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1 The MFMR model for latent multitrait subtypes
We write the standard, univariate interaction model as

yi|Zi,, α, β, σ2 ind∼
Q∑
q=1

Xiqαq +
S∑
s=1

K∑
k=1

(Gis ∗ Zik)βks +
K∑
k=1

Zikγk +N
(
0, σ2) (1)

where:

• y ∈ RN is a single quantitative phenotype.

• Z is an N×K matrix of subtype weights. In our context, rows of Z are vectors of proportions,
meaning they sum to one and have non-negative entries.

• G ∈ RN×S is a matrix of S genotype vectors. Going forward, we include an intercept in G to
model the main effect of Z in X and drop the Zγ term.

– Although we primarily seek genetic heterogeneity, G can include any covariates.
– In practice, only large-effect covariates significantly impact the inferred subtypes, hence

we imagine nongenetic variables will be most useful in most human studies.
– We typically imagine G to have no more than tens of columns.

• X contains all other covariates, which have the same effect regardless of subtype.

This model is equivalent to GxE when Z is interpreted as an environment (though environmental
variables do not generally have rows in the probability simplex). An ordinary G + E model is
recovered when all the βk are equal, meaning that the effects of G are identical across subtypes.
This can be equivalently parameterized by setting all the βk to zero and including G in the covariates
X, but we find the expression in (1) more readily interpretable. For identification, we implicitly
require X and G to have distinct covariates.

(1) can be rewritten for all i as

y|Z,α, β, σ2 ∼ Xα+
S∑
s=1

K∑
k=1

(G,s ∗ Z,k)βks +N
(
0, σ2I

)
(2)

In (1), ∗ indicated scalar multiplication. In (2), ∗ indicates element-wise multiplication of the
vectors G,s and Z,k, using A,i to indicate the i-th column of an arbitrary matrix A (likewise, Ai, is
the i-th row, and Ai,, indicates a matrix slice of a three-dimensional array A).

More generally, we define ∗ as the column-wise Khatri-Rao product, which gives a simple ex-
pression for interaction between multiple subtypes and genotypes:

y|Z,α, β, σ2 ∼ Xα+ (G ∗ Z)β +N
(
0, σ2I

)
Unlike standard interaction tests, we do not assume Z is known. Rather, we assume that each

person independently draws one of K random subtypes, i.e. Zi, = ek for some k, where ek is a
vector of zeros except with a one in entry k. In other words, we assume the group memberships
are i.i.d. Categorical with unknown category probabilities p:

P (zi = k|p) = pk (3)
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We simply replace α, β and σ2 by their matrix analogues for multiple traits:

Yi,|Z,α, β,Λ
ind∼ Xi,α+ (G ∗ Z)i, β +N

(
0,Λ−1) (4)

We often write Σ = Λ−1. Our generalization to multiple traits implicitly assumes that the clusters
Z are common across traits.

2 EM algorithm to compute the MLE for MFMR
We use an expectation-maximization (EM) algorithm to maximize the likelihood of (4) after inte-
grating out z using (3). EM is standard for this type of missing data problem. In our case, EM
iterates between an E-step that approximately integrates the likelihood over z (given a current guess
for θ := {α, β,Λ}) and an M-step that maximizes the resulting approximate marginal likelihood:

Qt := −Ez|θt−1 (ll(θ|z, Y )) (E-step)
θt := arg maxQt(θ) (M-step)

In fact, we use an Expectation Conditional-Maximization (ECM) algorithm, conditionally maxi-
mizing each block of θ per-E step. ECM has the same guarantee as EM: both converge to a local
likelihood maximum [1].

2.1 Quantitative phenotypes
We assume there are no binary traits in this section. We write the matrix Mahalanobis norm w.r.t. Λ
as ‖X‖Λ := tr

(
XΛXT

)
; this reduces to the Frobenius norm when Λ = I and, more generally, rotates

and scales the columns of X before computing the Frobenius norm. The conditional distribution
for zi is Categorical, with the probability of category k given by

pik(θ) := P (zi = k|Yi,, θ) ∝ P (Yi|zi = k, α, β,Λ)P (zi = k|p)

∝ exp −1
2 ‖Yi, −Xi,α−Gi,βk,,‖2Λ · pk (5)

That is, the probability of cluster k is proportional to the likelihood of Yi, if it were in cluster k,
weighted by the overall cluster probability pk. The E step of standard Gaussian mixture models is
obtained by setting X = 0 and G = 1N .

We define ptik := pik(θt−1), where θt−1 are the parameters estimated by the previous EM
iteration. The E-step amounts to evaluating these conditional probabilities:

Qt := −Ez|θt−1 (ll(α, β,Λ, p|z, Y,G,X))
≡ −Ez|θt−1 (logP (Y |α, β,Λ, z,G,X) + logP (z|p))

≡ −N2 log |Λ|+ 1
2
∑
i

∑
k

ptik‖Yi, −Xi,α−Gi,βk,,‖2Λ −
∑
i,k

ptik log pk (6)

We use ≡ to indicate functions with identical optimizers.
The M-step for p just takes the average responsibilities per cluster: pk = 1

N

∑
i p
t
ik.
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The CM-steps for β|α immediately split over the K clusters:

Qt(βk,,|α) ≡
∑
i

ptik‖(Yi, −Xiα)−Giβk,,‖2Λ

This is minimized by regressing the X-residuals–i.e. Y −Xα–on G while using the weights ptk.
Analogously, the α update regresses G-residuals –i.e. δ̂i, := Yi, −G (

∑
k p

t
ikβk,,) –on X:

Qt(α|β) ≡
∑
k

∑
i

ptik‖ (Yi, −Gβk,,)−Xiα‖2Λ ≡ tr
([∑

i

XT
i,Xi,

]
αΛαT − 2

[∑
i

XT
i, δ̂i,

]
ΛαT

)
=⇒

α =
[
XTX

]−1
XT δ̂

Finally, the Λ update depends on the per-clusterG- andX-residuals ε̂kip := Yip−Xi,α,p−Gi,βk,p.
We define Ŝ as the weighted average of these per-cluster sample covariance matrices:

Ŝ :=
∑
k

1
N
ε̂Tk,,diag

(
pt,k
)
ε̂k,, (7)

Then the M-step for Λ is

Qt(Λ|ε̂) ≡ −N log |Λ|+ tr
(
ŜΛ
)

=⇒ Λ−1 = Ŝ (8)

We note that all of these updates take extremely simple and common forms. This means
that many penalized variants of our likelihood can be trivially solved by appealing to existing,
sophisticated third party software in the CM steps (e.g. [2, 3]). Penalizing α or β gives extremely
well studied penalized regression CM steps, and penalizing Λ gives penalized precision estimation
CM steps.

2.2 Mixed phenotypes
We now allow Y b ∈ {0, 1}N×B , a matrix of B binary phenotypes, in addition to the quantitative
phenotypes in Y ∈ RN×P . We model the binary phenotypes as truncated versions of latent,
quantitative liabilities Y l ∈ RN×B . We then use our quantitative phenotype model on the joined
observed and latent quantitative traits Y ′ :=

(
Y l : Y

)
:

Y ′i,|zi, α, β,Λ
ind∼ N

(
Xi,α+Gi,βzi,,,Λ−1)

Y bip|Y l = I{Y lip > 0}

zi|p
iid∼ Categorical(p)

I{·} is an indicator function taking value 1 if its argument is true and 0 otherwise.
As is standard in liability threshold models, the parameters α,p, β,,p and Λpp are not jointly

identified for p ∈ {1, . . . , B}: multiplying these three parameters by any constant gives an equivalent
model on Y b (formally, both Λ,p and Λp, have to be scaled by the square root of the constant). So,
WLOG, we require Λpp = 1 for p ∈ {1, . . . , B}. When only one binary trait is studied, this reduces
to the common probit regression constraint that the liability-scale noise has variance 1.
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Our EM algorithm now treats both the group memberships z and the latent phenotypes Y l as
missing data. The E-step will require the following sufficient statistics:

pik := P (zi = k|Yi,, Y bi, , θ)
µlik, := EY l

i,
|zi=k,θt,Y,Y b

(
Y li,
)
∈ RB

Σl(ik) := VY l
i,
|zi=k,θt,Y,Y b

(
Y li,
)
∈ RB×B (implicit)

Σl := 1
N

∑
ik

pikΣl(ik)

We discuss how to compute these terms in Section 2.3.
Given these sufficient statistic estimates, the Q function can be written

−Qt := Ez,Y l|θt,Y,Y b (ll(θ|Y, z))
≡ Ez,Y l|θt,Y,Y b (logP (Y |z, α, β,Λ)) + Ez|θt,Y,Y b (logP (z|p))

≡ 1
2
∑
i

Ezi,Y l
i,
|θt,Y,Y b

(
log |Λ| − ‖Y ′i, −Xi,α−Gi,βzi,,‖2Λ

)
+
∑
i

∑
k

pik log pk

≡ N log |Λ|+ 2
∑
i,k

pik log pk

−
∑
i

Ezi|θt,Y,Y b

(
‖
(
EY l

i,
|zi,θt,Y,Y b

(
Y li,
)

: Yi,
)
−Xi,α−Gi,βzi,,‖2Λ − tr

(
Λ
(

VY l
i,
|zi,θt,Y,Y b

(
Y li,
)

0
0 0

)))
≡ N log |Λ|+ 2N

∑
k

p̄k log pk −
∑
i,k

pik‖
(
µlik, : Yi,

)
−Xi,α−Gi,βk,,‖2Λ − tr

(
ΛbbΣl

)
where Λbb is the block of Λ corresponding to the binary traits.

As the M-step for p and the CM-steps for α|β and β|α depend only on the first (conditional)
moment of Y l, these steps are identical to the above section, except Y is replaced by the conditional
expectation of Y ′ (see Section 2.3 for details).

The M-step for Λ also involves replacing Y with the conditional expectation of Y ′ inside a
residual, this time to compute the sample covariance Ŝ (the variance of the expected liabilities). Λ
also depends on second moments of Y l (the expectation of the variance of the liabilities):

Ŝ :=
∑
k

1
N
ε̂Tk,,diag

(
pt,k
)
ε̂k,, +

(
Σb 0
0 0

)

As before, Ŝ is the weighted average of K sample covariance matrices, but now the sample covari-
ances are penalized to account for uncertainty in Y l. Using the new Ŝ, equation (8) still provides
the Q function for Λ.

Unlike before, it is not true that Λ = Ŝ−1 because of the constraint that Λpp = 1 for binary
traits p. In fact, for computational reasons discussed below, we choose to also constrain Λpq = 0
for binary traits q 6= p (when B = 1, this constraint is vacuous). Surprisingly, this constrained
optimization problem for Λ has a simple, analytic solution, given in Section 2.3, and it turns out
that the constrained estimate Λ does not (directly) depend on Σb.
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2.3 Computing sufficient statistics with mixed phenotypes
The above M steps require the responsibilities, pik, and the mean and variance of Y l in each
cluster. Without binary traits, the Y l terms are irrelevant and the pik have an analytic expression.
Otherwise, these quantities all involve potentially complicated Gaussian integrals.

Assume now that Y li, is consistent with the sign pattern indicated by Y bi,–otherwise the likelihood
is zero. Write the Gaussian density function with covariance matrix Σ and mean 0 evaluated at
x given x′ by φ(x,Σ|x′). Then, the conditional distribution for Y li,|θ, zi, independently for all i, is
given by

P
(
Y li,|θ, zi, Yi,, Y bi,

)
≡ P

(
Y bi, |θ, zi, Yi,, Y li,

)
P
(
Y li,|θ, zi, Yi,

)
≡ φ

(
Y ′i,, Xi,α+Gi,βzi,,,Λ|Yi,

)
· I{Y li, ≡ Y bi,l} =⇒

Y li,|θ, zi = k, Y, Y b =: TNY b
i,

(
µ0
ik,,Σ0)

µ0
ik, := Xi,α,b +Gi,βk,,b + Σb,q [Σq,q]−1 (Yi, −Xi,α,q −Gi,βk,,q)T (9)

Σ0 := (Λb,b)−1 (10)

By TN, we mean a truncated normal distribution supported only on the orthant OY b
i,

, the orthant
indicated by the binary values in Y bi, . In particular, this means that

µik, := E
(
Y li,|Y bi, , zi = k, θ

)
= E

(
T N Y b

i,

(
µ0
ik,,Σ0)) (11)

Σik := V
(
Y li,|Y bi, , zi = k, θ

)
= V

(
T N Y b

i,

(
µ0
ik,,Σ0)) (12)

µ0
ik, 6= µik, in general: the former is the expectation for Y li, given Y , zi = k and θ, but not conditional

on the orthant indicator. For example, in the case B = 1 and Y bi = 1, it could be that µ0
ik < 0,

but µik < 0 will never hold because, conditional on Y b, it is almost certain that Y l is non-negative.
Conversely, if µ0

ik � 0 and Y bi = 1, µ0
ik ≈ µik because conditioning on Y li > 0 adds little information

and thus has minimal impact on the expectation.
zi is still Categorical, but now the analogue of (5) integrates Y li, over its domain OY b

i,
:

pik(θ) : = P (zi = k|Yi,, Y bi, , θ)
∝ P (Yi,, Y bi, |θ)P (zi = k|θ)

=
∫
Y l

i,
∈O

Y b
i,

P (Yi,|zi = k, θ)P (Y li,|Yi,, zi = k, θ)pk

∝ pkP (Yi,|zi = k, θ)
∫
Y l

i
∈O

Y b
i,

P (Y li,|Yi, zi = k, θ)

≡ pk︸︷︷︸
Prior

×φ (Yi,, Xi,α,−b +Gi,βk,,−b,Σ−b,−b)︸ ︷︷ ︸
Quantitative Likelihood

×
∫
Y l

i
∈O

Y b
i,

φ
(
Y li,, µ

0
ik,,Σ0)

︸ ︷︷ ︸
(Conditional) Binary Likelihood

The first two terms capture Y but essentially ignore Y b, giving simple expressions essentially iden-
tical to those for the quantitative-trait-only pik (equation (5)). The third term is a (multivariate)
probit likelihood for Y b given Y and cannot easily be evaluated in general.
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Only one binary phenotype

When B = 1, the orthant OY b
i,

simplifies to one half of the real line and the covariance matrix
Σ0 ∈ R1×1 is equal to 1 WLOG, and the complicated third term in the responsibilities reduces to
a standard Gaussian c.d.f. evaluation (Φ):∫

Y l
i
∈O

Y b
i,

φ
(
Y li,, µ

0
ik,,Σ0) =

{
Φ
(
−µ0

ik

)
if Y bi = 0

1− Φ
(
−µ0

ik

)
if Y bi = 1

}
=: Φ̃bi

(
−µ0

ik

)
where Φ̃· is either the lower or upper tail probability and bi = Y bi is a vector of disease indicators.
The value of this representation is that the standard normal c.d.f. Φ has been numerically tabulated.

Similarly, the complicated multidimensional truncated normal distributions on Y l become uni-
variate truncated normals. This dramatically simplifies computation because the univariate trun-
cated normal has analytic mean and variance formulas. First, let

ψb(z) = φ̃b (z)
Φ̃b (z)

where φ̃b = Φ̃′b and is either the standard Gaussian pdf if b = 0–which we call ψ, defined as
ψ(·) = φ(·, 1)–or −ψ. Then, the sufficient statistics can be written:

µik := E
(
T N bi

(
µ0
ik, 1

))
= µ0

ik − ψbi (−µik) (13)

Σik := V
(
T N bi

(
µ0
ik,, 1

))
= 1 + µikψbi

(−µik)− ψbi
(−µik)2 (14)

These terms split over i and k and are easy to compute.

Conditionally independent binary traits

A similar argument for B = 1 can be extended to B > 1 latent traits that are conditionally
independent, i.e. in the setting where Σ0 = (Λb)−1 is diagonal or, equivalently because diagonal
entries of Λb are 1, where Σ0 = IB . This conditional independence parameterization requires that
all correlation between binary traits be captured in α, β, and noise correlations with quantitative
traits. In other words, our model can express systematic misdiagnosis patterns but will struggle in
situations where doctors choose between mutually exclusive diagnoses more or less at random.

In the METSIM analysis, we encoded pre-type 2 diabetes as a binary indicator that also takes
value 1 for type 2 diabetics, which makes the conditional independence assumption much more
viable:. Otherwise, there is a mutual exclusivity between columns of Y b that cannot be expressed
except through covariates that have distinct effects–rather than graded effects–on pre-T2D and
T2D. This choice made our model fit substantially more interpretable, and related choices are
important for any analyses with ordinal categories.

Regardless of the plausibility, we can maximize our likelihood subject to the constraint that
Λij = Λji = 0 whenever i and j index distinct, binary traits. Under this assumption, the conditional
expectations and variances in (11) and (12) simplify:

µikp := E
(
T N Y b

ip

(
µ0
ikp, 1

))
= µ0

ikp − ψY b
ip

(
−µ0

ikp

)
Σik := V

(
T N bi

(
µ0
ik,, 1

))
= 1 + µ0

ikpψY b
ip

(−µikp)− ψY b
ip

(−µikp)2
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M-step details with mixed phenotypes: α and β

As the M-step for p and the CM-steps for α|β and β|α depend only on the first (conditional)
moment of Y l, these steps are identical to the above section, except Y is replaced by the conditional
expectation of Y ′. The only detail is that the expectation of Y ′ now depends on k, unlike Y .

For α, the update is

Qt(α|β) ≡
∑
k

∑
i

ptik‖ ((µik, : Yi,)−Gi,βk,,)−Xi,α‖2Λ

≡
∑
i

Xi,αΛαTXT
i, − 2


∑
k

pik [(µik, : Yi,)−Gβk,,]︸ ︷︷ ︸
δ̂i,

ΛαTXT
i,

 =⇒

α =
[
XTX

]−1
XT δ̂

Similarly, β is again WLS, but the first B columns of Y are now the expected liabilities:

Qt(β,,k|α) ≡
∑
i

ptik‖

(µik, : Yi,)−Xiα︸ ︷︷ ︸
ε̂i,

−Gi,βk,,‖2Λ =⇒

α =
[
GTdiag (p,k)G

]−1
GTdiag (p,k) ε̂

M-step details with mixed phenotypes: Λ

As a function of Λ, Q is given by (8). By assumption, we can write Λ in block matrix form as:

Λ =
(
IB CT

C D

)
Applying Sylvester’s determinant lemma simplifies the log-determinant term in (8):

log |Λ| = log
∣∣∣∣( I CT

C D

)∣∣∣∣ = log |I|+ log
∣∣D − CI−1CT

∣∣ ≡ log
∣∣D − CCT ∣∣

The trace term is even simpler:

tr
(

ΛŜ
)

= tr
(
Ŝ

(
I CT

C D

))
≡ tr

(
ŜqqD

)
+ 2tr

(
ŜqbC

)
using Ŝqq to denote the (P −B)× (P −B) submatrix of Ŝ corresponding to the quantitative traits
(and analogously for Ŝqb).
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Optimizing over the parameters C and D gives the first order conditions:

∇DQ(Λ|Ŝ) =
(
D − CCT

)−1 = Ŝqq

∇CQ(Λ|Ŝ) = −
(
D − CCT

)−1
C = Ŝqb

=⇒

(C,D) =
(
−
[
Ŝqq

]−1
Ŝqb,

[
Ŝqq

]−1
+
[
Ŝqq

]−1
ŜqbŜ

T
qb

[
Ŝqq

]−1
)

To our knowledge, this idea for easing multivariate probit computation is novel. The main ap-
proach we are aware of is to numerically integrate the B-dimensional Gaussian integrals appearing
for the probit terms, which does not scale to B above 4 (or, being very generous, 10). By contrast,
our approach scales to tens of traits. The cost, of course, is the conditional independence assump-
tion, which becomes increasingly stringent as B increases (in the sense that B(B− 1) entries of the
precision Λ are forced to 0).

Log-likelihood
The likelihood is

L(θ|Yi,) =
∫
Y l

i
∈O

Y b
i

P (Yi,|θ)dY li,

=
∑
k

pkP (Yi,|θ, zi = k)
∫
Y l

i,
∈O

Y b
i,

P (Y li,|Yi,, θ, zi = k)dY li,

=
∑
k

pkφ(Yi,|Xα,−b +Gβk,,−b,Σ−b,−b)
∫
Y l

i,
∈O

Y b
i,

φ(Y li,|µ0
ik,Σ0)dY li,

where µ0 and Σ0 are defined by α, β and Λ by (9) and (10).
By assumption on Σ0, the integral over Y li, breaks into the product of B univariate Gaussian

integrals. Letting B be the (potentially empty) set of binary traits, the full log-likelihood is

`(θ|Y ) ≡
∑
i

log

∑
k

pk

(
|Σ−B,−B|−1/2 exp 1

2‖Yi, −Xiα−Giβk‖2Σ−B,−B

)
×
∏
p∈B

Φ̃Y b
ip

− µ0
ikp√
Σ0
pp


To mitigate numerical underflow, we compute these products of exponentials as sums of their
logarithms and exponentiate at the end.

2.4 Initialization
By default, we initialize by setting α = β = 0 and Λ−1 equal to the sample trait covariance,
imposing constraints on Λb if B > 1. Then, we set the slice of β corresponding to main subtype
effects to i.i.d. Gaussians with standard deviation 10−2 (we scale quantitative traits to mean 0,
variance 1). In simple settings, including all our simulations, a single initialization suffices.

Real data is more complex, however, and in practice we perform 10 random initializations
and choose the run obtaining the highest likelihood. This was unnecessary in CONVERGE but
valuable in METSIM, as different initalization reaches different modes. Generally, we see restarts
as mitigating the impact of very poor local optima rather than as guaranteeing the global optimum.
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3 Simulation details
Many of our simulations begin by drawing a dataset from the MFMR model in (4) and (3). This
model is parameterized by homogeneous effects (α), heterogeneous effects (β), a noise precision
matrix (Λ), and cluster sizes (p). We generate the covariates to resemble SNPs (see below), but
otherwise they have no genetic meaning (but see Section 3.3). We take P = 30 traits and make
three binary by thresholding. By default, we set K = 2 and p = (0.7, 0.3), to represent subtypes
with unequal prevalence.

We draw 12 columns forG, independently, by drawing an allele frequency by π ∼ Uniform[0.05, 0.5]
and then drawing Binomial(2,π) SNP genotypes for each sample.

We link these genotypes to the phenotypes by assuming 4 have no effect (Snull), 4 have homo-
geneous effects (Shom), and 4 have heterogeneous effects (Shet). By default, SNPs have the same
type of effect on all traits. To parameterize this mixture distribution on effect sizes, we draw the
array of coefficients β ∈ RK×12×P for each SNP s and phenotype p by

β,sp
ind∼


(0 0) if SNP s is null

N
(

0, 1
Shom

σ2
hom

)
· (1, 1) if SNP s is hom.

N
(

0, 1
.7·Shet

σ2
hom

)
· (1, 0) if SNP s is het.

(15)

In this stylized model, genetic effects are either homogeneous or active only in group 1. This is
inspired by the CONVERGE dataset, where the three heterogeneous SNPs appeared to have no
effect in the smaller, high-stress group.

We add large main subtype effects µkp
iid∼ N

(
0, σ2

z = .1
)

to trait p for all samples in group k.
For K > 2 (for Supplementary Figure 4b), we drop the asymmetry between groups. For group

sizes, this means we set p = 1
K 1K . We also now draw the heterogeneous covariates by

β,sp
ind∼


0K if SNP s is null

1KN
(

0, 1
Shom

σ2
hom

)
if SNP s is hom.

N
(

0K , 1
Shet

σ2
hetIK

)
if SNP s is het.

(16)

By default, σ2
hom = 0.04 or 0.004, which represent very large SNP effects or modest covariate effects.

We take σ2
het = 0.044− σ2

hom so that the total heritability stays constant when σ2
hom changes.

Finally, we draw Σ0 ∼ Wi (P, IP ) and then take Λ−1 =
(
1− σ2

z − σ2
hom − σ2

het

)
cov2cor(Σ0),

where cov2cor scales the columns and rows of a covariance matrix to give its corresponding corre-
lation matrix. This implies the σ2 terms can be interpreted as fractions of variance explained.

3.1 Ascertaining Case/Control Data
A common feature of real association studies is case ascertainment, where diseased samples are
preferentially ascertained so that the case/control ratio is roughly balanced. This is particularly
important for rare diseases, as random sampling would obtain very few disease examples.

We model this process by generating 100×N samples from our above model and then selecting
N
2 cases and controls (uniformly at random). This is computationally wasteful as 99×N samples
are generated only to be discarded. This waste can be eliminated in the case of a single phenotype
[4], which can likely be generalized to multiple traits.
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As a result of the ascertainment process, the simulated data no longer exactly match our model
in (4). In particular, the so-called oracle is no longer a true oracle, explaining the false positive
inflation for Hom SNPs. But in a model-false world [5], the relevant question is approximate
calibration, and a massive amount of data is required to falsify the null model of SNP homogeneity
in the Case/Control simulations when using the oracle (or MFMR) z. By constrast, GMM returns
false positives across the spectrum of N .

3.2 Simulating G-E correlation
We modify our baseline simulation so that the subtype state z is correlated with the SNP genotypes
in G. We do this by first drawing a continuous proxy for the subtypes, z̃, by:

z̃ = √ρGE Gω +
√

1− ρGE δ

ωi
iid∼ N (0, 1/S) (S=# SNPs)

δi
iid∼ N (0, 1)

As ρGE increases from 0 to 1, z̃ goes from completely independent of genotype (as in our baseline
simulation) to completely heritable (|ρGE | is the heritability of z̃).

We then threshold this continuous subtype axis to recover discrete subtypes by setting zi = 1 if
z̃i > τ and zi = 0 otherwise. Here, τ is chosen to ensure the appropriate subtype prevalences.

3.3 Simulating population structure
For each simulated dataset, we drew 10,000 SNPs independently as follows. First, we set an ancestral
allele frequency of 50%. Second, we independently drew two population allele frequencies, pi, from
a Beta distribution with mean 0.5 and variance Fst = 0.5(1− 0.5), choosing Fst = 0.1. Finally, we
draw N/2 Binomial(2, pi) SNPs for i = 1, 2.

We estimate genetic PCs from these 10,000 SNPs, but only the 12 we randomly choose to use
in the simulation have any effect or are tested.

We create population structure by adding population main effects with variance σ2
pop. We draw

these effects independently from mean zero Gaussian distributions for each population and trait.
We also modify the environmental variance, for all traits, to σ2

e := 1 − σ2
z − σ2

hom − σ2
het − σ2

pop.
Again, this means the σ2 terms can be interpreted as proportions of explained variance.
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4 Linear contrast subtype estimators
CCA seems to outperform the oracle in some simulations, e.g. with very strong main subtype
effects (Supplementary Figure 2c) yet seems to have no ability to learn z (Supplementary Figure
1). This apparent discrepancy is partially explained by the simulations in 3, as the CCA positive
rate depends little on the true interaction effect for the tested trait.

In this section, we give a theoretical argument, under simplifying assumptions, that bolsters
these conclusions from the simulation. In 4.1, we introduce a simplified version of the MFMR
model and discuss estimators of ẑ built as a linear combination of the phenotypes. In 4.2 we
approximate the interaction estimates when using such ẑ estimates, conditional on the generating
linear transformation, and derive the bias when only some traits have true heterogeneity.

4.1 Linear contrasts for clustering
Let Y ∈ RN×P be a phenotype matrix. Assume there are K = 2 true clusters defined by an
indicator variable z. The “linear” methods to estimate z that we discuss in this section are all
defined by some contrast vector v ∈ RP :

ẑ := Y v ∈ RN (17)

In practice, v will often be constructed directly from Y , e.g. it may be the top PC of Y . We ignore
this, however, and assume v is defined a priori. (More general, tedious calculations like those in [6]
could be pursued in some special cases, like when v is a PC.)

In this section, we think of z as a vector in RN with two unique entries, normalized to length
one and mean zero. Embedding z like this is natural, at least for K = 2, when estimating with
continuous-valued ẑ (and column-centered Y ). We assume a simplified version of our general model,
ignoring covariates and using only a single SNP g ∈ RN (normalized to length 1 and mean zero):

Y = zαT + (g ∗ z)γT + ε

where ε has i.i.d. Gaussian entries with variance σ2 and α and γ are the subtype main- and
interaction-effects. We omit noise correlation and other covariates and require that Y (and X and
z) are column-demeaned. We omit main effects for g to simplify calculations and notation later.

Approximating Y as random and v as fixed, the expected fitted clusters are

E (ẑ) = E (Y ) v =
(
zαT + (g ∗ z)γT

)
v = z(αT v) + (g ∗ z)(γT v) (18)

This decomposes the mean ẑ into a combination of z and g ∗ z and immediately suggests:

• If α = 0 and g is independent of z, E (ẑ) is uncorrelated with z. Intuitively, linear clustering
fails without a main subtype effect.

• Cor(z,E (ẑ)) improves as v tags the main effect more and the interaction effect less.
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4.2 Testing linear-contrast clusters
Rather than ask whether linear contrasts give good estimates of z, we now ask whether they give
good genetic heterogeneity regression coefficients. First, some notation:

ẑ := Y v = z(αT v) + (g ∗ z)(γT v) + εv

:= az + b(g ∗ z) + e

x := ẑ ∗ g
X :=

(
ẑ g

)
ρ := gT ẑ

Writing PX as the projection onto X, the regression coefficient for y on x given g and ẑ is

β̂ := xT (I − PX) y
xT (I − PX)x

Now we simplify the projections:(
XTX

)−1 =
(

1 ẑT g
ẑT g 1

)−1
= 1

1− ρ2

(
1 −ρ
−ρ 1

)
=⇒

PX = 1
1− ρ2X

(
1 −ρ
−ρ 1

)
XT = 1

1− ρ2

(
ẑẑT + ggT − ρgẑT − ρẑgT

)
=⇒

xTPXx = 1
1− ρ2

(
[xT ẑ]2 + [xT g]2 − 2ρ[xT ẑ][xT g]

)
xTPXy = 1

1− ρ2

(
[xT ẑ][yT ẑ] + [xT g][yT g]− ρ[xT ẑ][yT g]− ρ[yT ẑ][xT g]

)
Though these expressions are messy, most terms will vanish for large N .

All these inner products of interactions can be written as the expectation of polynomials in the
independent variables ε, g and z, where the expectation is over the empirical distribution. E.g.

xT g = [(az + b(g ∗ z) + e) ∗ g]T g =
∑
i

((azi + b(gi ∗ zi) + ei) ∗ gi) gi =
∑
i

(
azig

2
i + bzig

3
i + eig

2
i

)
= Ê

(
azg2 + bzg3 + eg2)

where, abusing notation, z, g and e are understood as empircally-distributed, scalar random vari-
ables inside the empirical distribution expectation operator Ê.

For large N , these expectations converge to their population counterparts (Ê(·)→ E(·) if (z, g, e)
converges weakly in distribution). Since z, g and e are independent and mean zero, expectations of
polynomials with any odd-powered terms disappear. Similarly, even-powered expectations converge
to variance/kurtosis terms, e.g.

xT ẑ → E
(
g (az + bg · z + e)2

)
= 2ab

ρ→ E (g (az + bg · z + e)) = 0
=⇒

xTPXx ≈
1

1− ρ2

(
xT ẑ

)2 → 4a2b2
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(The approximation drops some terms that converge to zero for large N . Again, the goal is only to
qualitatively explain Supplementary Figure 3.)

To finish computing the asymptotic regression coefficient, we assume (WLOG) we are testing
the first trait and that this trait has a nonzero main subtype effect but zero genetic heterogeneity.
(I.e. y = Y,1 = zα1 + ε,1). Then:

yT ẑ = (zα1 + ε,1)T (az + b(g ∗ z) + e)→ α1a+ v1σ
2 =⇒

xTPXy ≈
1

1− ρ2

(
[xT ẑ][yT ẑ]

)
→ 2ab

(
α1a+ v1σ

2) =⇒

β̂ = xT (I − PX) y
xT (I − PX)x →

xT y − 2ab
(
α1a+ v1σ

2)
xTx− 4a2b2

β̂ is pure bias because y has no genetic heterogeneity (by assumption).
The unconditional regression terms, xT y and xTx, converge to

xT y → E (g(az + bgz + e) [zα1 + ε,1]) = α1b

xTx→ E
(
g2(az + bgz + e)2) = a2 + b2νg + σ2

where νg is the kurtosis of g.
Altogether, this gives the asymptotic bias

β̂ → b
α1(1− 2a2)− 2av1σ

2

a2 + b2νg − 4a2b2 + σ2

We make two basic observations about about this large-sample Gxẑ bias:

• The bias is zero if b = 0, which necessarily holds if all genetic heterogeneity is absent (β = 0)

• Otherwise, the bias is nonzero unless v is orthogonal to γ. This will not hold for e.g. PCA.

– Even as N grows large and clustering works well (in the senses that ẑ ≈ z and v is roughly
proportional to α), b does not converge to 0 unless γ and α are roughly orthogonal (there
is no obvious reason why this would ever happen).

• The bias persists even if there is no main subtype effect on y (i.e. α1 = 0).

– This is a conditioning bias in the sense that it disappears if ẑ is not used as a covariate.
– Also, it is an overfitting bias in that it disappears if v1 = 0, i.e. the weight of the first

phenotype in defining ẑ is zero. This v1 = 0 condition is satisfied by holding out Y,1
when defining ẑ or when P grows large (and entries of v are O(P−1)). However, these
steps are only sufficient because we assumed columns of ε are uncorrelated.
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5 Supplementary Figures and Table
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Figure 1: Running time and subtype estimation accuracy in simulations. Left: Average
running times in main Figure 1 (excluding failed GMM runs). Right: Clustering accuracy for
simulations without (‘Quantitative’, as in main Figure 1) and with ascertainment (‘Case/Control’,
as in Supplementary Figure 2). We measure accuracy with adjusted Rand index, which varies
from 0 (random guessing) to 1 (exact match). We compute the index only across pairs from a
random 300 subsamples, reducing computation roughly ≈ 105-fold when N = 100, 000. Accuracies
are estimated for roughly 300 simulations per point in the plot. MFMR+ is shown for simplicity
because MFMR gives different clusters per tested SNP.
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Figure 2: Simulations varying several further parameters. Tests for truly heterogeneous
SNPs are shown in the top 6 panels (a-f), and the corresponding tests for SNPs with only homoge-
neoues effects are shown in the below 6 panels (g-l). K is the number of true, simulated subtypes
and B is the number of binary traits. ρGE is the gene-subtype correlation term, with ρGE = 0
giving non-heritable subtype statuses and ρGE = 1 giving perfectly heritable subtypes. h2

hom, h2
het,

and h2
z are the variances explained by homogeneous SNPs, heterogeneous SNPs, and main subtype

effects, respectively. As in main Figure 1, solid lines have (h2
hom, h

2
het) = (4%, .4%), and dashed

lines are reversed; in (d,e), line types define only the h2 term not governed by the x-axis. In (a),
all methods fit K = 2 subtypes; there is no true heterogeneity for K = 1, where the oracle is not
defined, and for K > 1 and the oracle picks a true cluster at random. Generally, increasing the
heterogeneous factors (h2

het and h2
z) makes subtyping easier, while increasing h2

hom makes subtyping
harder.
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Figure 3: Simulations where SNP heterogeneity only exists for some traits, for which
they are only homogeneous. Left: the tested trait has no genetic heterogeneity or main subtype
effect. Center: the tested trait has only a main subtype effect but no heterogeneity. Right: the full
heterogeneity simulation. Linear subtype estimators (CCA and Y PC) are not trait-specific.
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Figure 4: Main Figure 1 with further subtyping methods. MFMR+ varies MFMR by
treating the tested SNP as heterogeneous. GMM+ varies GMM by including the SNPs as traits
when clustering. As expected, MFMR+ and GMM+ are miscalibrated. GMM+ often fails to
converge, especially for N ≥ 10, 000 (we evaluate only the converged runs). The other methods,
with low power, define subtypes as the top PC of Y or G, optionally thresholded to be binary (“G
PC+disc”).
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Figure 5: Simulations with non-Gaussian noise. Purely homogeneoues simulations, without
subtypes, where the noise, ε, has marginal t5 distributions. ε is simulated by drawing i.i.d. t5-
distributed random variables, arranging into an N × P matrix, and then right-multiplying with
Σ1/2, where Σ is the noise covariance matrix and is drawn as in the main simulations in main
Figure 1.
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Figure 6: Simulations with non-linear homogeneous effects. Purely homogeneoues simula-
tions, without subtypes, where SNPs truly have a non-linear effect. In (a-d), the SNPs are squared
before use in MFMR, so that the true SNP and the utilized covariate (i.e. SNP2) have zero cor-
relation. In (e-h), the true SNPs are exponentiated before inclusion in MFMR, so the true SNP
effect is log-linear. Results are partitioned by whether the tested traits are quantitative or binary,
as well as by whether the true SNP effect is null or homogeneous.
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Figure 7: Simulations with continuously-varying subtypes. z is chosen to be Gaussian. Top:
Effect sizes are chosen so that power roughly matches main Figure 1; it is not trivial to directly
convert effect sizes from the discrete z simulations. Bottom: All heterogeneoues effect sizes are
doubled relative to top panels.
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Figure 8: Alternate versions of Figure 1. Top: SNP effect heterogeneity tests are applied
to binary traits, not quantitative traits as in main Figure 1. Even though GMM only clusters
the quantitative traits, tests for the (correlated) binary traits are miscalibrated. Middle: a 20%
population prevalence binary trait is ascertained to have 50% in-sample prevalence and then tested.
Bottom: population structure is added and MFMR, Oracle and GMM-PC test conditional on three
genetic PCs; GMM and GMM-PC use the same subtype estimator.
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Figure 9: Simulations where some covariates and traits are swapped. Simulation modifica-
tion where decompositions falsely treat a trait as a SNP/covariate (a,b,e,f,i) or vice versa (c,d,g,h,j).
(a-d) No genetic or main subtype heterogeneity is simulated, so that the positive heterogeneity asso-
ciations are unambiguously false. We test both the variable that we misplace (a,c) and the correctly
place SNP/covariates and traits (b,d). (e-j) Simulations are drawn as in main text Figure 1, with
K = 2. (e-h) Tests are shown for the misplaced trait/covariate in (e,g); for the truly homogeneous
SNPs in (f,h); and for the truly heterogeneous SNPs in (i,j).
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Figure 10: Out-of-sample likelihood varying K in CONVERGE (left) and METSIM
(right). Samples are split into 5 folds; parameters are fit holding one fold out; the parameters’s
likelihood is evaluated on the held out fold; and the process is repeated for each fold. The log-
likelihoods are shown relative to the baseline likelihood of each fold at K = 1; this is analogous to
using likelihood ratio statistics to compare a general K to the null with K = 1. The average across
folds are shown in red, and the maximizer of K is highlighted in green.
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Figure 11: Metabolic subtype-specific SNP effects across all 228 NMR traits. SNP-
phenotype pairs where the test for effect heterogeneity across subtypes is significant at p = .05/81.
We test all 228 NMR-based metabolomic traits here rather than using their top PCs as in main
Figure 4 and the MFMR decomposition used to learn subtypes. Per-subtype estimates and standard
errors are provided in colors as in main Figure 4.
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Figure 12: Comparison of the − log10(p)-values for ordinary GWAS (x-axis) and our novel
GxE GWAS (y-axis). Guide lines are drawn at p = 5×10−8, the conventional GWAS threshold.
Each point is a SNP, and colors indicate which analyses were significant for the SNP. T2D, CHD,
WHR and insulin are omitted because they have no genome-wide significant hits in either analysis;
preT2D is omitted because the only hit is shared between both analyses. NMR PC 5 is omitted
because it is badly inflated in GxE GWAS (λGC = 1.63); this trait has one hit in GWAS.

hhom
2

h G
xE

+h
om

2

0% 20% 40% 60%

0%
20

%
40

%
60

%

T2D

PreT2D

CHD

Glucose

Insulin

BMI

LDL

HDL

Triglyc.

WHR

NMR PC 1

NMR PC 2

NMR PC 3

NMR PC 4

NMR PC 5

NMR PC 6

Heritability increase from IID GxEMM (%)

# 
of

 T
ra

its

−20 −10 0 10 20 30 40 50

0
1

2
3

4

Figure 13: Comparison of GREML and IID metabolic heritability estimates. Left: total
IID GxEMM heritability (which adds the homogeneous and heterogeneous estimates) compared
to the ordinary heritability estimated with GREML. Right: histogram of per-trait heritability
increases from replacing GREML with IID GxEMM.
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GWAS RGWAS Previous Subtyping
Clustering N/A MFMR GMM

Adjusts PCs? Yes Yes No
Test type Hom. Het. Global Het. Global Het. Global Het. Global

K 1 3 3 2 2 3 3 4 4
Degrees of
freedom 1 2 3 1 2 2 3 3 4

T2D 1.03 1.05 1.05 1.82 1.54 44.27 40.47 136.42 131.38
preT2D 1.03 1.07 1.08 0.63 0.72 57.36 53.08 95.30 90.81

CHD 1.04 1.10 1.12 21.71 17.94 12.42 10.66 16.35 14.69
Glucose 1.03 1.29 1.26 0.66 0.75 89.38 84.29 144.17 139.14
Insulin 1.04 1.15 1.15 0.94 0.96 142.72 136.71 Inf Inf
BMI 1.06 1.06 1.10 0.69 0.79 118.93 113.32 Inf Inf
LDL 1.03 1.07 1.08 0.95 0.95 56.58 52.32 Inf Inf
HDL 1.05 1.16 1.16 11.61 9.08 Inf Inf Inf Inf
Trigl. 1.04 1.33 1.28 2.53 2.04 Inf Inf Inf Inf
WHR 1.04 1.09 1.11 0.88 0.92 47.25 43.39 Inf Inf

NMR PC 1 1.04 1.23 1.21 43.78 38.57 Inf Inf Inf Inf
NMR PC 2 1.02 1.04 1.05 3.55 2.69 106.09 100.63 Inf Inf
NMR PC 3 1.02 0.98 1.00 Inf Inf Inf Inf Inf Inf
NMR PC 4 1.03 0.82 0.85 Inf Inf Inf Inf Inf Inf
NMR PC 5 1.00 1.83 1.64 Inf Inf Inf Inf Inf Inf
NMR PC 6 1.02 1.07 1.09 Inf Inf Inf Inf Inf Inf

Table 1: λGC for GWAS, MFMR GxE GWAS, and GMM GxE GWAS. GWAS means
the standard regression approach conditioning on known covariates and genetic PCs. RGWAS is
our approach, which uses covariate-aware clusters (MFMR) and tests for genetic variant effect het-
erogeneity (Het) or globally for any genetic effect (Global). “Previous Subtyping” is like RGWAS,
except using covariate-unaware clustering (GMM) and heterogeneity tests. “Inf” means our calcu-
lations suffered numerical problems, meaning that λGC is very large. We do not perform SNP tests
on NMR PC 5.

25



MFMR droptest +Condition on T2D
K=2 K=3 K=4 K=2 K=3 K=4

T2D 0.197 0.495 0.770 1.000 1.000 1.000
preT2D 0.230 0.125 0.408 0.414 0.075 NA

CHD 0.871 0.340 0.282 0.844 0.427 0.805
BMI 0.976 0.000 0.000 0.393 0.000 0.000

Glucose 0.218 0.046 0.858 0.416 0.018 0.709
Insulin 0.291 0.042 0.770 0.475 0.029 0.791
LDL 0.318 0.038 0.005 0.281 0.079 0.002
HDL 0.139 0.075 0.020 0.231 0.045 0.008
Trigl. 0.086 0.345 0.079 0.125 0.138 0.094
WHR 0.233 0.251 0.748 0.357 0.178 0.667

NMR PC 1 0.053 0.523 0.044 0.067 0.220 0.061
NMR PC 2 0.008 0.006 0.056 0.016 0.003 0.089
NMR PC 3 0.000 0.014 0.006 0.000 0.012 0.003
NMR PC 4 0.787 0.651 0.316 0.863 0.728 0.455
NMR PC 5 0.520 0.437 0.092 0.511 0.425 0.088
NMR PC 6 0.011 0.218 0.014 0.011 0.302 0.012

Table 2: Statin effect heterogeneity test for K ∈ {2, 3, 4} and the 16 traits used to de-
fine clusters with MFMR. The “MFMR droptest” columns test using the large-effect covariate
test implemented in the rgwas R package and described in the Methods in the main text. The
“+Condition on T2D” columns run the same linear model as in droptest, except that T2D sta-
tus is additionally included as a covariate; this analysis is performed to add confidence that the
heterogeneous statin effect on glucose is not merely driven by simple confounding from T2D status.
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