nagelkerke R^2 is hard to interpret in the aspect of clinical care, It would make more sense 

to report odds ratio (OR) of case-control status contrasting top 1% (or any %) with the general 

population. 

9. Would it be possible to report OR from PRS-CS?  

10. Figure 2 may need standard error bars.  

 

It is not clear if the authors thoroughly checked the robustness of misspecified continuous mixing 

density.  

11. Should the authors simulate SNP effects from a highly skewed gamma distribution to see if PRS-

CS still performs the best?  

 

I sign my name. S. Hong Lee.  

 

 

 

 

 

Reviewer #2 (Remarks to the Author):  



 

This is an interesting and useful paper. However, I think it overstates the case for this being a major 

advance. Or, to put it another way, I think you could explain the background and the benefits of the 

new method more clearly.  

 

The introduction focuses on methods that use summary data as does this paper. However, it would 

be better to point out at the beginning that these are all approximations for methods described that 

use individual level data. And in fact all these methods derive from those described in your reference 

34. The idea of using an LD reference to approximate the analysis was introduced by Yang et al 

(2012) Nature genetics 44;369.  

 

You could make it clearer why you prefer a continuous shrinkage prior over one with a point mass at 

zero. The CS prior allows you to update the SNP effect estimates using BLUP. This is efficient in that 

you do a block update. However, this is only possible because you process the data in small genome 

blocks and assume no LD between the blocks. This means that you don't have to use "iteration on 

the data" because within a small block you can form the snp x snp equations. Many methods would 

be efficient under these circumstances. The reason other methods take a lot of computer time is 

that they fit so many SNPs simultaneously (allowing for LD amongst them all) that they cannot form 

the snp x snp equations and must use iteration on the data.  

 

Incidentally, reference 34 includes a CS prior in the method called Bayes A.  

 

Therefore the claim PRS-CS outperforms all other methods is a little too strong. For instance, in 

comparisons, bayes B or bayes R perform as well or better than all others. These could be turned 

into summary statistic based method just as has been done for PRS-CS.  

 

 

Reviewer #3 (Remarks to the Author):  

 

This is a well-written manuscript that proposes a new approach for polygenic risk scoring, based on a 

continuous rather than a discrete mixture prior. The method is clear and seems to be highly 

effective. I have some concerns mentioned below, mostly related to further elaborating the 

method's behavior under various scenarios.  

 

 

Major concerns  

----------------  



1. The authors mention in various places that their method is computationally efficient, but they 

never provide any evidence. Please add runtime measurements and explain the factors that affect 

computational runtime. For example, each iteration requires inverting an MxM matrix where M is 

the block size, so I expect that the method would be much slower if you didn't filter to only HM3 

SNPs.  

 

2. In addition to (or instead of) reporting Nagelkerke's R^2 for disease PRS, please report either the 

area under the ROC curve or (better yet) the area under the precision-recall curve, as it informs of 

the actual predictive capability. Furthermore, the Methods section says that the phenotypes were 

adjusted for age, sex and PCs, so it's not clear to me how you could use Nagelkerke's R^2, as it 

assumes a binary outcome.  

 

3. All the simulations were conducted with h^2=0.5, which is higher than what we typically see in 

practice. I think a few more h^2 values should be evaluated.  

 

4. The use of a reference sample size of only ~500 individuals (instead of the data from 500K 

individuals) is obviously a rough approximation. A recent paper[1] argues that the approximation 

becomes increasingly worse as the sample size increases (in the context of fine-mapping, but this 

should follow the same principles). Can the authors evaluate the sensitivity to the reference sample 

size? This can be done in simulations, by computing in-sample LD based on subsets of individuals 

from the UK Biobank (that are different from those used in the actual experiments).  

 

 

Minor concerns  

---------------------  

- "LDPred does not adequately adjust for the LD structure": Can you explain what this means? Is this 

a numerical problem (e.g. inversion of a near-singular matrix), or a conceptual one? I see that this is 

further discussed in the first discussion paragraph, but it's still not clear what is the approximation 

mentioned there.  

 

- The discussion mentions explained variance of disease. This doesn't make sense, since the variance 

of a binary variable is a function of its mean. I suppose the authors think about variance explained 

on the liability scale, but then one would need to apply a correction factor that depends on the trait 

prevalence (e.g. [2]) to obtain a meaningful comparison.  

 

- The author mention that they typically explain only a small portion of trait heritability. A recent 

paper claims that it managed to explain all of the heritability of human height via Lasso[3]. How do 

the authors explain this discrepancy?  

 



- The authors used a different number of MCMC iterations (and burn-in iterations) in the simulations 

and the real data results. Can they provide some guidelines about choosing these parameters?  

 

- Top of page 9: "The relative improvement in prediction accuracy": Please specify the exact accuracy 

measure you used  

 

 

Even more minor concerns  

----------------------------------------  

- Page 8 above Table 1: "for which external large-scale GWAS summary statistics are publicly 

available": I found this sentence confusing at first, because I thought this described PBK in general.  

 

- I would replace the "&" in the headers of Table 1 with a set-intersection sign?  

 

- Table 1: I assume HM3 is Hapmap3? This isn't mentioned in the caption  

 

- Table 1 caption should state what was the MAF cutoff.  

 

- Why is ref. 59 (from 2009) used for Minimac3?  
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Tian	Ge,	Chia-Yen	Chen,	Yang	Ni,	Yen-Chen	Anne	Feng,	Jordan	W.	Smoller	
	
We	were	pleased	to	see	a	high	level	of	enthusiasm	of	our	work.	We	thank	the	three	reviewers	for	their	close	
read	of	the	manuscript,	insightful	comments	and	helpful	suggestions.	We	have	carefully	considered	the	points	
made	by	the	reviewers	and	revised	the	manuscript	accordingly.	Major	changes	to	the	text	are	highlighted	in	
red	in	the	updated	manuscript.		
	
Below,	we	provide	a	point-by-point	response	to	specific	reviewer	concerns.	Our	response	is	preceded	by	a	
double-dash	(--)	and	rendered	in	a	blue	typeface.	We	believe	that	the	manuscript	is	improved	and	hope	it	is	
now	suitable	for	publication.	
	
	
Reviewer	#1	(Remarks	to	the	Author):	
	
Polygenic	Prediction	via	Bayesian	Regression	and	Continuous	Shrinkage	Priors		
Tian	Ge	et	al.		
	
Ge	and	colleagues	introduced	a	novel	genomic	prediction	method,	polygenic	risk	scores	with	a	continuous	
shrinkage	(PRS-CS),	using	GWAS	summary	statistics	and	an	external	linkage	disequilibrium	panel.	With	
simulations,	the	authors	demonstrated	that	PRS-CS	outperformed	existing	methods	(standard	PRS	with	and	
without	LD-pruning	and	p-value	threshold	cut-off,	LDpred	and	so	on).	The	authors	also	tested	the	proposed	
method	for	a	real	data	set.		
	
The	paper	reads	well.	It	is	intriguing	that	the	continuous	shrinkage	approach	significantly	improves	the	
performance.	I	think	the	proposed	approach	is	likely	to	have	a	large	impact	on	the	field.	However,	I	have	a	
number	of	comments	that	should	be	carefully	considered	to	make	sure	that	the	main	conclusion	holds	in	
general.		
	
The	proposed	approach	used	an	external	LD	panel	(e.g.	1KG).	In	the	analyses	(for	simulated	as	well	as	real	
data),	the	authors	used	imputed	data	and	the	imputations	were	somehow	associated	with	1KG	data.	Were	
there	any	confounding	effects	due	to	such	artefact	association	such	that	the	performance	of	the	methods	was	
influenced?	A	recent	study	showed	that	if	LD	scores	were	estimated	from	external	reference	samples	and	
there	was	heterogeneity	between	the	external	reference	and	in-sample,	estimates	of	genetic	variances	based	
on	GWAS	summary	stats	could	be	biased	(AJHG	102:	1185-1194	(2018)).		
	
1.	I	would	suggest	using	raw	genotypes	in	the	target	data	set	to	see	if	there	is	any	difference	in	their	
performance	for	the	real	data	analyses.	
	
--	Thanks	for	the	suggestion.	We	have	repeated	the	real	data	analyses	using	raw	genotypes	in	the	Partners	
HealthCare	Biobank.	The	prediction	accuracy	(Nagelkerke	R^2	for	disease	phenotypes	and	R^2	for	quantitative	



traits)	for	each	polygenic	prediction	method	is	summarized	in	the	table	below.	Using	raw	genotypes	resulted	
in	fewer	SNPs	being	included	in	prediction	(as	shown	in	the	“#	SNPs”	column),	and	thus	the	prediction	
accuracy	was	in	general	slightly	lower	than	using	the	imputed	data.	However,	we	note	that	the	ranking	of	the	
polygenic	prediction	methods	did	not	change.	In	addition,	in	the	revised	manuscript,	we	have	also	included	
the	predictive	performance	of	all	methods	when	an	in-sample	LD	reference	panel	is	used	in	both	simulation	
studies	(see	Supplementary	Figure	5	and	Supplementary	Table	6)	and	real	data	analyses	(see	Supplementary	
Figure	6	and	Supplementary	Table	16).	These	results	were	highly	consistent	to	those	using	the	external	1KG	
reference	panel.	Combining	these	results,	it	is	unlikely	that	the	improvement	of	PRS-CS	over	alternative	
methods	is	due	to	the	artefact	association	induced	by	using	the	same	reference	panel	for	imputing	the	target	
sample	and	inferring	posterior	SNP	effect	sizes.	
	

Disease/Trait	 #	SNPs	 PRS-CS	 LDpred	 P+T	
Ldpred-

inf	
PRS-
unadj	

Breast	Cancer	 395,250	 0.0433	 0.0206	 0.0255	 0.0233	 0.0177	
Coronary	Artery	Disease	 389,572	 0.0341	 0.0325	 0.0168	 0.0190	 0.0217	
Depression	 392,103	 0.0087	 0.0092	 0.0070	 0.0072	 0.0075	
Inflammatory	Bowel	
Disease	

391,616	 0.0663	 0.0523	 0.0495	 0.0262	 0.0299	

Rheumatoid	Arthritis	 349,908	 0.0783	 0.0630	 0.0614	 0.0633	 0.0349	
Type	2	Diabetes	Mellitus	 394,452	 0.0437	 0.0402	 0.0206	 0.0220	 0.0235	
Height	 259,327	 0.2639	 0.2234	 0.2223	 0.2403	 0.1794	
Body	mass	index	 259,272	 0.1035	 0.0921	 0.0827	 0.0927	 0.0587	
High-density	lipoproteins	 266,743	 0.0885	 0.0904	 0.0488	 0.0449	 0.0265	
Low-density	lipoproteins	 266,187	 0.0972	 0.0842	 0.0788	 0.0372	 0.0277	
Cholesterol	 266,723	 0.0785	 0.0580	 0.0599	 0.0379	 0.0267	
Triglycerides	 266,251	 0.0579	 0.0518	 0.0386	 0.0293	 0.0210	

	
2.	How	is	the	ranking	of	the	methods	changed	if	LD	scores	were	estimated	from	the	in-sample	reference	data	
(i.e.	UK	Biobank)	in	the	simulation?	
	
--	As	mentioned	above,	we	have	included	the	predictive	performance	of	all	polygenic	prediction	methods	
considered	when	an	in-sample	LD	reference	panel	is	used	in	both	simulation	studies	(see	Supplementary	
Figure	5	and	Supplementary	Table	6)	and	real	data	analyses	(see	Supplementary	Figure	6	and	Supplementary	
Table	16).	Using	a	larger	in-sample	LD	reference	panel	in	general	produced	slightly	higher	prediction	accuracy.	
However,	the	improvement	was	marginal,	and	it	appears	that	the	predictive	performance	of	PRS-CS	is	not	
particularly	sensitive	to	the	selection	of	LD	reference	panel	when	the	GWAS,	reference	and	target	samples	
have	matched	ancestry.	
	
3.	Should	the	authors	comment	or	discuss	about	using	a	misspecified	LD	panel?	For	example,	there	is	
uncertainty	about	the	target	sample,	i.e.	prediction	in	forensic.			
	



--	We	have	now	included	a	comment	on	misspecified	LD	panels	along	with	cross-ethnic	risk	prediction	in	the	
Discussion	section	(see	Pages	13-14).	
	
It	is	a	known	problem	for	PRS	that	the	scale	of	the	predictor	(x)	and	response	(y)	is	largely	different,	i.e.	
regression	coefficient	of	y	on	x	is	far	from	1.	This	is	particularly	important	in	a	clinical	practice	that	requires	
standardized	risk	profile	scores	(unbiased	scale)	across	different	cohorts.		
	
4.	Does	PRS-CS	have	a	better	property	in	the	unbiasedness	than	other	existing	methods?			
	
--	Thanks	for	raising	this	important	question.	We	have	regressed	the	true	phenotype	onto	the	PRS	predictor	
and	reported	the	regression	slope	as	a	measure	of	calibration	for	each	simulation	setting	in	the	revised	
manuscript	(see	Supplementary	Tables	7-12).	Consistent	with	predictive	performance,	as	the	training	sample	
size	grows,	our	Bayesian	approach	provides	the	best	calibration	among	all	methods	examined.	PRS-CS-auto	is	
particularly	well	calibrated	for	large	training	sample	sizes	because	it	automatically	learns	the	sparseness	of	the	
genetic	architecture	and	adjusts	for	the	LD	structure	accordingly.	
	
Given	parameters	(Supplementary	Table	3),	one	can	quantify	what	would	be	an	expected	accuracy	from	
theory	(e.g.	PLOS	ONE	12,	e0189775	(2017)	and	related	software	web	page	
is	https://sites.google.com/site/honglee0707/mtg2	(see	section	9)).	For	height,	assuming	h2	=	0.5,	sample	size	
in	the	reference	=	693529,	#	SNPs	=	2.3M,	and	effective	number	of	chromosome	segment	(effectively	
independent	number	of	SNPs)	=	50,000,	the	expected	prediction	accuracy	would	be	R^2	=	0.41	(quite	different	
from	that	in	Figure	2).	I	assume	that	the	authors	did	a	relatedness	cut-off	QC	(0.025)	such	that	effective	
number	of	chromosome	segment	was	as	large	as	50,000	(see	PLoS	Genetics	10,	e1004269	(2014)).	Otherwise,	
the	expected	accuracy	could	be	even	higher.	For	BMI,	the	expected	accuracy	would	be	0.18,	assuming	h2	=	
0.25.	
	
5.	Should	the	authors	check	where	this	difference	came	from?	
	
--	A	few	reasons	can	result	in	this	discrepancy.	First,	as	we	now	report	in	Supplementary	Table	14,	the	SNP	
heritability	of	height	was	estimated	to	be	0.45	using	the	GIANT	GWAS	summary	statistics	and	LD	score	
regression,	which	is	slightly	lower	than	0.5.	Second,	previous	theoretical	results	of	prediction	accuracy	were	
derived	based	on	infinitesimal	models	with	a	normal	prior.	Therefore,	they	may	not	provide	close	
approximations	to	non-infinitesimal	models	or	more	sophisticated	prior	distributions.	Third,	we	did	not	use	all	
SNPs	in	GWAS	summary	statistics	in	prediction,	but	restricted	the	analysis	to	the	1KG	reference	panel	and	
HapMap3	SNPs.	Therefore,	the	total	number	of	SNPs	included	in	height	prediction	was	~750K	as	reported	in	
Table	1	instead	of	2.3M.	This	may	affect	the	effective	number	of	independent	SNPs	as	well.	We	have	discussed	
the	rationale	and	limitations	of	restricting	the	analysis	to	HapMap3	SNPs	in	the	revised	manuscript,	and	
pointed	out	that	including	multi-million	SNPs	predictors	may	increase	prediction	accuracy	but	requires	future	
work,	referencing	the	PLoS	ONE	article	(see	Pages	12-13).	
	
6.	It	would	be	informative	and	clearer	if	the	authors	provide	SNP-heritability	estimation	for	the	data	in	
supplementary	table	3.	



--	Thanks	for	the	suggestion.	We	have	now	provided	SNP	heritability	for	each	disease	(both	on	the	observed	
scale	and	on	the	liability	scale)	and	trait,	estimated	using	GWAS	summary	statistics	and	LD	score	regression,	in	
Supplementary	Table	14	for	reference.	
	
7.	I	might	miss.	But	it	was	not	very	clear	how	the	authors	dealt	with	high	relationships	in	the	simulation	as	well	
as	real	data	analyses?	It	was	mentioned	that	488,377	samples	were	used	for	the	UK	Biobank,	implying	that	the	
analyses	included	high	relationships.	It	was	not	clear	how	these	high	relationships	affected	the	performance	of	
the	methods.	
	
--	Sorry	for	the	confusion.	488,377	is	the	total	sample	size	for	the	UK	Biobank.	In	our	simulation	studies,	we	
restricted	the	analysis	to	unrelated	white	British	participants	along	with	other	sample	QC	procedures	(see	the	
Methods	section	on	Page	20),	and	randomly	selected	10K,	20K,	50K	or	100K	subjects	as	the	GWAS	(training)	
sample	(see	the	description	of	simulation	design	on	Page	20).	The	validation	and	testing	data	sets	also	
included	unrelated	participants	and	are	independent	from	the	training	set.	Therefore,	the	performance	of	
polygenic	prediction	methods	is	not	affected	by	sample	relatedness	in	the	UK	Biobank.	Similarly,	in	real	data	
analyses,	we	selected	unrelated	subjects	with	European	ancestry	(see	Page	21).		
	
8.	Did	the	authors	check	if	there	were	no	overlapping	samples	between	the	reference	data	and	Partners	
HealthCare	Biobank	genetic	data?		
	
--	There	is	no	sample	overlap	between	the	1KG	European	sample	and	the	Partners	HealthCare	Biobank	sample.	
We	cannot	exclude	the	possibility	of	sample	overlap	between	each	GWAS	sample	and	the	Partners	Biobank	
sample.	However,	by	carefully	examining	the	sample	composition	of	each	GWAS	study,	we	believe	that	sample	
overlap	is	minimal	(if	any)	and	does	not	impact	the	comparison	among	polygenic	prediction	methods.	
	
A	recent	study	reported	that	the	top	0.5%	of	the	participants	according	to	their	PRS	were	at	fivefold	increased	
risk	for	CAD,	compared	to	the	general	population	(Nature	Genetics	50:	1219–1224	(2018)).	Because	
Nagelkerke	R^2	is	hard	to	interpret	in	the	aspect	of	clinical	care,	it	would	make	more	sense	to	report	odds	
ratio	(OR)	of	case-control	status	contrasting	top	1%	(or	any	%)	with	the	general	population.	
	
9.	Would	it	be	possible	to	report	OR	from	PRS-CS?			
	
--	Yes.	PRS-CS	can	produce	any	predictive	performance	metric	that	other	polygenic	prediction	methods	can	
provide.	However,	since	the	sample	size	of	the	Partners	HealthCare	Biobank	is	much	smaller	than	the	UK	
Biobank,	we	do	not	have	enough	cases	to	reliably	calculate	OR	for	the	extreme	tail	of	the	PRS	distribution	(e.g.,	
top	1%	or	lower).	In	the	revised	manuscript,	we	report	OR	contrasting	top	10%	of	the	participants	having	high	
polygenic	risk	with	the	remaining	90%	of	the	sample	as	an	example.	PRS-CS	ORs	range	from	1.58	for	
depression	to	4.38	for	rheumatoid	arthritis,	which	are	higher	than	alternative	methods	and	are	consistent	with	
prediction	accuracy.	As	suggested	by	another	reviewer,	we	also	report	area	under	the	receiver	operating	
characteristic	(ROC)	curve	(AUC)	and	area	under	the	precision-recall	curve	in	the	updated	manuscript,	both	are	
clinically	relevant	(see	Supplementary	Tables	15	and	16).	All	prediction	accuracy	metrics	produced	consistent	
results	in	terms	of	the	ranked	performance	of	polygenic	prediction	methods.	



10.	Figure	2	may	need	standard	error	bars.	
	
--	We	have	added	the	standard	deviation	of	the	prediction	accuracy	(R^2	or	Nagelkerke	R^2)	for	each	trait	or	
disease	across	100	random	splits	of	the	Partners	HealthCare	Biobank	sample	to	the	figure.	
	
It	is	not	clear	if	the	authors	thoroughly	checked	the	robustness	of	misspecified	continuous	mixing	density.			
	
11.	Should	the	authors	simulate	SNP	effects	from	a	highly	skewed	gamma	distribution	to	see	if	PRS-CS	still	
performs	the	best?		
	
--	The	gamma-gamma	prior	on	the	local	shrinkage	parameter	is	designed	to	create	a	prior	distribution	on	the	
SNP	effect	sizes,	which	has	a	sizable	amount	of	mass	near	zero	to	impose	strong	shrinkage	on	noise	and	at	the	
same	time	has	heavy	tails	to	avoid	over-shrinkage	of	truly	non-zero	effects.	Therefore,	the	shape	of	the	prior	
on	effect	sizes	(peaky	at	zero	and	heavy-tailed)	is	important	while	the	exact	scale-mixture	distribution	that	
generates	this	shape	is	less	important.	In	fact,	we	had	simulated	SNP	effect	sizes	from	a	point-normal	model,	a	
normal	mixture	model	and	a	point-t	model,	all	of	which	are	different	from	the	gamma-gamma	model	and	thus	
the	impact	of	misspecified	effect	size	distributions	had	been	investigated.	In	this	revised	version	of	the	
manuscript,	we	added	one	more	simulation,	which	sampled	SNP	effect	sizes	from	a	point-gamma	model	(a	
point	mass	at	zero	and	a	gamma	distribution	with	the	shape	parameter	set	to	2),	which	produces	an	effect	size	
distribution	that	is	asymmetric	about	zero	and	highly	skewed	with	the	right	tail	being	long	and	thin	and	the	
left	tail	being	short	and	fat.	We	show	that	the	performance	of	PRS-CS	is	not	sensitive	to	specific	effect	size	
distributions,	and	consistently	improves	over	alternative	methods	in	all	simulation	settings	(see	Figure	1	and	
Supplementary	Figures	1-4).	
	
	
Reviewer	#2	(Remarks	to	the	Author):	
	
This	is	an	interesting	and	useful	paper.	However,	I	think	it	overstates	the	case	for	this	being	a	major	advance.	
Or,	to	put	it	another	way,	I	think	you	could	explain	the	background	and	the	benefits	of	the	new	method	more	
clearly.	
	
The	introduction	focuses	on	methods	that	use	summary	data	as	does	this	paper.	However,	it	would	be	better	
to	point	out	at	the	beginning	that	these	are	all	approximations	for	methods	described	that	use	individual	level	
data.	And	in	fact,	all	these	methods	derive	from	those	described	in	your	reference	34.	The	idea	of	using	an	LD	
reference	to	approximate	the	analysis	was	introduced	by	Yang	et	al	(2012)	Nature	genetics	44;369.		
	
--	In	the	revised	version	of	the	manuscript,	we	have	pointed	out,	when	laying	out	the	conceptual	framework	of	
polygenic	prediction	methods,	that	individual-level	models	can	often	be	approximated	using	an	external	LD	
reference	panel	and	turned	into	summary	statistics	based	methods,	and	have	cited	Yang	et	al.	(2012)	and	the	
very	recent	preprint	by	Lloyd-Jones	et	al.	which	extented	BayesR	to	a	summary	statistics	based	method.	See	
Page	5.	



You	could	make	it	clearer	why	you	prefer	a	continuous	shrinkage	prior	over	one	with	a	point	mass	at	zero.	The	
CS	prior	allows	you	to	update	the	SNP	effect	estimates	using	BLUP.	This	is	efficient	in	that	you	do	a	block	
update.	However,	this	is	only	possible	because	you	process	the	data	in	small	genome	blocks	and	assume	no	LD	
between	the	blocks.	This	means	that	you	don't	have	to	use	"iteration	on	the	data"	because	within	a	small	
block	you	can	form	the	snp	x	snp	equations.	Many	methods	would	be	efficient	under	these	circumstances.	The	
reason	other	methods	take	a	lot	of	computer	time	is	that	they	fit	so	many	SNPs	simultaneously	(allowing	for	
LD	amongst	them	all)	that	they	cannot	form	the	snp	x	snp	equations	and	must	use	iteration	on	the	data.	
	
--	Thanks	for	providing	this	insight.	We	have	discussed	the	advantages	and	limitations	of	using	a	genomic	
partition	in	the	revised	manuscript	(see	Pages	12-13).	Specifically,	we	have	made	the	following	points:	(1)	
Partitioning	the	genome	into	small	LD	blocks	makes	block	update	of	continuous	shrinkage	priors	feasible,	but	
assumes	that	there	is	no	LD	between	blocks.	Using	a	sliding	window	approach	as	implemented	in	LDpred	may	
more	accurately	capture	LD	across	blocks,	but	is	more	memory	and	computational	expensive.	(2)	The	
computational	cost	of	the	algorithm	depends	on	the	size	of	the	LD	blocks:	Expanding	the	size	of	LD	blocks	may	
improve	prediction	accuracy	but	increases	computational	cost	(as	each	MCMC	iteration	requires	inverting	a	
snp	x	snp	matrix),	while	reducing	the	size	of	LD	blocks	has	the	potential	risk	of	missing	long-range	LD.	
Therefore,	there	is	a	balance	between	modeling	accuracy	and	computational	burden.	
	
Incidentally,	reference	34	includes	a	CS	prior	in	the	method	called	Bayes	A.	
	
--	We	have	cited	Meuwissen	et	al.	(2001)	along	with	other	prior	work	that	applied	special	cases	of	continuous	
shrinkage	priors	(e.g.,	Bayesian	LASSO)	to	genomic	prediction	in	the	Introduction	(see	Page	4).	However,	we	
also	note	that	(1)	all	these	work	required	individual-level	data,	although	technically	they	can	be	turned	into	
summary	statistics	based	methods.	(2)	The	continuous	shrinkage	prior	we	used	in	our	method	is	carefully	
designed	to	create	a	prior	distribution	on	the	SNP	effect	sizes,	which	has	a	sizable	amount	of	mass	near	zero	to	
impose	strong	shrinkage	on	noise	and	at	the	same	time	has	heavy	tails	to	avoid	over-shrinkage	of	truly	non-
zero	effects.	Therefore,	it	is	robust	to	varying	genetic	architectures	and	offers	much	better	shrinkage	
properties	than	many	simple	continuous	shrinkage	priors.	For	example,	BayesA	is	essentially	an	infinitesimal	
model	with	a	Student’s	t	prior	on	SNP	effect	sizes,	and	thus	does	not	impose	strong	shrinkage	on	small	noisy	
estimates	and	would	be	difficult	to	handle	sparse	genetic	architectures.	
	
Therefore	the	claim	PRS-CS	outperforms	all	other	methods	is	a	little	too	strong.	For	instance,	in	comparisons,	
bayes	B	or	bayes	R	perform	as	well	or	better	than	all	others.	These	could	be	turned	into	summary	statistic	
based	method	just	as	has	been	done	for	PRS-CS.	
	
--	We	agree	that	in	principle	all	genomic	prediction	methods	developed	for	individual-level	data	can	be	turned	
into	summary	statistics	based	methods	and	have	made	this	explicit	in	the	Conceptual	Frameworks	section	(see	
Page	5).	We	have	also	reviewed	genomic	prediction	methods	for	individual-level	data	in	the	Discussion	section	
(see	Page	13).	However,	given	that	a	majority	of	the	existing	genomic	prediction	models	use	discrete	mixture	
priors,	we	believe	that	continuous	shrinkage	priors	provide	an	alternative	perspective	in	polygenic	prediction,	
and	have	advantages	in	computational	efficiency	and	multivariate	LD	modeling	(through	block	update	of	SNP	
effect	sizes)	and	flexible	modeling	of	genetic	architectures	(through	the	design	of	the	shape	of	priors	on	SNP	



effect	sizes).	By	better	referencing	prior	work	and	clarifying	the	motivation	of	using	continuous	shrinkage	
priors	as	discussed	above,	we	hope	that	we	have	more	precisely	conveyed	the	contribution	of	this	work	to	the	
community	in	this	revised	version	of	the	manuscript.		
	
	
Reviewer	#3	(Remarks	to	the	Author):	
	
This	is	a	well-written	manuscript	that	proposes	a	new	approach	for	polygenic	risk	scoring,	based	on	a	
continuous	rather	than	a	discrete	mixture	prior.	The	method	is	clear	and	seems	to	be	highly	effective.	I	have	
some	concerns	mentioned	below,	mostly	related	to	further	elaborating	the	method's	behavior	under	various	
scenarios.	
	
Major	concerns	
	
1.	The	authors	mention	in	various	places	that	their	method	is	computationally	efficient,	but	they	never	provide	
any	evidence.	Please	add	runtime	measurements	and	explain	the	factors	that	affect	computational	runtime.	
For	example,	each	iteration	requires	inverting	an	MxM	matrix	where	M	is	the	block	size,	so	I	expect	that	the	
method	would	be	much	slower	if	you	didn't	filter	to	only	HM3	SNPs.	
	
--	We	have	now	added	runtime	measurements	in	the	Discussion	section	of	the	manuscript	(see	Pages	12-13).	
Specifically,	we	fit	a	regression	model	for	each	chromosome	and	the	Bayesian	computation	with	1,000	MCMC	
iterations	on	the	longest	chromosome	can	be	completed	within	an	hour	using	one	Intel(R)	Xeon(R)	CPU	core	
and	2GB	of	memory.	Therefore,	all	computation	(with	1,000	MCMC	iterations)	can	be	finished	in	an	hour	if	the	
22	chromosomes	are	processed	in	parallel.	Computational	runtime	is	difficult	to	fairly	compare	between	
Bayesian	methods.	When	we	say	our	method	is	“computationally	efficient”,	we	refer	more	to	the	better	
mixing	and	convergence	properties	of	continuous	shrinkage	priors	relative	to	discrete	mixture	priors,	which	
have	been	well	studied	and	documented	in	the	statistics	literature.	We	have	made	this	clearer	in	the	revised	
manuscript	in	various	places	to	avoid	confusion.	
	
We	have	also	discussed	factors	that	affect	computational	burden.	The	genomic	partition	we	used	gives	a	
moderate	number	of	HapMap3	SNPs	within	each	LD	block	(on	average	~500	SNPs	per	block),	which	makes	
iterative	matrix	inversion	feasible.	Expanding	the	size	of	LD	blocks	may	improve	prediction	accuracy	but	
increases	computational	cost,	while	reducing	the	size	of	LD	blocks	has	the	potential	risk	of	missing	long-range	
LD.	Therefore,	our	choice	of	this	particular	genomic	partition	represents	a	balance	between	modeling	accuracy	
and	computational	burden.	The	reviewer	is	totally	correct	that	if	we	do	not	restrict	the	analysis	to	HapMap3	
SNPs,	the	computational	cost	will	increase	dramatically.	We	have	discussed	this	in	the	revision,	and	pointed	
out	that	further	work	is	needed	to	include	multi-million	SNP	predictors	in	the	prediction	(see	Pages	12-13).	
	
2.	In	addition	to	(or	instead	of)	reporting	Nagelkerke's	R^2	for	disease	PRS,	please	report	either	the	area	under	
the	ROC	curve	or	(better	yet)	the	area	under	the	precision-recall	curve,	as	it	informs	of	the	actual	predictive	
capability.	Furthermore,	the	Methods	section	says	that	the	phenotypes	were	adjusted	for	age,	sex	and	PCs,	so	



it's	not	clear	to	me	how	you	could	use	Nagelkerke's	R^2,	as	it	assumes	a	binary	outcome.	
	
--	We	have	added	area	under	the	receiver	operating	characteristic	(ROC)	curve	(AUC)	and	area	under	the	
precision-recall	curve	for	each	disease	to	the	revised	manuscript.	As	suggested	by	another	reviewer,	we	also	
report	the	odds	ratio	contrasting	top	10%	of	the	participants	having	high	polygenic	risk	with	the	remaining	90%	
of	the	sample	(see	Supplementary	Tables	15	and	16).	All	prediction	accuracy	metrics	produced	consistent	
results	in	terms	of	the	ranked	performance	of	polygenic	prediction	methods.	
	

Nagelkerke’s	𝑅"	is	defined	as	𝑅#$%" = 𝑅"/𝑅($)" ,	where	𝑅" = 1 − (ℒ./0/ℒ1233)"/5,	𝑅($)" = 1 − ℒ./0
"/5,	ℒ./0	is	the	

likelihood	of	a	restricted	logistic	regression	model	with	covariates	only	(an	intercept,	age,	sex	and	top	10	PCs),	
ℒ1233	is	the	likelihood	of	the	full	logistic	model	(covariates	and	the	PRS	predictor),	and	𝑁	is	the	sample	size.	We	
have	clarified	this	definition	in	the	Methods	section	of	the	manuscript	(see	Pages	22-23).	
	
3.	All	the	simulations	were	conducted	with	h^2=0.5,	which	is	higher	than	what	we	typically	see	in	practice.	I	
think	a	few	more	h^2	values	should	be	evaluated.	
	
--	We	have	added	simulations	of	the	point-normal	model	with	h^2=0.2	and	h^2=0.8	to	the	revised	manuscript.	
The	results	(i.e.,	the	ranking	of	predictive	performance	across	polygenic	prediction	methods	examined)	are	
highly	consistent	with	h^2=0.5	(see	Supplementary	Figures	1	and	2;	Supplementary	Tables	2	and	3).	
	
4.	The	use	of	a	reference	sample	size	of	only	~500	individuals	(instead	of	the	data	from	500K	individuals)	is	
obviously	a	rough	approximation.	A	recent	paper	[1]	argues	that	the	approximation	becomes	increasingly	
worse	as	the	sample	size	increases	(in	the	context	of	fine-mapping,	but	this	should	follow	the	same	principles).	
Can	the	authors	evaluate	the	sensitivity	to	the	reference	sample	size?	This	can	be	done	in	simulations,	by	
computing	in-sample	LD	based	on	subsets	of	individuals	from	the	UK	Biobank	(that	are	different	from	those	
used	in	the	actual	experiments).	
	
--	In	this	revised	version	of	the	manuscript,	we	have	included	the	predictive	performance	of	all	methods	when	
an	in-sample	LD	reference	panel	is	used	in	both	simulation	studies	(see	Supplementary	Figure	5	and	
Supplementary	Table	6)	and	real	data	analyses	(see	Supplementary	Figure	6	and	Supplementary	Table	16).	In	
the	simulation	studies,	the	combined	validation	and	testing	data	sets	were	used	as	an	in-sample	reference	
panel	(N=6,000).	In	real	data	analyses,	the	Partners	HealthCare	Biobank	sample	was	used	as	an	in-sample	
reference	panel	(N=19,136).	In	general,	the	prediction	accuracy	was	slightly	increased	when	a	larger	in-sample	
LD	reference	was	used.	However,	the	improvement	was	marginal	in	both	simulations	and	real	data	analyses.	It	
appears	that	the	performance	of	PRS-CS(-auto)	is	not	particularly	sensitive	to	the	LD	reference	panel,	and	1KG	
can	serve	as	a	valid	reference	despite	its	relatively	small	sample	size.	We	have	included	these	points	in	the	
updated	manuscript	(see	Page	7).	In	addition,	we	have	also	briefly	discussed	the	potential	impact	of	a	
misspecified	LD	reference	in	the	Discussion	(see	Pages	13-14).	
	
Minor	concerns	
	
-	"LDpred	does	not	adequately	adjust	for	the	LD	structure":	Can	you	explain	what	this	means?	Is	this	a	



numerical	problem	(e.g.	inversion	of	a	near-singular	matrix),	or	a	conceptual	one?	I	see	that	this	is	further	
discussed	in	the	first	discussion	paragraph,	but	it's	still	not	clear	what	is	the	approximation	mentioned	there.	
	
--	The	approximation	used	by	LDpred	is	quite	technical	and	difficult	to	fully	explain	by	text.	The	bottom	line	is	
that	LDpred	uses	marginal	posterior	without	LD	to	approximate	the	true	multivariate	posterior,	and	this	
approximation	appears	to	be	inaccurate.	We	have	replaced	“inadequate	adjustment	for	the	LD	structure”	with	
“inaccurate	adjustment	for	the	LD	structure”	in	various	places.	
	
-	The	discussion	mentions	explained	variance	of	disease.	This	doesn't	make	sense,	since	the	variance	of	a	
binary	variable	is	a	function	of	its	mean.	I	suppose	the	authors	think	about	variance	explained	on	the	liability	
scale,	but	then	one	would	need	to	apply	a	correction	factor	that	depends	on	the	trait	prevalence	(e.g.	[2])	to	
obtain	a	meaningful	comparison.	
	
--	Thanks	for	pointing	this	out.	We	have	rephrased	the	discussion	in	the	last	paragraph	of	the	manuscript	(see	
Page	14).	Basically,	what	we	would	like	to	say	here	is	that	given	the	relatively	low	AUC	and	area	under	the	
precision-recall	curve,	the	predictive	performance	of	PRS	needs	to	be	further	improved	to	increase	its	clinical	
value.	
	
-	The	author	mention	that	they	typically	explain	only	a	small	portion	of	trait	heritability.	A	recent	paper	claims	
that	it	managed	to	explain	all	of	the	heritability	of	human	height	via	Lasso	[3].	How	do	the	authors	explain	this	
discrepancy?	
	
--	First,	when	we	say	PRS	explains	only	a	small	portion	of	trait	heritability,	we	referred	to	heritability	estimated	
by	twin	studies.	As	suggested	by	another	reviewer,	we	now	provide	SNP	heritability	for	each	disease	and	trait	
estimated	using	GWAS	summary	statistics	and	LD	score	regression	in	Supplementary	Table	14.	It	can	be	seen	
that	PRS	predictors	can	explain	a	much	larger	portion	of	common-SNP	heritability.	Second,	the	prediction	
accuracy	of	human	height	reported	in	Lello	et	al.	may	be	over-estimated	for	a	couple	of	reasons:	(1)	The	
authors	reported	the	maximum	correlation	between	the	true	and	predicted	height	in	the	testing	set	by	varying	
the	regularization	parameter	in	LASSO,	while	in	principle	the	regularization	parameter	should	be	estimated	
within	the	training	set	(e.g.,	via	a	folded	cross-validation)	and	fixed	when	assessing	predictive	performance	in	
the	testing	set.	Therefore,	the	high	prediction	accuracy	is	likely	to	be	a	result	of	overfitting.	(2)	Both	training	
and	testing	sets	are	UK	Biobank	participants,	and	LASSO	was	applied	to	individual-level	data.	Highly	
homogeneous	training	and	testing	data	improves	predictive	performance,	and	overfitting	the	training	data	
may	increase	prediction	accuracy.	In	fact,	as	shown	in	their	out-of-sample	prediction	example,	when	the	
LASSO	predictor	was	trained	on	UK	Biobank	participants	and	applied	to	the	Atherosclerosis	Risk	in	
Communities	Study	(ARIC),	the	correlation	between	the	true	and	predicted	height	dropped	to	0.536,	which	
corresponds	to	an	R^2<0.3	and	is	comparable	to	our	results.	We	further	note	that	frequentist	LASSO	has	a	
Bayesian	counterpart	that	can	be	represented	as	continuous	shrinkage	priors	and	posterior	mode	inferences	
(see	discussion	on	Page	13).	Therefore,	our	framework	subsumes	LASSO	as	a	special	case	and	enables	the	
application	of	LASSO	procedure	to	GWAS	summary	statistics.	
	



-	The	authors	used	a	different	number	of	MCMC	iterations	(and	burn-in	iterations)	in	the	simulations	and	the	
real	data	results.	Can	they	provide	some	guidelines	about	choosing	these	parameters?	
	
--	In	general,	using	more	MCMC	iterations	improves	the	mixing	and	convergence	of	the	Markov	chain.	
Therefore,	we	suggest	running	a	longer	Markov	chain	(e.g.,	10,000	iterations)	in	practice	when	time	and	
computational	resources	permit.	However,	we	also	found	in	simulation	studies	that	the	Gibbs	sampler	usually	
attains	reasonable	convergence	after	1,000	MCMC	iterations	and	produces	prediction	accuracy	close	to	what	
can	be	achieved	by	much	longer	MCMC	runs.	Therefore,	to	reduce	computational	cost	we	used	1,000	
iterations	in	simulations.	We	have	made	this	clearer	in	the	revised	manuscript	(see	Page	18).	
	
-	Top	of	page	9:	"The	relative	improvement	in	prediction	accuracy":	Please	specify	the	exact	accuracy	measure	
you	used.	
	
--	We	have	clarified	the	definition	of	relative	improvement	in	the	Methods	section	(see	Page	23).	Specifically,	
the	relative	increase/decrease	in	R^2	of	a	polygenic	prediction	method	A	compared	to	B	is	defined	as	
(𝑅7" − 𝑅8")/𝑅8" .	
	
Even	more	minor	concerns	
	
-	Page	8	above	Table	1:	"for	which	external	large-scale	GWAS	summary	statistics	are	publicly	available":	I	
found	this	sentence	confusing	at	first,	because	I	thought	this	described	PBK	in	general.	
	
--	We	have	split	and	rephrased	this	sentence	as	“Large-scale	GWAS	summary	statistics	for	each	disease	and	
trait	were	downloaded	from	public	domains	(Table	1	and	Supplementary	Table	13)”.	
	
-	I	would	replace	the	"&"	in	the	headers	of	Table	1	with	a	set-intersection	sign?	
	
--	We	have	replaced	“&”	with	a	set-intersection	sign	in	Table	1.	
	
-	Table	1:	I	assume	HM3	is	Hapmap3?	This	isn't	mentioned	in	the	caption.	
	
--	Yes.	We	have	spelled	this	out	in	the	caption.	
	
-	Table	1	caption	should	state	what	was	the	MAF	cutoff.	
	
--	We	have	added	MAF	cutoff	information	in	the	caption.	
	
-	Why	is	ref.	59	(from	2009)	used	for	Minimac3?	
	
--	We	have	removed	this	incorrect	reference.	Thanks	for	catching	this.	
	
[1]	Benner,	Christian,	et	al.	"Prospects	of	fine-mapping	trait-associated	genomic	regions	by	using	summary	



statistics	from	genome-wide	association	studies."	The	American	Journal	of	Human	Genetics	101.4	(2017):	539-
551.	
	
[2]	Lee,	Sang	Hong,	et	al.	"Estimating	missing	heritability	for	disease	from	genome-wide	association	studies."	
The	American	Journal	of	Human	Genetics	88.3	(2011):	294-305.	
	
[3]	Lello,	Louis,	et	al.	"Accurate	genomic	prediction	of	human	height."	Genetics	210.2	(2018):	477-497.	
	



Reviewer #1 (Remarks to the Author):  

 

The authors have addressed most of my concerns and the manuscript has been significantly 

improved.  

 

I have a minor comment. The authors mentioned that they couldn’t exclude the possibility of 

overlapping samples between the GWAS and the Partners Biobank data, which should be mentioned 

as a limitation of the study in Discussion.  

 

 

 

 

 

Reviewer #3 (Remarks to the Author):  

 

I thank the authors for their revision and their clarification. I am happy with the manuscript and have 

no further comments.  

 

Signed: Omer Weissbrod 
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We	thank	all	the	reviewers	for	supporting	the	publication	of	this	manuscript.	Below,	we	provide	a	point-by-
point	response	to	outstanding	issues	raised	by	the	reviewers.	Our	response	is	preceded	by	a	double-dash	(--)	
and	rendered	in	a	blue	typeface.	
	
	
Reviewer	#1	(Remarks	to	the	Author):	
	
The	authors	have	addressed	most	of	my	concerns	and	the	manuscript	has	been	significantly	improved.		
	
I	have	a	minor	comment.	The	authors	mentioned	that	they	couldn’t	exclude	the	possibility	of	overlapping	
samples	between	the	GWAS	and	the	Partners	Biobank	data,	which	should	be	mentioned	as	a	limitation	of	the	
study	in	Discussion.			
	
--	Thanks	for	the	suggestion.	We	have	discussed	the	potential	impact	of	sample	overlap	between	the	GWAS	
samples	and	the	Partners	Biobank	sample	in	the	Methods	section	(see	the	first	paragraph	on	Page	19).	
	
	
Reviewer	#3	(Remarks	to	the	Author):	
	
I	thank	the	authors	for	their	revision	and	their	clarification.	I	am	happy	with	the	manuscript	and	have	no	
further	comments.	
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