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Plasmids 

pOM168 was constructed by cloning a PCR fragment containing the sequence encoding residues 102-

753 of PH0952 amplified from the Pyrococcus horikoshii OT3 chromosome between the XbaI and KpnI 

sites of pKYB1, so as to yield the following sequence between these two sites. 

 XbaI                                   NcoI                                    KpnI          

TCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGGCCCCT-PH0952-AACTTTAAGTGCTTTGCCAAGGGTACC 

                                          M  A  P ........ N  F  K  C  F  A  K  G  T  

                                            102                 753 1  2  3  4  5  6 

                                             <   PH0952 sequence  >< Sce VMA1 intein gene 
                                                                         sequence 

  
pOM258 is a derivative of pOM257 (16): like this plasmid it contains a PKAB-TTGG-malT fragment cloned 

between the EcoRI and BamHI sites of pJM241, but without the silent SacI site at +21 of the malT 

sequence and with a KpnI silent site at +2478. 

pOM260 is a derivative of pOM215 (60) which contains a PKAB-TTCT-malT fragment cloned between the 

EcoRI and BamHI sites of pJM241 without the SacI silent site at 2381 but with a KpnI silent site at 

+2478 which makes the sequence of the malT gene identical to that of pOM258. 

 

Growth media 

Growth media for purification of PH0952∆N and selenomethionine substituted PH0952∆N contained 

100 µg/mL kanamycine and 10 µg/mL chloramphenicol. 

The medium used for production of the selenomethionine substituted PH0952∆N contained 50 mM 

Na2HPO4, 50mM KH2PO4, 25 mM (NH4)2SO4, 2 mM MgSO4, 0.2x trace metals (19), 0.5% glucose, 10 

µg/mL L-methionine, 100 µg/mL L-selenomethionine, 1.5 mM of 17 amino-acids (no C, M, Y), 100 nM 

vitamin B12 and 1 mM IPTG.  
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Figure S1: Maximum likelihood phylogenetic analysis of STAND ATPases. The tree contains representative 
members from di�erent families of STAND proteins. Numbers at the branch points represent the 
Bayesian-like transformation of aLRT (aBayes) local support values. The scale bar represents the number of 
substitutions per site. The tree is rooted in the branch leading to the MNS clade (1). Searches against 
expanded genomic databases indicate that PH0952-like ATPases are more broadly distributed in archaeal 
lineages than anticipated, particularly in Euryarchaeota, but also in members of the phylum Crenarchaeo-
ta and various recently discovered uncultivated archaea. Contrary to previous hypotheses of a horizontal 
transfer of PH0952 into archaea from bacteria or eukaryotes (1,38), our analysis (see also Fig. 1C) suggests 
that PH0952-like ATPases do not fall into any of the other previously established families of STAND 
ATPases, but rather represent a distinct family within the STAND superfamily.
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Figure S2:  The ADP binding site of PH0952. The protein is shown in cartoon representation and the 
ADP molecule is depicted in sticks. The original SAD-phased, density modi�ed electron density map 
(blue mesh) is contoured at 1.5 σ.
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Figure S3: Interactions between consecutive domains in the NOD-arm module of STAND proteins. 
The NOD-arm regions of PH0952/APAF1 (left) and NLRC4/NOD2 (right) were superimposed through 
their P-loop regions and put side by side in the same orientation, in two perpendicular views (top 
and bottom). Relevant secondary structure elements are indicated, either once when the superim-
position is good, or twice when the two structures do not overlap.



MCMLEPSKIFKALSNPINLKILTLLRSSSFHPRELARILNRDETDISRRL 50

RQLERLGLIKGKWERVDGKNVRVYSLKVSEIRIFMHPTKLEVKVGENESY 100

PNAYWYNVTGLEDFKYFAWQLGLFLSSIGFEDLLEYLRGGGNNENDIFKL 200

LGNEGVTYVNLKGLNPEEAYSLAREKEKSMTPEEFAKLYKLTFGHPLMLN 300

IKFLYDRNPFVPLYSLMKKGLIEKKGEKYFVHDMVREFVREVSNQEEKEV 400

FPRMYQRLLMEVEDNPYAKIEIAIIEVQRGLFEKAIKLLKEAEPYVDEFF 500

YEYYKENSREALKSALKELEIIRKIGDPEKEGLVLLHVGDIYLHMGNYEK 600

YFLMIRNYRRATDAMAYGSVSYIATKNLEKAEKFAKEMIRIAQSTDYPLA 700

EAPIEWESSPRVEVFVGRKRELSIIRNAKGVVVIYGIAGIGKTSLAAKAF 150

LILESSEILATGKDTVFNFLFEEVYQMLNEEEKDLLSILSLFDEPIEYEG 350

YLRHVNFLLKSKTPINFLRAFKYAIKVGSSELIRNLVELRVKEFYRIIVD 450

KCEIYSWLADAYMELENLEKAERYLKKTKEIVEKINDMYAWFSYYAEKTK 550

GISYYQEALKMAKAYGIKFLEHISYMELAKGYYQLKLYEKASEYSEKAAN 650

WAGYIFLAAVDFLKGDDWREDYNLGKAHLKEYPWLFEAVLDELKKVFDLS 750

NFK 753

ITEGIEKTGAIIIIDDFHKFQDEKVNYLLSYLAPRIKKGKVIITTRIRPN 250
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Fig. S4 : Secondary structure of the PH0952 derived from the atomic coordinates 
determined in this work. The colour code for domains is as in Fig. 1. The dashed line 
indicates the unresolved region between the HD and the WHD.



  No:  Chain   Z    rmsd lali nres  %id PDB  Description 
   1:  3q78-A  7.3  3.2   90   312   10 PDB  MOLECULE: FARNESYLTRANSFERASE ALPHA SUBUNIT;                          
   2:  5jz6-A  7.2  3.4   89   429   15 PDB  MOLECULE: ASPARTYL/ASPARAGINYL BETA-HYDROXYLASE;                      
   3:  5jjt-B  7.2  3.1   90   479    7 PDB  MOLECULE: SERINE/THREONINE-PROTEIN PHOSPHATASE 5;                     
   4:  3sfy-A  7.1  3.2   90   315   10 PDB  MOLECULE: CRYPTOCOCCUS NEOFORMANS PROTEIN FARNESYLTRANSFERA           
   5:  3q79-A  7.1  3.3   90   314   10 PDB  MOLECULE: FARNESYLTRANSFERASE ALPHA SUBUNIT;                          
   6:  3q75-A  7.1  3.2   90   315   10 PDB  MOLECULE: FARNESYLTRANSFERASE ALPHA SUBUNIT;                          
   7:  1n4s-C  7.1  3.1   89   314   11 PDB  MOLECULE: PROTEIN FARNESYLTRANSFERASE/GERANYLGERANYLTRANSFE           
   8:  3q73-A  7.1  3.3   90   316   10 PDB  MOLECULE: FARNESYLTRANSFERASE, ALPHA SUBUNIT;                         
   9:  3q7f-A  7.1  3.3   90   313   10 PDB  MOLECULE: FARNESYLTRANSFERASE ALPHA SUBUNIT;                          
  10:  5jjt-A  7.0  3.1   88   471    7 PDB  MOLECULE: SERINE/THREONINE-PROTEIN PHOSPHATASE 5;                     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. S5 : First 10 structural homologs found by a Dali search (october 24, 2017) seeded with the coordinates of the PH0952 arm. Headers in red indicate TPR proteins. The 
other proteins retrieved have a farnesyl-transferase a-subunit fold, which differs from TPR repeats essentially by the twist (i.e. the way consecutive two-helix bundles are 
spatially related to each other, (44)) 
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Fig. S6: Comparison of the 4 STAND arm domains for which a crystal
structure is available. Helices are rainbow colored from blue (�rst helix) to red (6th 
helix). Possible insertions are represented in grey.
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Fig. S7: A. Schematic representation of a typical TPR fold wiewed along the helix longitudinal axis (helices 
are represented by circles and turns by dashes). ABA (red) and BAB (blue) angles are shown. B,C. Superim-
position of groups of three consecutive helices from the arm (α15 to α20) and as a comparison, from the 
TPR sensor domain of PH0952 (α21 to α24). B. ABA angles. C. BAB angles.
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Fig. S8: Opposite charge complementarities in the MalT homology model (top) and in 
the PH0952 X-ray structure (bottom). Electrostatic potential surfaces are shown after 
splitting the structure in two at the arm sensor junction. The PH0952 sensor-NBD 
interface patches are contoured and a representative residue is indicated. 
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Fig. S9: The cysteine mutations do not a�ect MalT activation. MalTM96C, MalTH562C and 
MalTM96C-H562C display inducer dependent multimerization as MalT in reducing conditions. 
Proteins (10 µM) were preincubated for 30 min in a Tris-HCl bu�er (50 mM, pH 8.0) contai-
ning 10% sucrose, 0.1 M KCl, 0.033 M KI, 0.017 mM K3 citrate,10 mM Mg acetate, 0.1 mM 
EDTA, 2 mM dithiothreitol, 0.18 mM ATP. They were injected on a superdex 200 column 
equilibrated with a Tris-HCl bu�er (50 mM, pH 8.0) containing 0.033 M K3 citrate, 10 mM Mg 
acetate, 0.1 mM EDTA, 1 mM dithiothreitol, 0.1 mM ATP. Preincubation and running bu�er 
contained maltotriose 1 mM only in the experiments displayed by solid curves.
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Fig. S10: MalT, MalTM96C, MalTH562C and MalTM96C-H562C all migrate at the same level in the presence of DTT. The gel used to 
generate Fig. 5a is shown in its entirety to enable comparison of the migrations of the four di�erent proteins in reducing 
conditions.  +DTT lanes are highlighted for clarity.  1, 2 : MalT, 3: MalTM96C, 4: MalTH562C,5: MalTM96C,H562C. Molecular weights of 
the markers are indicated in kDa. 
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Fig. S11: The M96T mutation does not interfere with the maltotriose-induced conformatio-
nal changes undergone by MalT or MalTR171E. Limited proteolysis of MalT and variants by 
proteinase K in ADP and ATP + maltotriose. The same increasing K/MalT (w/w) ratios (0, 
1:533, 1:267, 1:133) were used for all eight experiments. Green arrows point at the 50 kDa 
and 45-48 kDa fragments speci�c of the resting form. Red arrows points at the 66 kDa and 
25 kDa fragments speci�c of the activated form. A.  MalT, MalTM96T. B.  MalTR171E, MalTM96T,R171E.
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Fig. S12: Calibration curves for the columns used in the experiments of Fig. 6A (open 
circles) and in those of Fig. 6B  (closed circles). Markers (thyroglobulin, 669 kDa, apoferritin, 
443 kDa, amylase, 200kDa, bovine serum albumin, 66 kDa, cytochrome C, 12.4 kDa) were 
injected on the columns equilibrated in Tris-HCl bu�er (50 mM, pH 8.0) containing 10% 
sucrose, 0.033 M K3 citrate, 10 mM Mg acetate, 0.1 mM EDTA, 1 mM dithiothreitol and 0.1 
mM ADP. Monomeric MalT-ADP run at 10 µM on the Fig. 6B column eluted at 1.484 mL. 
Theoretical elution volumes for a globular protein of the same molecular weight as MalT 
calculated from the calibration curves are 1.40 mL (Fig. 6A column) and 1.47 mL (Fig. 6B 
column).

100

1000

10
1.0

 Fig. 6B

 Fig. 6A

1.2 1.4 1.6 1.8 2.0

Ve (mL)

M
W

 (k
D

a)


	SupplementaryM&M
	Fig S1.ai
	Fig S2.ai
	Fig S3.ai
	Fig S4.ai
	Fig S5
	Fig S6.ai
	Fig S7.ai
	Fig S8.ai
	Fig S9.ai
	Fig S10.ai
	Fig S11.ai
	Fig S12.ai

