Supporting Information

for

High-Resolution EXAFS Provides Evidence for a Longer Fe•••Fe Distance in the Q Intermediate of Methane Monooxygenase

George E. Cutsail III,[†] Rahul Banerjee, ^{‡,§} Ang Zhou, ^{§,#} Lawrence Que, Jr., ^{§,#} John D. Lipscomb, ^{‡,§} Serena DeBeer^{†,*}

[†]Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34, D-45470 Mülheim an der Ruhr, Germany

[‡]Department of Biochemistry, Molecular Biology and Biophysics, 321 Church St. SE, Minneapolis, MN 55455

[§]Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, USA.

[#]Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455

*Correspondence to: serena.debeer@cec.mpg.de

Fig. S1. Mössbauer spectrum of MMOH ^{red} complexed with MMOB collected at 80 K	. 3
Fig. S2. Mössbauer spectrum of MMOH ^{ox} complexed with MMOB collected at 80 K	. 4
Fig. S3. Mössbauer spectra of MMOH-RFQ (powder packed) collected at 80 K	. 5
Fig. S4. Mössbauer spectra of MMOH-RFQ (frozen) collected at 80 K.	. 6
Table S1. Isomer shift (δ) and quadrupole splitting (ΔE_Q) values of the three diiron components within MMOH-RFQ samples.	. 7
Fig. S5. Kα-HERFD XAS of MMOH ^{red} , MMOH ^{ox} , MMOH-RFQ, Q and previously published Q	. 8
Fig. S6. Fe-Kα emission spectra of MMOH ^{red} , MMOH ^{ox} , MMOH-RFQ and MMOH-Q	. 9
Fig. S7. Kα HERFD-XAS of MMOH-RFQ with digital α-Fe contamination	10
EXAFS fitting	11
Fig. S8. Additional HERFD-EXAFS fits of MMOH ^{ox}	12
Table S2. HERFD-EXAFS Fit Parameters of MMOH ^{ox} for Fig. S8.	12
Fig. S9. Comparison of PFY MMOH ^{red} with phase-shift recorrection	13
Fig. S10. Additional HERFD-EXAFS fits of MMOHred	14
Table S3. HERFD-EXAFS Fit Parameters of MMOHred for Fig. S9	14
Table S4. HERFD-EXAFS Fit Parameters of MMOH-RFQ (Attempts to fit short diiron distance ~ 2.8 Å).	e 15
Fig. S11. HERFD-EXAFS fits of MMOH-RFQ – 1 and 2, as Detailed in Table S4.	16

Fig. S1. Mössbauer spectrum of MMOH^{red} complexed with MMOB collected at 80 K.

Fig. S2. Mössbauer spectrum of MMOH^{ox} complexed with MMOB collected at 80 K.

A small diiron(II) component (10%), of unoxidized MMOH^{red} is observed and fit as a single quadruple doublet, magenta.

Fig. S3. Mössbauer spectra of MMOH-RFQ (powder packed) collected at 80 K.

Red: MMOH^{red}; Black: MMOH^{ox}; Blue: MMOH-Q

Sample 1:

Sample 2:

Fig. S4. Mössbauer spectra of MMOH-RFQ (frozen) collected at 80 K.

Red: MMOH^{red}; Black: MMOH^{ox}; Blue: MMOH-Q

Velocity [mm s⁻¹]

Sample 1:

Table S1. Isomer shift (δ) and quadrupole splitting (ΔE_Q) values of the three diiron components within MMOH-RFQ samples.

	Reduced	Oxidized	Q	
$\delta ({ m mm \ s^{-1}})$	1.25 1.26	0.53 0.50	0.18	
$\Delta E_Q (\text{mm s}^{-1})$	2.18 3.08	2.27 1.00	0.56	
Component %	39.5 (<i>36, 43</i>)	14.5 (<i>14, 15</i>)	46 (<i>50, 42</i>)	Powder (Fig. S4) (MMOH-RFQ-1)
	54 (<i>51</i> , <i>57</i>)	13 (17, 9)	33.5 (<i>33, 34</i>)	Frozen (Fig. S3) (MMOH-RFQ-2)

Isomer shifts and quadrupole splitting experimental values were determine by fitting spectra with Lorentzian lines through the use of the software mf developed by Dr. Eckhard Bill.

Fig. S5. K α -HERFD XAS of MMOH^{red}, MMOH^{ox}, MMOH-RFQ, Q and previously published Q.

The 'pure' Q spectrum was obtained by deconvolution of the MMOH-RFQ by subtraction of MMOH^{red} and MMOH^{ox} (complexed with MMOB) based on the Mössbauer quantification (Table S1) compared with the published K α -HERFD XAS of MMOH-Q from R. G. Castillo, et. al. (Q-RCG).¹

Fig. S6. Fe-Kα emission spectra of MMOH^{red}, MMOH^{ox}, MMOH-RFQ and MMOH-Q.

The 'pure' MMOH-Q spectrum is the renormalized spectrum of MMOH-RFQ after quantitatively subtraction of the MMOH^{red} and MMOH^{ox} components (complexed with MMOB) based on the Mössbauer quantification. All K α X-ray emission spectra were collected non-resonantly with an incident energy of 7800 eV.

Fig. S7. Kα HERFD-XAS of MMOH-RFQ with digital α-Fe contamination

The edge position of MMOH-RFQ is not dramatically shifted to lower energy upon the addition of ~5% to ~17% α -Fe to the spectrum. However, the pre-edge shape and intensity is strongly modulated. The pre-edge intensity increases over the entire ~7111-7118 eV range, resulting in a pre-edge that is no longer defined by a single peak, but rather a "shelf-like" plateau. This unusual pre-edge shape is the most diagnostic observable in the XAS data for metal contamination.

EXAFS fitting.

Theoretical EXAFS spectra were calculated using Artemis² utilizing the multiple scattering FEFF6 code.³ The EXAFS amplitude, $\chi(k)$, is given by

$$\chi(k) = \sum_{R} S_0^2 N \frac{|f_{\text{eff}}(k)|}{kR^2} \sin(2kR + \phi_k) e^{-2kR/\lambda_k} e^{-2\sigma^2 k^2}$$

where S_0^2 is the overall many-body amplitude factor, *N*, is the degeneracy of the paths, $|F_{\text{eff}}(k)|$ is the effective scattering amplitude, and *R* is the absorber-scatterer distance. A Debye-Waller like factor, $\exp(-2\sigma^2 k^2)$ is also included to account for disorder. Lastly, λ_k is the mean free path of the photoelectron and ϕ_k is the total photoelectron wave phase shift for the interaction between the absorber and the scatterer.

Models of MMOH^{red} and MMOH^{ox} were generated from the PDB deposited crystal structures 1FYZ and 1FZ1,⁴ respectively, by selection of all atoms within 8 Å of the diiron active site through the use of PyMOL.⁵ EXAFS scattering paths were calculated with FEFF6² and employed the FEFF cards: SIG2 0.001; RMAX 5; NLEGS 4.

Individual scattering paths were selected and fit within Artemis from paths calculated by FEFF6. The Fourier-transform spectrum of each were fit over a range of R = 1.0 to 3.4 Å (non-phase shift corrected). The FT is the product of a transform of k^3 -weighted EXAFS spectrum with a Hann window over the range of k = 2 to 11 Å⁻¹. By grouping similar scattering paths of a common coordination shell and increasing its degeneracy, N, the number of variables used for that coordination shell is minimal, 2 variables: σ^2 and ΔR . A single ΔE_0 variable is used for all paths in a given fit. S_0^2 was set to 0.9 for all paths. The E_0 for MMOH^{red} and MMOH^{ox} were set to 7122.17 and 7125.12 eV, respectively and MMOH-RFQ-1 and -RFQ-2 samples were 7124.10 and 7123.25 eV, respectively. Goodness of final fits were evaluated by their *F*-value, defined below:

$$F = \frac{\sum_{i=1}^{n} (d_i - f_i)^2}{\sum_{i=1}^{n} {d_i}^2}$$

where d and f represent the raw data and the fit, respectively. All reported F-values were calculated over an expanded R range of R = 0 to 4 Å.

Fig. S8. Additional HERFD-EXAFS fits of MMOHox

Table S2. HERFD-EXAFS Fit Parameters of MMOHox for Fig. S8

Fit 1					
Ν	Scattering Path	R (Å)	+/_	σ ² (×10 ⁻³ Å ²)	+/-
5	Fe-O/N	2.057	0.010	12.6	1.0
1	Fe-O/N	2.480	0.036	9.9	5.7
1	Fe-Fe	3.056	0.011	1.3	0.9
3	Fe-C	3.304	0.031	4.9	4.1
$\Delta E_0 = +2.51 \text{ eV}$				F = 0.163	
Fit 2					
5	Fe-O/N	2.053	0.014	12.4	1.2
1	Fe-O/N	2.470	0.043	9.9	6.8
1	Fe-Fe	3.048	0.012	2.5	0.9
$\Delta E_0 = +1.75 \text{ eV}$				F = 0.184	

Fig. S9. Comparison of PFY MMOH^{red} with phase-shift recorrection.

FT-EXAFS comparisons of HERFD-MMOH^{red} with the previously published PFY-MMOHred from Shu, et al, subtracting the reported 0.35 Å phase-shift (top panel), with a subtraction of 0.50 Å phase-shift.

Fig. S10. Additional HERFD-EXAFS fits of MMOHred

Table S3. HERFD-EXAFS Fit Parameters of MMOH^{red} for Fig. S10

Fit 1					
Ν	Scattering Path	R (Å)	+/_	σ ² (×10 ⁻³ Å ²)	+/_
4	Fe-O/N	2.044	0.015	10.3	1.1
1	Fe-O/N	2.538	0.022	2.6	2.6
1	Fe-Fe	3.270	0.026	8.4	2.5
3	Fe-C	2.989	0.051	20.0	8.0
$\Delta E_0 = -6.63 \text{ eV}$				F = 0.489	
Fit 2					
4	Fe-O/N	2.062	0.026	10.3	1.5
1	Fe-O/N	2.542	0.035	3.7	4.2
1	Fe-Fe	3.306	0.041	9.2	4.1
$\Delta E_0 = -4.001 \text{ eV}$				F = 0.683	

Fit A						
MMOH-RFQ HERFD – 1						
Ν	Scattering Path	R (Å)	+/_	σ ² (×10 ⁻³ Å ²)	+/	
5	Fe-O/N	2.053	0.016	13.7	1.2	
1	Fe-O/N	1.780	0.020	7.5	2.4	
0.5	Fe-Fe	2.668	0.040	14.6	5.4	
0.5	Fe-Fe	3.385	0.020	3.0	2.1	
$\Delta E_0 = -2.002 \text{ eV}$				F = 0.41487		
MMOH-RFQ HE	E RFD – 2					
5	Fe-O/N	2.035	0.015	12.0	1.0	
1	Fe-O/N	1.759	0.018	7.14	2.4	
0.5	Fe-Fe	2.649	0.051	16.7	7.2	
0.5	Fe-Fe	3.337	0.016	1.34	1.5	
$\Delta E_0 = -4.186 \text{ eV}$				F = 0.28673		
	Best Fit (as sh	lown in F	ig. 10, Ta	able 3)		
MMOH-RFQ HE	E RFD – 1					
Ν	Scattering Path	R (Å)	+/_	σ ² (×10 ⁻³ Å ²)	+/_	
1	Fe-O	1.781	0.018	8.3	2.3	
5	Fe-O/N	2.057	0.014	13.8	1.0	
0.3	Fe-Fe	3.067	0.025	1.9	2.4	
0.7	Fe-Fe	3.343	0.030	8.0	4.2	
$\Delta E_0 = -1.454 \text{ eV}$				F = 0.35461		
MMOH-RFQ HERFD – 2						
1	Fe-O	1.758	0.011	7.6	1.5	
5	Fe-O/N	2.035	0.009	12.1	0.6	
0.3	Fe-Fe	3.053	0.019	1.2	1.8	
0.7	Fe-Fe	3.303	0.015	3.7	1.6	
$\Delta E_0 = -4.060 \text{ eV}$				F = 0.20059		

Table S4. HERFD-EXAFS Fit Parameters of MMOH-RFQ (Attempts to fit short diiron distance ~ 2.8 Å).

1. Castillo, R. G.; Banerjee, R.; Allpress, C. J.; Rohde, G. T.; Bill, E.; Que, L.; Lipscomb, J. D.; DeBeer, S., High-energy-resolution fluorescence-detected x-ray absorption of the Q intermediate of soluble methane monooxygenase. *J. Am. Chem. Soc.* **2017**, *139* (49), 18024-18033.

2. Ravel, B.; Newville, M., ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. *J. of Synchrotron Rad.* **2005**, *12* (4), 537-541.

3. Zabinsky, S. I.; Rehr, J. J.; Ankudinov, A.; Albers, R. C.; Eller, M. J., Multiple-scattering calculations of X-ray-absorption spectra. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1995**, *52* (4), 2995-3009.

4. Whittington, D. A.; Lippard, S. J., Crystal structures of the soluble methane monooxygenase hydroxylase from *Methylococcus capsulatus* (Bath) demonstrating geometrical variability at the dinuclear iron active site. *J. Am. Chem. Soc.* **2001**, *123* (5), 827-838.

5. The PyMOL Molecular Graphics System, Version 1.8. **2015**.