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Supplementary Figures
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Supplementary Figure 1: Predicted components and cumulative effects for pro-
tein P07602 (Proteomics dataset). Top panel shows contributions of individual
components and lower panel shows cumulative effects. Red lines correspond
to cases and blue lines correspond to controls. Bottom right panel shows the
(centred) data. Note, the x-axis of f (4) is time relative to seroconversion age.
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Supplementary Figure 2: Predicted mean of the sero component for protein
Q14982 (Proteomics dataset). The dashed red lines show the measurements of
cases and the dashed blue lines are measurements of controls. x-axis is time
relative to seroconversion age and y-axis is centred protein intensity. Mean
seroconversion age of all cases (79.42 month) is used as the seroconversion age
for controls. The solid red line corresponds to the mean of the seroconversion

component y = f
(4)
ns (sero).
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Supplementary Figure 3: Predicted components and cumulative effects for pro-
tein Q14982 (Proteomics dataset). Top panel shows contributions of individual
components and lower panel shows cumulative effects. Red lines correspond
to cases and blue lines correspond to controls. Bottom right panel shows the
(centred) data. Note the x-axis of f (4) is time relative to seroconversion age.
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f(x) = −40 +
80

1 + e−0.5x

Supplementary Figure 4: Non-stationary transformation. The x-axis is the
original disease related age and the y-axis is the transformed disease related
age. Sigmoid function f(x) = −40 + 80

1+e−0.5x is used for the transformation.
The red bars indicate the positions of ±12 month.
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Supplementary Figure 5: Functions drawn from stationary and non-stationary
SE (square exponential) kernel. a) Functions drawn from a stationary SE kernel
with length-scale lse = 1 and magnitude σ2

se = 1. b) Functions drawn form a
non-stationary SE kernel by first applying the transformation shown in Supple-
mentary Figure 4 and then generated using the same SE kernel with scale lse = 1
and magnitude σ2

se = 1. Random functions are drawn using the standardised
inputs and then transformed back to original range.
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Supplementary Figure 6: Priors for kernel parameters. a) Priors for length-
scales and b) priors for magnitude and noise variance. Note, that the target
variable and continuous covariates are all standardised to mean 0 and standard
deviation 1.
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Supplementary Figure 7: Cumulative effect y = f
(1)
se (age) + f

(2)
bi (group) +

f
(3)
bi×se(group × age) against real (centred) intensity of protein Q7LGC8 (Pro-

teomics dataset). Red lines are cases and blue lines are controls. The red and
blue shaded areas are the ±σ of the predictive distribution on the original train-
ing data for the cases and controls, where σ refers to the pointwise standard
deviation of the predictive distribution.

Supplementary Figure 8: Predicted mean of the sero component for protein
P07602 (Proteomics dataset). The dashed red lines show the measurements
of cases and the dashed blue lines are controls. x-axis indicates time from
seroconversion and y-axis is the centred protein intensity. Mean seroconversion
age of all cases (79.42 month) is used as the seroconversion age for controls.
The solid red line corresponds to the mean of the seroconversion component

y = f
(4)
ns (sero). The red and blue shadow areas are the ±σ of the predictive

distribution on the original training data for the cases and controls, where σ
refers to the pointwise standard deviation of the predictive distribution.
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Supplementary Figure 9: Software architecture. The task manager monitors
the whole process and schedules the tasks. The main worker ensures the tasks
for a given target is executed in the right order. The slaves run parallel jobs
assigned by the task managers.
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Supplementary Tables

Supplementary Table 1. Inclusion of diseaseAge in the final model as a function
of noise variance. Table shows the number of times the diseaseAge covariate is
included in the inferred model among 100 Monte Carlo simulations (Simulated
dataset).

Generated
Datasets

noise = 1 noise = 3 noise = 5 noise = 8

AGPM1 0 0 5 0
AGPM2 0 1 0 2
AGPM3 0 0 1 2
AGPM4 98 97 98 97
AGPM5 99 97 94 92

Supplementary Table 2. Inclusion of diseaseAge in the final model as a function
of sample size. Table shows the number of times the diseaseAge covariate is
included in the inferred model among 100 Monte Carlo simulations (Simulated
dataset).

Generated
Datasets

10 cases and
10 controls

20 cases and
20 controls

30 cases and
30 controls

40 cases and
40 controls

AGPM1 4 0 0 0
AGPM2 0 1 0 5
AGPM3 0 0 0 0
AGPM4 94 97 99 96
AGPM5 93 97 100 100

Supplementary Table 3. Model selection accuracy as a function of sampling
time points. Table shows the number of times the correct model is identified
among 100 Monte Carlo simulations. (Simulated dataset)

Generated
Datasets

2 months 3 months 4 months 6 months

AGPM1 97 98 94 96
AGPM2 95 95 88 85
AGPM3 97 95 91 93
AGPM4 96 92 86 86
AGPM5 94 88 87 86
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Supplementary Table 4. Inclusion of diseaseAge in the final model as a func-
tion of sampling time points. Table shows the number of times the diseaseAge
covariate is included in the inferred model among 100 Monte Carlo simulations
(Simulated dataset).

Generated
Datasets

2 months 3 months 4 months 6 months

AGPM1 0 0 0 0
AGPM2 0 1 3 4
AGPM3 0 0 1 1
AGPM4 100 97 94 92
AGPM5 98 97 94 92
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Supplementary Methods

Supplementary Method 1: Methods for comparison in the
simulation experiments

This section provides a description of the implementation of the comparison
methods in the simulation experiments. The input covariates are age, diseaseAge,
group, loc, gen, and id, where age and diseaseAge are continuous and the rest
are either binary or categorical. The output/target variable is denoted by y
here.

Linear mixed-effects model (LME)

We first used the following linear mixed-effect model [1]:

y = β0 +

nf∑
i=1

βixi +

nr∑
i=1

bizi + ε, (1)

where xi is one of the nf covariates with fixed effects, zi is one of the nr covari-
ates with random effects, βi and bi are the corresponding linear coefficients and
ε is the i.i.d Gaussian noise. The key idea of LME is that βi are independent
of each other and is shared by all individuals, while bi can be correlated with
each other and assumed to be drawn from a multivariate Gaussian.

b = (b1, b2, . . . , bnr )T ∼ N(0, σ2D(θ)), (2)

where σ2 controls the variance and D(θ) parameterises the full nr-by-nr correla-
tion matrix. Maximum likelihood estimates are then obtained for all parameters
in Eq. (1).

Here we use the LME model to incorporate the same covariates and their
interactions as in lonGP. We model shared age and disease age effects, location,
gender, and disease group effects as fixed effects. These are shown as single linear
terms such as age, dise, group, loc, and gen. Note, that we have used dise to
replace diseAge for brevity. The age effects specific to location, gender and
disease group are also modelled as fixed effects which are shown as interaction
terms, such as loc× age, gender× age, group× age. The individual differences
are modelled as random effects, shown as id×age and id. Since there are 5 free
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covariates, there are 25 = 32 models in total. We list all the models as follows:

y ∼ 1 + [id]

y ∼ 1 + age+ [age× id+ id]

y ∼ 1 + dise+ [id]

y ∼ 1 + age+ dise+ [age× id+ id]

y ∼ 1 + loc+ [id]

y ∼ 1 + age+ loc+ loc× age+ [age× id+ id]

y ∼ 1 + dise+ loc+ [id]

y ∼ 1 + age+ dise+ loc+ loc× age+ [age× id+ id]

y ∼ 1 + gen+ [id]

y ∼ 1 + age+ gen+ gen× age+ [age× id+ id]

y ∼ 1 + dise+ gen+ [id]

y ∼ 1 + age+ dise+ gen+ gen× age+ [age× id+ id]

y ∼ 1 + loc+ gen+ [id]

y ∼ 1 + age+ loc+ gen+ gen× age+ loc× age+ [age× id+ id]

y ∼ 1 + dise+ loc+ gen+ [id]

y ∼ 1 + age+ dise+ loc+ gen+ gen× age+ loc× age+ [age× id+ id]

y ∼ 1 + group+ [id]

y ∼ 1 + age+ group+ group× age+ [age× id+ id]

y ∼ 1 + dise+ group+ [id]

y ∼ 1 + age+ dise+ group+ group× age+ [age× id+ id]

y ∼ 1 + loc+ group+ [id]

y ∼ 1 + age+ loc+ group+ group× age+ loc× age+ [age× id+ id]

y ∼ 1 + dise+ loc+ group+ [id]

y ∼ 1 + age+ dise+ loc+ group+ group× age+ loc× age+ [age× id+ id]

y ∼ 1 + gen+ group+ [id]

y ∼ 1 + age+ gen+ group+ group× age+ gen× age+ [age× id+ id]

y ∼ 1 + dise+ gen+ group+ [id]

y ∼ 1 + age+ dise+ gen+ group+ group× age+ gen× age+ [age× id+ id]

y ∼ 1 + loc+ gen+ group+ [id]

y ∼ 1 + age+ loc+ gen+ group+ group× age+ gen× age+ loc× age+ [age× id+ id]

y ∼ 1 + dise+ loc+ gen+ group+ [id]

y ∼ 1 + age+ dise+ loc+ gen+ group+ group× age+ gen× age+ loc× age+ [age× id+ id],

where the terms in the brackets are random effects and other terms are fixed
effects. Linear coefficients are omitted for clarity.

For model selection, we use 10-fold cross validation to fit each model and
make predictions, then calculate the root-mean-square error (RMSE) for each
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model. After that, we compare the RMSE of each model and choose the one
with the lowest RMSE.

We use the MATLAB (version 2017b) function fitlme for the implemen-
tation. The code is available at https://github.com/chengl7/LonGP/blob/

master/comparison/lmm/lmm_main.m.

Linear mixed-effects model (LME) with polynomial terms

In order to bring non-linearity into the modelling, we try to include a second
order term for the continuous covariates in our models, i.e., age2 and dise2. The
32 models used are given as follows:

12
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y ∼ 1 + [id]

y ∼ 1 + age2 + age+ [age× id+ id]

y ∼ 1 + dise2 + dise+ [id]

y ∼ 1 + age2 + age+ dise2 + dise+ [age× id+ id]

y ∼ 1 + loc+ [id]

y ∼ 1 + age2 + age+ loc+ loc× age+ [age× id+ id]

y ∼ 1 + dise2 + dise+ loc+ [id]

y ∼ 1 + age2 + age+ dise2 + dise+ loc+ loc× age+ [age× id+ id]

y ∼ 1 + gen+ [id]

y ∼ 1 + age2 + age+ gen+ gen× age+ [age× id+ id]

y ∼ 1 + dise2 + dise+ gen+ [id]

y ∼ 1 + age2 + age+ dise2 + dise+ gen+ gen× age+ [age× id+ id]

y ∼ 1 + loc+ gen+ [id]

y ∼ 1 + age2 + age+ loc+ gen+ gen× age+ loc× age+ [age× id+ id]

y ∼ 1 + dise2 + dise+ loc+ gen+ [id]

y ∼ 1 + age2 + age+ dise2 + dise+ loc+ gen+ gen× age+ loc× age+ [age× id+ id]

y ∼ 1 + group+ [id]

y ∼ 1 + age2 + age+ group+ group× age+ [age× id+ id]

y ∼ 1 + dise2 + dise+ group+ [id]

y ∼ 1 + age2 + age+ dise2 + dise+ group+ group× age+ [age× id+ id]

y ∼ 1 + loc+ group+ [id]

y ∼ 1 + age2 + age+ loc+ group+ group× age+ loc× age+ [age× id+ id]

y ∼ 1 + dise2 + dise+ loc+ group+ [id]

y ∼ 1 + age2 + age+ dise2 + dise+ loc+ group+ group× age+ loc× age+ [age× id+ id]

y ∼ 1 + gen+ group+ [id]

y ∼ 1 + age2 + age+ gen+ group+ group× age+ gen× age+ [age× id+ id]

y ∼ 1 + dise2 + dise+ gen+ group+ [id]

y ∼ 1 + age2 + age+ dise2 + dise+ gen+ group+ group× age+ gen× age+ [age× id+ id]

y ∼ 1 + loc+ gen+ group+ [id]

y ∼ 1 + age2 + age+ loc+ gen+ group+ group× age+ gen× age+ loc× age
+[age× id+ id]

y ∼ 1 + dise2 + dise+ loc+ gen+ group+ [id]

y ∼ 1 + age2 + age+ dise2 + dise+ loc+ gen+ group+ group× age
+gen× age+ loc× age+ [age× id+ id],
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where the terms in the brackets are random effects and other terms are fixed
effects. Linear coefficients are omitted for clarity. The same procedures as
described in the previous section are applied for selecting the best model. The
implementation can be found at https://github.com/chengl7/LonGP/blob/

master/comparison/lmm/lmm_main1.m.

Gaussian process with automatic relevance determination (ARD) ker-
nel

Gaussian process with automatic relevance determination (ARD) kernel [2] is
a standard method for feature selection with GPs. The ARD kernel for two
inputs x = (x1, x2, . . . , xD) and x′ = (x′1, x

′
2, . . . , x

′
D) is given as follows:

k(x,x′) = exp

−1

2

D∑
j=1

(xj − x′j)2

l2j

 , (3)

where lj is the length scale for the jth covariate and D is the total number of
covariates. ARD was originally proposed for continuous covariates but since lon-
gitudinal biomedical studies often involve discrete covariates as well, we modify
and apply ARD here for a combination of continuous and discrete covariates as
follows. We first normalise the continuous covariates, age and diseaseAge to
mean µ = 0 and standard deviation σ = 1. For discrete covariates, we define the
squared Euclidean distance as follows: if xj = x′j , then we use (xj − x′j)2 = 0,

and if xj 6= x′j then we define (xj − x′j)2 = d. We empirically set d to a value
of 4. The idea is to assign maximal correlation to discrete data items with the
same value and an appropriate smaller correlation to data items with different
values, such that all covariates have similar variances and length scales become
comparable for feature selection.

The importance of a covariate lies on its linear coefficient λj = 1
l2j

in the

ARD kernel. The larger the length scale the smaller the linear coefficient, and
thus is an indication of a less important covariate. We normalise the linear
coefficients by

λ̃k =
λk∑D
j=1 λj

, (4)

then select the covariate if λ̃k is greater than 0.05. The covariate id is always
included for ease of comparison with other methods.

We use MATLAB (version 2017b) function fitrgp for the implementation,
where we have implemented a customised kernel function for the ARD kernel as
described above. The type-II maximum likelihood estimates are then obtained
by numerical optimisation using the quasinewton optimiser. The code is avail-
able at https://github.com/chengl7/LonGP/blob/master/comparison/ard/
ard_main.m.
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Supplementary Method 2: LonGP algorithm

This section describes in detail how the covariate selection process works. Let
us denote a given set of continuous covariates by C = (V1, V2, ....., Vc) and the
discrete covariates by B = (Vc+1, Vc+2, ....., Vc+b), where c and b are the number
of continuous and binary/categorical variables. The categorical covariate id
must be included in set B. In LonGP, the user needs to provide the kernel types
(Sec. 2.4) for all the given covariates, as well as indicate whether interactions
for each covariate are allowed. The data is automatically standardised and the
parameter priors for kernels are predefined (see Sec. 2.5). For any given subset
of covariates (must include id), the additive GP model is constructed by the
following rules:

1. Construct a kernel for each covariate according to the given kernel type
and add it to the model.

2. For each continuous covariate that allows interaction, construct product
kernels with all categorical/binary covariates that also allow interactions
(and that are also covariates of a given model) and add them to the model.

3. For each pair of categorical/binary covariates (excluding id) that allows
interactions, construct a product kernel and add it to the model.

4. Add the noise to finalise the model.

For any covariate subset V, we can construct a GP model GPM(V) according

15



to these four steps. The covariates are then selected by the following algorithm:

Algorithm 1: Stepwise GP regression algorithm

Result: A GP model
Set the current selected covariate set to Vcurr = {id} and the current
model to GPM(Vcurr), infer the parameters using MCMC and perform
LOOCV ;

for i← 1 to c do
foreach Vj ∈ C \Vcurr do

Add Vj and build a candidate model GPM(Vcurr ∪ Vj), run
MCMC and perform LOOCV ;

end
Compare all the generated candidate models (Section 2.7.3) and
choose the best model GPM(Vcurr ∪ Vbest) ;

Calculate LOOCVF of GPM(Vcurr ∪ Vbest) versus GPM(Vcurr) ;
if LOOCVF ≥ 0.8 then

Set Vcurr = Vcurr ∪ Vbest, update the current model accordingly ;
else

break ;
end

end
Perform SCV on the current model ;
for i← 1 to b do

foreach Vj ∈ B \Vcurr do
Add Vj and build a candidate model GPM(Vcurr ∪ Vj), use
numerical integration with CCD and perform SCV ;

end
Compare all the generated candidate models (Section 2.7.3) and
choose the best model GPM(Vcurr ∪ Vbest) ;

Calculate SCVF of GPM(Vcurr ∪ Vbest) versus GPM(Vcurr) ;
if SCVF ≥ 0.95 then

Set Vcurr = Vcurr ∪ Vbest, update the current model accordingly ;
else

break ;
end

end
Make the current model the final model and run MCMC inference. ;
Make predictions using each component (kernel) on the training data,
calculate the variances. ;

Calculate the explained variance (variances divided by the sum) of each
component, delete components that have lower variances than a user
defined threshold ;

The algorithm tries to select covariates with reasonably large effects and the
thresholds of the LOOCVF and SCVF are determined by the user (defaults are
0.8 and 0.95).
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Supplementary Method 3: MCMC details

We start 4 independent Markov chains from different, randomly initialised initial
parameter values. Then, we combine the 4 chains and check the convergence by
throwing away 500 burn-in samples and thinning the remaining 2000 samples
by 5. If converged, then quit; otherwise we thin the combined chain further by
2. If not converged, we repeat the process and check the convergence from the
resulting combined markov chains, for at most 4 times. The potential reduction
scaling factor (PRSF) [3] R is used to check the convergence by the following
rules: if R <= 1.1, converged; if 1.1 < R <= 1.2, does not converge well; if
R > 1.2, does not converge.

Supplementary Method 4: Software architecture

In many occasions more than one target variable is measured, such as in tran-
scriptome studies using microarrays or RNA-sequencing, which means that we
need to run LonGP for many target variables at the same time. Fortunately, sev-
eral parts of our method can be efficiently parallelised. We designed the LonGP

software package so that it can be easily deployed and parallelised in a mod-
ern computing cluster with shared storage, as shown in Supplementary Fig. 9.
Briefly, there are three types of nodes in the physical layer. The task manager
monitors the whole process and assigns different tasks to the main workers and
slaves. The main workers focus on one target variable and ensure that the tasks
are executed in the right order. It also informs the task manager about the
parallel tasks that are available. The slaves run parallel tasks assigned by the
task manager. When a main worker finishes its job, it will turn into a slave
node.
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Supplementary Notes

Supplementary Note 1: Full comparison results on simu-
lated datasets

Linear mixed-effects (LME) model

Supplementary Table 5. Model inference results for simulated data with 20
cases and 20 controls, noise variance σ2

ε = 3 and samples taken every 3 months.
Rows show the number of times each model is inferred as the best model using
LME. ‘Others’ corresponds to all the other 27 possible AGPM models. The last
two columns show the number of times the diseaseAge covariate has or has not
been included in the final model
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AGPM1 6 42 8 2 4 38 17 83
AGPM2 1 57 8 7 3 24 16 84
AGPM3 0 12 51 1 5 31 13 87
AGPM4 0 2 3 19 3 73 63 37
AGPM5 0 0 4 6 18 72 56 44

Supplementary Table 6. Model selection accuracy as a function of noise variance.
Table shows the number of times the correct model is identified using LME.

Generated
Datasets

noise = 1 noise = 3 noise = 5 noise = 8

AGPM1 10 6 16 13
AGPM2 64 57 57 54
AGPM3 62 51 48 52
AGPM4 16 19 19 20
AGPM5 15 18 21 11
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Supplementary Table 7. Model selection accuracy as a function of sample size.
Table shows the number of times the correct model is identified using LME.

Generated
Datasets

10 cases and
10 controls

20 cases and
20 controls

30 cases and
30 controls

40 cases and
40 controls

AGPM1 30 6 7 1
AGPM2 53 57 56 55
AGPM3 38 51 63 64
AGPM4 14 19 12 9
AGPM5 15 18 15 12

Supplementary Table 8. Model selection accuracy as a function of sampling
time points. Table shows the number of times the correct model is identified
using LME.

Generated
Datasets

2 months 3 months 4 months 6 months

AGPM1 8 6 10 0
AGPM2 50 57 57 60
AGPM3 42 51 62 53
AGPM4 16 19 16 26
AGPM5 17 18 13 16

Supplementary Table 9. Inclusion of diseaseAge in the final model for simulated
data with 20 cases and 20 controls, noise variance σ2

ε = 3 and samples taken
every 3 months. Table shows the number of times the diseaseAge covariate is
included in the inferred model using LME.

Generated
Datasets

diseaseAge detected diseaseAge not detected

AGPM1 17 83
AGPM2 16 84
AGPM3 13 87
AGPM4 63 37
AGPM5 56 44
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Supplementary Table 10. Inclusion of diseaseAge in the final model as a function
of noise variance. Table shows the number of times the diseaseAge covariate is
included in the inferred model using LME.

Generated
Datasets

noise = 1 noise = 3 noise = 5 noise = 8

AGPM1 11 17 18 13
AGPM2 17 16 18 12
AGPM3 8 13 19 12
AGPM4 55 63 66 61
AGPM5 62 56 60 63

Supplementary Table 11. Inclusion of diseaseAge in the final model as a function
of sample size. Table shows the number of times the diseaseAge covariate is
included in the inferred model using LME.

Generated
Datasets

10 cases and
10 controls

20 cases and
20 controls

30 cases and
30 controls

40 cases and
40 controls

AGPM1 15 17 16 15
AGPM2 21 16 15 17
AGPM3 15 13 14 13
AGPM4 52 63 65 64
AGPM5 57 56 62 66

Supplementary Table 12. Inclusion of diseaseAge in the final model as a func-
tion of sampling time points. Table shows the number of times the diseaseAge
covariate is included in the inferred model using LME.

Generated
Datasets

2 months 3 months 4 months 6 months

AGPM1 19 17 12 19
AGPM2 17 16 12 17
AGPM3 22 13 10 14
AGPM4 63 63 64 61
AGPM5 59 56 52 46
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Linear mixed-effects model (LME) with polynomial terms

Supplementary Table 13. Model inference results for simulated data with 20
cases and 20 controls, noise variance σ2

ε = 3 and samples taken every 3 months.
Rows show the number of times each model is inferred as the best model using
LME with polynomial terms. ‘Others’ corresponds to all the other 27 possible
AGPM models. The last two columns show the number of times the diseaseAge
covariate has or has not been included in the final model
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AGPM1 10 37 6 3 2 42 12 88
AGPM2 0 50 9 2 1 38 10 90
AGPM3 0 14 41 1 4 40 12 88
AGPM4 0 0 0 25 5 70 72 28
AGPM5 0 1 2 6 19 72 64 36

Supplementary Table 14. Model selection accuracy as a function of noise vari-
ance. Table shows the number of times the correct model is identified using
LME with polynomial terms.

Generated
Datasets

noise = 1 noise = 3 noise = 5 noise = 8

AGPM1 12 10 18 18
AGPM2 51 50 51 52
AGPM3 54 41 47 52
AGPM4 25 25 22 19
AGPM5 21 19 16 16

Supplementary Table 15. Model selection accuracy as a function of sample size.
Table shows the number of times the correct model is identified using LME with
polynomial terms.

Generated
Datasets

10 cases and
10 controls

20 cases and
20 controls

30 cases and
30 controls

40 cases and
40 controls

AGPM1 35 10 6 3
AGPM2 42 50 50 46
AGPM3 34 41 51 58
AGPM4 18 25 17 15
AGPM5 17 19 14 15
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Supplementary Table 16. Model selection accuracy as a function of sampling
time points. Table shows the number of times the correct model is identified
using LME with polynomial terms.

Generated
Datasets

2 months 3 months 4 months 6 months

AGPM1 11 10 13 2
AGPM2 44 50 58 51
AGPM3 46 41 58 59
AGPM4 17 25 20 21
AGPM5 17 19 17 20

Supplementary Table 17. Inclusion of diseaseAge in the final model for simulated
data with 20 cases and 20 controls, noise variance σ2

ε = 3 and samples taken
every 3 months. Table shows the number of times the diseaseAge covariate is
included in the inferred model using LME with polynomial terms.

Generated
Datasets

diseaseAge detected diseaseAge not detected

AGPM1 12 88
AGPM2 10 90
AGPM3 12 88
AGPM4 72 28
AGPM5 64 36

Supplementary Table 18. Inclusion of diseaseAge in the final model as a function
of noise variance. Table shows the number of times the diseaseAge covariate is
included in the inferred model using LME with polynomial terms.

Generated
Datasets

noise = 1 noise = 3 noise = 5 noise = 8

AGPM1 9 12 8 12
AGPM2 10 10 12 15
AGPM3 11 12 12 10
AGPM4 66 72 69 62
AGPM5 70 64 60 57
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Supplementary Table 19. Inclusion of diseaseAge in the final model as a function
of sample size. Table shows the number of times the diseaseAge covariate is
included in the inferred model using LME with polynomial terms.

Generated
Datasets

10 cases and
10 controls

20 cases and
20 controls

30 cases and
30 controls

40 cases and
40 controls

AGPM1 9 12 11 12
AGPM2 19 10 11 13
AGPM3 17 12 10 10
AGPM4 58 72 72 77
AGPM5 62 64 67 77

Supplementary Table 20. Inclusion of diseaseAge in the final model as a func-
tion of sampling time points. Table shows the number of times the diseaseAge
covariate is included in the inferred model using LME with polynomial terms.

Generated
Datasets

2 months 3 months 4 months 6 months

AGPM1 9 12 9 9
AGPM2 20 10 7 12
AGPM3 10 12 8 8
AGPM4 70 72 68 58
AGPM5 62 64 65 55

Gaussian process with automatic relevance determination (ARD) ker-
nel

Supplementary Table 21. Model inference results for simulated data with 20
cases and 20 controls, noise variance σ2

ε = 3 and samples taken every 3 months.
Rows show the number of times each model is inferred as the best model us-
ing GP with ARD kernel. ‘Others’ corresponds to all the other 27 possible
AGPM models. The last two columns show the number of times the diseaseAge
covariate has or has not been included in the final model
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AGPM1 92 0 0 0 0 8 0 100
AGPM2 0 88 2 0 0 10 2 98
AGPM3 0 60 31 1 1 7 9 91
AGPM4 0 18 0 47 4 31 71 29
AGPM5 0 19 11 15 21 34 54 46

23



Supplementary Table 22. Model selection accuracy as a function of noise vari-
ance. Table shows the number of times the correct model is identified using GP
with ARD kernel.

Generated
Datasets

noise = 1 noise = 3 noise = 5 noise = 8

AGPM1 93 92 90 91
AGPM2 90 88 81 72
AGPM3 30 31 35 47
AGPM4 62 47 47 30
AGPM5 16 21 18 20

Supplementary Table 23. Model selection accuracy as a function of sample size.
Table shows the number of times the correct model is identified using GP with
ARD kernel.

Generated
Datasets

10 cases and
10 controls

20 cases and
20 controls

30 cases and
30 controls

40 cases and
40 controls

AGPM1 86 92 98 99
AGPM2 71 88 88 96
AGPM3 38 31 27 25
AGPM4 24 47 49 44
AGPM5 40 21 11 6

Supplementary Table 24. Model selection accuracy as a function of sampling
time points. Table shows the number of times the correct model is identified
using GP with ARD kernel.

Generated
Datasets

2 months 3 months 4 months 6 months

AGPM1 94 92 86 88
AGPM2 91 88 75 75
AGPM3 29 31 35 41
AGPM4 53 47 42 28
AGPM5 12 21 25 21
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Supplementary Table 25. Inclusion of diseaseAge in the final model for simulated
data with 20 cases and 20 controls, noise variance σ2

ε = 3 and samples taken
every 3 months. Table shows the number of times the diseaseAge covariate is
included in the inferred model using GP with ARD kernel.

Generated
Datasets

diseaseAge detected diseaseAge not detected

AGPM1 0 100
AGPM2 2 98
AGPM3 9 91
AGPM4 71 29
AGPM5 54 46

Supplementary Table 26. Inclusion of diseaseAge in the final model as a function
of noise variance. Table shows the number of times the diseaseAge covariate is
included in the inferred model using GP with ARD kernel.

Generated
Datasets

noise = 1 noise = 3 noise = 5 noise = 8

AGPM1 0 0 0 0
AGPM2 3 2 8 12
AGPM3 1 9 5 5
AGPM4 70 71 73 63
AGPM5 71 54 64 55

Supplementary Table 27. Inclusion of diseaseAge in the final model as a function
of sample size. Table shows the number of times the diseaseAge covariate is
included in the inferred model using GP with ARD kernel.

Generated
Datasets

10 cases and
10 controls

20 cases and
20 controls

30 cases and
30 controls

40 cases and
40 controls

AGPM1 1 0 0 0
AGPM2 12 2 7 1
AGPM3 5 9 3 6
AGPM4 71 71 81 78
AGPM5 75 54 67 75
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Supplementary Table 28. Inclusion of diseaseAge in the final model as a func-
tion of sampling time points. Table shows the number of times the diseaseAge
covariate is included in the inferred model using GP with ARD kernel.

Generated
Datasets

2 months 3 months 4 months 6 months

AGPM1 0 0 2 3
AGPM2 0 2 11 13
AGPM3 1 9 8 10
AGPM4 73 71 67 66
AGPM5 50 54 58 53
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