Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2019.

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.201802109

Ammonia Detection Methods in Photocatalytic and Electrocatalytic Experiments: How to Improve the Reliability of NH₃ Production Rates?

Yunxuan Zhao, Run Shi, Xuanang Bian, Chao Zhou, Yufei Zhao, Shuai Zhang, Fan Wu, Geoffrey I. N. Waterhouse, Li-Zhu Wu, Chen-Ho Tung, and Tierui Zhang* Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany,

2019.

Supporting Information

Ammonia Detection Methods in Photocatalytic and Electrocatalytic Experiments: How to Improve the Reliability of NH₃ Production Rates?

Yunxuan Zhao, Run Shi, Xuanang Bian, Chao Zhou, Yufei Zhao, Shuai Zhang, Fan Wu, Geoffrey I.N. Waterhouse, Li-Zhu Wu, Chen-Ho Tung and Tierui Zhang*

Materials:

Synthesis of LDH materials:

The LDHs nanosheets were prepared using a co-precipitation method.^[1] The method used a modified colloid mill to achieve rapid mixing and nucleation processes, followed by a separate hydrothermal aging step at 120 °C for 12 h.

Synthesis of C-based materials:

C-based materials were synthesized using a microwave method.^[2] Typically, 100 mg of tungstic acid, 2 g of glucose and 10 mL of PEG-200 were dissolved into 3 mL of distilled water to form a mixed solution. The mixed solution was then heated in 300 W microwave for 2.5 min. The precipitates formed were filtered, washed with water and ethanol, and finally dried at 60 °C for 24 h.

Synthesis of N-doped TiO₂:

Commercial TiO₂ (P25) (300 mg) was placed in an alumina tube furnace and then heated to 500 °C in an atmosphere of flowing NH_3 (30 mL min⁻¹) at a heating rate of 5 °C min⁻¹. After ammonolysis at 500 °C for 3 h, the sample was cooled to room temperature, and the product was collected.

Synthesis of N-doped Carbon:

Zn, Co-ZIF^[3] (400 mg) was placed in an alumina tube furnace and then heated to 900 $^{\circ}$ C in an atmosphere of flowing NH₃ (30 mL min⁻¹) at a heating rate of 5 $^{\circ}$ C min⁻¹. After ammonolysis at 900 $^{\circ}$ C for 2 h, the sample was cooled to room temperature and the product was collected.

Synthesis of Ni₃N and Ni₃FeN:

Commercial NiO (300 mg) or NiFe-LDH (300 mg) was placed in an alumina tube furnace and then heated to 500 $^{\circ}$ C in an atmosphere of flowing NH₃ (30 mL min⁻¹) at a heating rate of 5 $^{\circ}$ C min⁻¹. After ammonolysis at 500 $^{\circ}$ C for 4 h, samples were cooled to room temperature and the product was collected.

Synthesis of g-C₃N₄:

g-C₃N₄ was obtained using a standard thermal polymerization method.^[4]

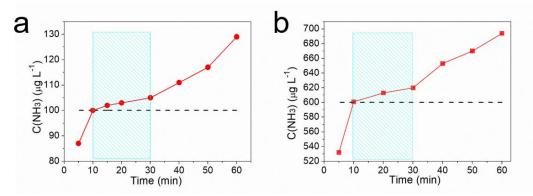
Preparation of ammonia solutions with different pH:

Ammonia solutions with different pH were prepared by adding an appropriate amount of 28 wt.%. NH₃ to a specific volume of water, followed by pH adjustment with either aqueous H₂SO₄ (0.05 mol L⁻¹) or aqueous NaOH (1 mol L⁻¹). The final concentration of ammonia in all solutions was 1000 μ g L⁻¹.

NH₃ production and control experiments:

A series of experiments were performed under UV-visible light irradiation (200-800 nm) supplied by a 300 W Xe lamp (CEL-HXF 300). Typically, photocatalyst or potential interferant (1 mmol) were dispersed in 100 mL of ultrapure water in a 150 mL quartz reactor. The reactor was equipped with a circulating water outer jacket in order to maintain at a constant temperature of 25 °C. The photocatalyst suspension or solutions containing the

possible interferants were stirred continuously in the dark whilst either high-purity N_2 or high purity Ar was bubbled through the suspension at a flow rate of 60 mL min⁻¹ for 10 min. The reactor was then irradiated using the 300 W Xe lamp under either a N_2 or Ar flow (100 mL min⁻¹). At regular intervals, 3 mL aliquots of the reaction solution were collected using a syringe, then immediately centrifuged to remove any solid material. The concentrations of NH₃ was determined by ion chromatography (930 compact IC Flex, Metrohm). Errors in the data were expressed as follows:


The relative error: $\text{Er} = \frac{X-M}{M} \times 100\%$, where X is the measured value and M is the true value.

The absolute error: Ea = X - M, where X is the measured value and M is the true value.

The faradaic efficiency was calculated according to the following equation:^[5]

The faradaic efficiency = $3 \times F \times [NH_3] \times V/(17 \times Q) \times 100\%$

where $[NH_3]$ is the measured NH_3 concentration; V is the volume of the cathodic reaction solution for NH_3 collection; t is the potential applied time; A is the geometric area; m is the loaded mass of catalyst; F is the Faraday constant; and Q is the quantity of applied electricity.

Figure S1. Time course of detected NH_3 by Nessler's reagents method for a certain concentration of aqueous ammonium solution (a): 100 µg L⁻¹ and (b): 600 µg L⁻¹.

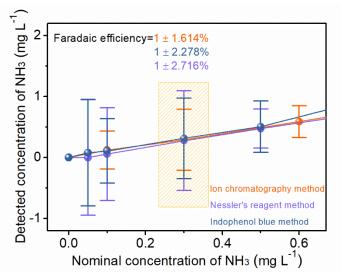


Figure S2. The Faradaic efficiency based on different methods of ammonia quantification.

For a Faradaic efficiency of 1%, the NH_3 yield is estimated to be about 300 µg L⁻¹. Figure S2 shows that the different methods of ammonia quantification afford different Faradaic efficiencies: 1.614% for ion chromatography method, 2.278% for the indophenol blue method and 2.716% for Nessler's reagent method. Thus, longer reaction time are recommended, thereby allowing more accurate ammonia quantification.

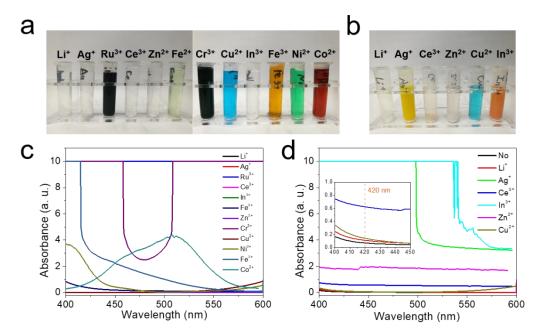
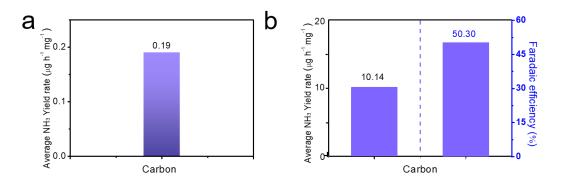

Sample	Absorbance	Concentration ^{<i>a</i>} $(\mu g L^{-1})$
No metal ions ^{β}	0-0.001	0
$\mathrm{Ag}^{+\gamma}$	0.001	0
Ru ³⁺	0.020	126
Ce ³⁺	0.001	0
In ³⁺	0.005	27
Fe ²⁺	0.001	0
Zn^{2+}	0.001	0
Cr ³⁺	0.001	0
Cu ²⁺	0.001	0
Ni ²⁺	0.001	0
Fe ³⁺ Co ²⁺	0.003	13
Co ²⁺	0.001	0

Table S1 The effect of different metal ions on ammonia detection by the UV method withoutNessler's reagent under acidic conditions.

 α : Y=0.0001504X+0.01293, where Y is the apparent NH₃ concentration in mg L⁻¹ and X is the absorbance value.


 β : Acid solution (pH 1) without any metal ions and Nessler's reagent.

 γ : Acidic solution (pH 1) containing different metal ions (0.01 mmol L⁻¹) without adding Nessler's reagent and ammonia.

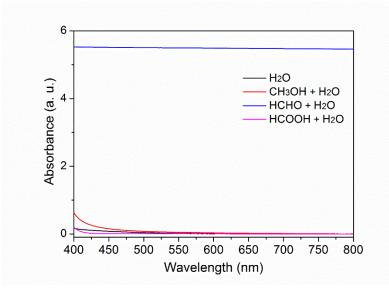
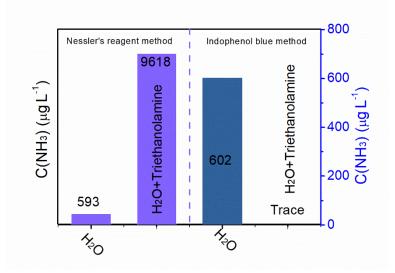
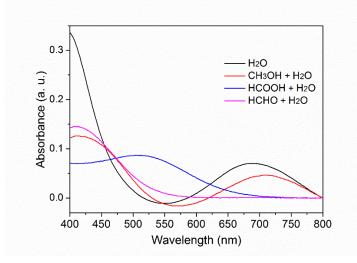


Figure S3. Photographs of ammonia solutions containing high metal ion concentrations (0.5 M) before (a) and after (b) adding Nessler's reagent. Corresponding UV-vis absorption spectra before (c) and after (d) adding Nessler's reagent.


The UV-vis absorption spectra of aqueous solution containing certain metal ions (i.e. 0.5 M solutions of Ru^{3+} , $Fe^{2/3+}$, Cr^{3+} , Ni^{2+} and Co^{2+}) without Nessler's reagent show obvious absorption at 420 nm. Hence, these metal ions at high concentration could interfere with the accurate quantification of NH₃. Further, adding Nessler's reagent to solutions containing other metal ions in high concentration (i.e. 0.5 M solutions of Li⁺, Ag⁺, Ce³⁺, In³⁺, Zn²⁺ and Cu²⁺) caused some absorption at 420 nm, especially solutions contained Ag⁺, Ce³⁺, In³⁺ or Zn²⁺ for which a precipitate formed, leading to cloudiness and therefore interference detection. Although solutions of Li⁺ and Cu²⁺ ions did not form a precipitate, these metal ions still interfere with ammonia detection.


Figure S4. (a) Ammonia evolution rate for carbon materials (Ketjenblack®EC-300J) soaked in 0.05 M H_2SO_4 for 40 min under ambient conditions. (b) Ammonia evolution rate and Faradaic efficiency for carbon materials at -0.2 V versus RHE in Ar atmosphere for 40 min.

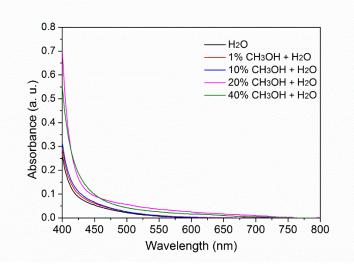

Figure S5. UV-vis absorbance spectra for ammonia solutions at the same concentration (600 $\mu g L^{-1}$) in the presence of different organic solvents detected by Nessler's reagent method.

Figure S6. The apparent concentration of ammonia detected in the presence of triethanolamine. The ammonia concentration was 600 μ g L⁻¹ in all experiments. The sacrificial agent concentration was 40 vol.%.

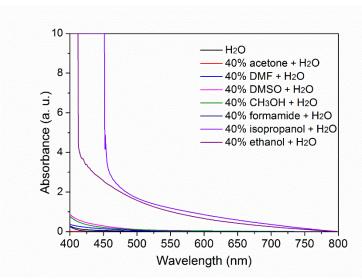

Figure S7. UV-vis absorbance spectra for ammonia solutions of the same concentration (600 μ g L⁻¹) containing different organic solvents detected by the indophenol blue method.

Figure S8. UV-vis absorption spectra for ammonia solutions of the same concentration (600 μ g L⁻¹) containing different concentrations of methanol detected by the Nessler's reagent method.

Figure S9. Photograph of various solutions using the Nessler's reagent method.

Figure S10. UV-vis absorbance spectra for ammonia solutions of the same concentration (600 μ g L⁻¹) containing different organic solvents detected using the Nessler's reagent method.

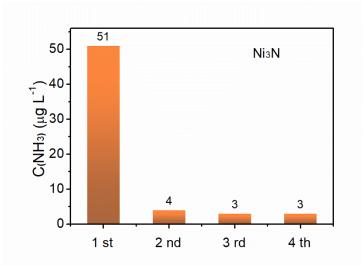
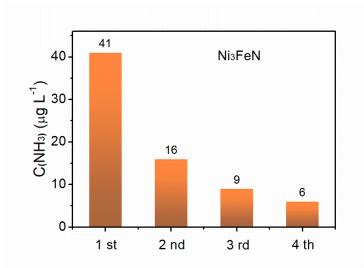


Figure S11. Ammonia concentration of aqueous solutions containing Ni_3N before and after washing with ultrapure water.



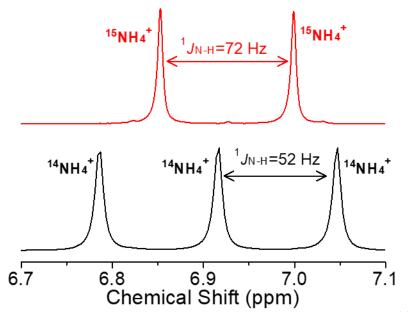


Figure S12. Ammonia concentration of aqueous solutions containing Ni_3FeN before and after washing with ultrapure water.

Figure S13. Ammonia concentration of aqueous solutions containing N-doped Carbon before and after washing with ultrapure water.

Figure S14. ¹H NMR analysis of 20% DMSO-d₆ solutions containing $(^{15}NH_4)_2SO_4$ and $^{14}NH_4Cl$ (1 mg L⁻¹).

The origin of nitrogen in photocatalytic and electrocatalytic experiments can be convincingly established using isotopically labelled ${}^{15}N_2$, with the ${}^{15}NH_4^+$ product detected with high sensitivity by ${}^{1}H$ NMR or mass-spectroscopy. Due to the presence of water, FT-IR detection of ${}^{15}NH_4^+$ is challenging. It is worth noting that there is low level contamination from isotope labeled gases due to the special synthetic process of ${}^{15}N_2$, which should be of particular concern.

Due to the typically low concentrations of ${}^{15}\text{NH}_4^+$ in the reaction solution and the high cost of ${}^{15}\text{N}_2$, the sensitivity of the testing equipment to ${}^{15}\text{NH}_4^+$ should first be ascertained. It is recommended that $({}^{15}\text{NH}_4)_2\text{SO}_4$ and ${}^{14}\text{NH}_4\text{Cl}$ are obtained from a commercial supplier, such as Aladdin, as reference materials. Aquoeus solutions of ammonia containing specific concentrations of ${}^{15}\text{NH}_4^+$ and ${}^{14}\text{NH}_4^+$ can then be prepared and used to test the sensitivity of the instrument and develop NH_4^+ quantification protocols. Figure S14 shows 1H NMR spectra for 1 mg L⁻¹ solutions of ${}^{15}\text{NH}_4^+$ and ${}^{14}\text{NH}_4^+$. The data show that ${}^{14}\text{NH}_4^+$ produces ${}^{14}\text{N}$ a triplet in the region near 6.8~7.05 ppm, whereas ${}^{15}\text{NH}_4^+$ appears as a doublet in the same region.

For NH_3 production via electrocatalysis, the reactor, electrode and catalyst (if used for cycling tests) require repeated cleaning with ultra-pure water or acid to remove residual ammonia before commencing a test run. Then, ${}^{14}N_2$ should be used to screen catalysts and optimize reaction conditions. If the amount of ammonia denerated during the reaction is sufficient to exceed the detection limit of ${}^{1}H$ NMR, then that method should be used to confirm ${}^{14}NH_4^+$ formation. Finally, ${}^{14}N_2$ should be replaced with ${}^{15}N_2$ and the electrocatalytic

reaction perfromed under the same reaction conditions, with the products again analyzed by 1 H NMR to confirm that N₂ was the origin of the NH₄⁺ formed.

References

- [1] Y. Zhao, Y. Zhao, G. I. Waterhouse, L. Zheng, X. Cao, F. Teng, L. Z. Wu, C. H. Tung, D. O'Hare, T. Zhang, *Adv. Mater.* **2017**, *29*, 1703828.
- [2] X. Li, W. Wang, D. Jiang, S. Sun, L. Zhang, X. Sun, *Chem. Eur. J.* **2016**, *22*, 13819.
- [3] Q. Wang, L. Shang, R. Shi, X. Zhang, G. I. N. Waterhouse, L.-Z. Wu, C.-H. Tung, T. Zhang, *Nano Energy* **2017**, *40*, 382.
- [4] H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao, C. Zhou, I. N. Waterhouse Geoffrey, L.-Z. Wu, C.-H. Tung, T. Zhang, *Adv. Mater.* **2017**, *29*, 1605148.
- [5] M.-M. Shi, D. Bao, B.-R. Wulan, Y.-H. Li, Y.-F. Zhang, J.-M. Yan, Q. Jiang, *Adv. Mater.* **2017**, *29*, 1606550.