Supporting Information

Assembly of metallacages into Soft Suprastructures with Dimensions of up to Microns and the Formation of Composite Materials

Yan Sun,^{a,b*} Fengmin Zhang,^c Shaowei Jiang,^d Zhifeng Wang,^c Ruidong Ni, ^e Heng Wang, ^e Weidong Zhou,^c Xiaopeng Li, ^e and Peter J. Stang ^{b*}

- a. School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
- c. Testing Center of Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
- d. School of Medicine, Shanghai Jiao Tong University, Shanghai, China, 200240, P. R. China
- e. Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States

To whom correspondence should be addressed. Email address: sunyan@yzu.edu.cn; stang@chem.utah.edu

Additional NMR, UV-vis, and fluorescence spectra data, scanning electron microscope, transmission electron microscopy, and fluorescence microscope images were provided in the Supporting Information.

Supporting Information

1.1 ³¹ P{ ¹ H } NMR spectrum of cage 1	S 4
1.2 ¹ H NMR spectrum of cage 1	S4
1.3 ESI -TOF-MS spectrum of cage 1	S5
1.4 UV-vis spectrum of cage 1 (10 μ M) in DCM	S5
1.5 UV-vis spectrum of cage 1 (10 μ M) in EA	S 6
1.6 UV-vis spectrum of Cage 1 (10 μ M) in DCM/EA mixture with 80% EA	S 6
1.7 Fluorescence spectrum of cage $1 (10 \ \mu\text{M})$ in DCM.	S 7
1.8 Fluorescence spectrum of cage $1 (10 \ \mu\text{M})$ in EA.	S 7
1.9 Fluorescence spectrum of Cage 1 (10 μ M) in DCM/EA mixture with 80% EA	S 8
1.10 Corresponding histograms of microflowers formed in 80 % EA	S 8
1.11 ³¹ P{ ¹ H} NMR spectrum of cage 1 -based microflowers	S 9
1.12 Fluorescence microscopy images of microflowers formed in 80 % EA	S9
1.13 ¹ H NMR spectrum of cage 1-based microflowers	S10
1.14 ESI -TOF-MS spectrum of cage 1 formed in 80 % EA	S10
1.15 Simulated structure of the cage 1	S 11
1.16 SEM images of (a) nanostructures formed in 90% EA	S 11
1.17 XRD profile	S12
1.18 Fluorescence spectra of cage 1	S13
1.19 UV-vis spectra of cage 1	S13
1.20 NMR spectra of cage 1 in DCM/EA mixtures	S14
1.21 Assemblies obtained at different times	S15
1.22 Elemental mapping analysis of microneedles/microflowers	S15
1.23 Microneedles/microflowers obtained at different temperature	S15
1.24 Chemical structure of lysine-modified perylene	S16
1.25 Histograms of the size distribution of microflowers formed in 80% EA	S16
1.26 Optical and polarized images of needle-based flowers formed by the coassembly of cage 1 and perylene	S16
1.27 SAXS profile of needle-based flowers formed by the coassembly of cage 1 and perylene	S17

1.28 ³¹ P{ ¹ H}NMR spectra microflowers redispersed in DCM	S17
1.29 ¹ H-NMR of cage 1 , perylene, and the mixture of cage 1 and perylene	S18
1.30 Fluorescence microscopy images of the chlorophyll-a containing assemblies	` S18
1.31 ¹ H-NMR of cage 1 , chlorophyll-a, and the mixture of cage 1 and chlorophyll-a	S19
1.32 Fluorescence microscopy images of the chlorophyll-a containing assemblies	S19
1.33 ¹ H-NMR of cage 1 , Vitamin B_{12} , and the mixture of cage 1 and Vitamin B_{12}	S20

1.1 ${}^{31}P{}^{1}H$ } NMR spectrum (300 MHz, CD₂Cl₂) recorded for cage 1.

1.2 ¹H NMR spectrum of cage **1**.

Figure S2. ¹H NMR spectrum (400 MHz, CD₂Cl₂) recorded for cage **1**.

Figure S3. ESI -TOF-MS spectrum of cage 1.

1.4 UV-vis spectrum of cage $1 (10 \ \mu\text{M})$ in DCM.

Figure S4. UV-vis spectrum of cage $1 (10 \mu M)$ in DCM.

Figure S5. UV-vis spectrum of cage $1 (10 \mu M)$ in EA.

1.6 UV-vis spectrum of cage **1** in DCM/EA mixture with 80% EA

Figure S6. UV-vis spectrum of cage 1 (10 µM) in DCM/EA mixture with 80% EA.

1.7 Fluorescence spectrum of cage **1** in DCM

Figure S7. Fluorescence spectrum of cage $1 (10 \mu M)$ in DCM.

1.8 Fluorescence spectrum of cage **1** in EA

Figure S8. Fluorescence spectrum of cage $1 (10 \mu M)$ in EA.

Figure S9. Fluorescence spectrum of cage 1 (10 µM) in DCM/EA mixture with 80% EA.

1.10 Corresponding histograms of microflowers formed in 80 % EA

Figure S10. Corresponding histograms of the size distribution of needle-based microflowers (in Figure 1d).

1.11 Fluorescence microscopy images of microflowers formed in 80 % EA

Figure S11. Fluorescence microscopy images of these assemblies (in Figure 1e-f) under green-light excitation.

1.12 ³¹ P{¹H} NMR spectrum of cage **1**-based microflowers

Figure S12. ³¹ P{ ¹H} NMR spectrum of cage 1-based microflowers redispersed in DCM.

1.14 ESI -TOF-MS spectrum of cage 1 formed in 80 % EA

Figure S14. ESI -TOF-MS spectrum of cage 1.

Figure S15. Simulated structure of the cage 1.

1.16 SEM images of nanostructures formed in 90% EA

Figure S16. SEM images of (a) nanostructures formed from cage 1 (10 μ M) in DCM/EA mixture (fresh prepared) with 90%. (b) Histograms of the size distribution of needle-based microflowers formed from cage M (10 μ M) in DCM/EA mixture (fresh prepared) with 90% EA.

Figure S17. XRD profile of microflowers.

1.18 Fluorescence spectra of cage **1**.

Figure S18. Fluorescence spectra of cage 1 (10 μ M) in DCM/EA mixture.

Figure S19. UV-vis spectra of cage 1 (10 µM) in DCM/EA mixture.

Figure S20. ¹ H NMR spectra of cage **1** (100 μ M) in DCM/EA mixtures with (b) 0%, (c) 10%, (d) 20%, and (e) 30% EA. ³¹P{ ¹H} NMR spectra of cage **1** (100 μ M) in DCM/EA mixtures with (f) 0%, (g) 10%, (h) 20%, and (i) 30% EA. 2D DOSY NMR spectra (600 MHz) of Cage **1** in (j) DCM/EA mixture with EA content is 10 % (100 μ M); (k) in pure DCM (100 μ M).

1.21 Assemblies obtained at different times

Figure S21. SEM images of cage 1 (10 μ M) in DCM/EA mixture with 80% EA recorded at different aging time: (a-c) 120 and (d-f) 240 min.

1.22 Elemental mapping analysis of microneedles/microflowers

Figure S22. SEM and Elemental mapping analysis of microneedles/microflowers.

1.23 Microneedles/microflowers obtained at different temperature

Figure S23. SEM images of cage 1 (10 μ M) in DCM/EA mixture at different temperature: (a-b) 0 °C and (c-d) 30 °C.

Figure S24. Chemical structure of lysine-modified perylene.

1.25 Histograms of the size distribution of microflowers formed in 80% EA

Figure S25. Histograms of the size distribution (width) of needle-based microflowers by cage 1 (10 μ M) in a DCM/EA mixture with 80% EA.

1.26 Optical and polarized images of needle-based flowers formed by the coassembly of cage 1 and perylene

Figure S26. Optical (a) and polarized (b) images of needle-based flowers contained lysine-modified perylene. (c) Corresponding histogram.

1.27 SAXS profile of needle-based flowers formed by the coassembly of cage 1 and perylene

Figure S27. Corresponding SAXS profile of cage 1 and lysine-modified perylene in DCM/EA mixture with 80% EA.

5.87 5.68 5.68 0.08

1.28 ³¹P{¹H}NMR spectra microflowers redispersed in DCM.

Figure S28. ³¹P{¹H}NMR spectra of perylene-contained microflowers redispersed in DCM.

1.29 ¹H-NMR of cage **1**, perylene, and the mixture of cage **1** and perylene

Figure S29. ¹H-NMR of (a) cage **1**, (b) lysine-modified perylene, and (c) cage **1** and lysine-modified perylene (400 Hz, CD_2Cl_2).

1.30 Fluorescence microscopy images of the chlorophyll-a contained assemblies

Figure S30. Fluorescence microscopy images of the chlorophyll-a contained assemblies under (e) ultraviolet-light excitation, (f) blue-light excitation and (g) greenlight excitation.

1.31 ¹H-NMR of cage 1, chlorophyll-a, and the mixture of cage 1 and chlorophyll-a

Figure S31. ¹H-NMR of (a) cage 1, (b) chlorophyll-a, and (c) cage 1 and lysine-modified chlorophyll-a (400 Hz, $CD_2Cl_2/Ethanol-d^6=2:1$).

1.32 Fluorescence microscopy images of the Vitamin B₁₂ contained assemblies

Figure S32. Fluorescence microscopy images of the Vitamin B_{12} contained assemblies under (e) ultraviolet-light excitation, (f) blue-light excitation and (g) green-light excitation.

1.33 ¹H-NMR of cage 1, Vitamin B_{12} , and the mixture of cage 1 and Vitamin B_{12}

Figure S33. ¹H-NMR of (a) cage **1**, (b) Vitamin B_{12} , and (c) cage **1** and lysine-modified Vitamin B_{12} (400 Hz, CD₂Cl₂/Ethanol-d⁶=2:1).