Gao et al., Therapeutic role of miR-19a/19b in cardiac regeneration and protection from myocardial infarction

Supplementary Information

Supplementary Table1. Echocardiography examination of cardiac function after intra-cardiac injection of individual miR-19a, miR-19b or control mimics at multiple time points post-MI.

	MI-5d		MI-2w			MI-7w			MI-9w			
	Control	miR-19a	miR-19b	Control	miR-19a	miR-19b	Control	miR-19a	miR-19b	Control	miR-19a	miR-19b
	(N=5)	(N=4)	(N=5)	(N=5)	(N=4)	(N=6)	(N=4)	(N=3)	(N=5)	(N=4)	(N=4)	(N=5)
IVS;d(mm)	0.623±0.028	1.014±0.049**	1.368±0.043***	0.750±0.064	0.869±0.040	1.213±0.015**	0.976±0.047	0.841±0.051	0.971±0.016	0.747±0.018	0.850±0.037	0.992±0.029*
IVS;s(mm)	0.795±0.024	1.532±0.033**	1.654±0.056***	0.999±0.010	1.417±0.039	1.749±0.014**	1.513±0.036	1.417±0.080	1.352±0.056	1.101±0.087	1.304±0.028	1.422±0.033
LVID;d(mm)	3.665±0.107	3.468±0.075	3.263±0.101	3.905±0.081	3.268±0.106	3.383±0.078*	3.142±0.099	3.022±0.237	3.745±0.028**	3.989±0.100	3.915±0.112	4.057±0.149
LVID;s(mm)	3.183±0.137	2.231±0.138*	2.452±0.094*	3.220±0.113	2.170±0.148*	2.223±0.116*	2.273±0.095	1.777±0.221	2.552±0.051	3.171±0.116	2.608±0.167	2.782±0.149
LVPW;d(mm)	0.716±0.045	0.876±0.040	1.033±0.020*	0.891±0.009	0.953±0.027	0.865±0.055	0.905±0.044	0.987±0.010	0.909±0.012	0.921±0.019	0.892±0.024	0.893±0.029
LVPW;s(mm)	0.801±0.047	1.294±0.080*	1.370±0.043**	1.151±0.034	1.307±0.049	1.333±0.078	1.378±0.057	1.503±0.037	1.450±0.030	1.207±0.071	1.394±0.049	1.393±0.084
EF(%)	29.765±2.904	64.177±5.301*	48.95±3.438*	37.160±3.069	63.226±4.050*	63.540±2.986*	54.894±2.269	74.268±3.405*	60.523±1.405	41.954±3.202	62.757±3.503*	60.370±2.055*
FS(%)	13.905±1.492	35.838±3.617*	28.247±1.529*	17.991±1.657	34.335±2.887*	32.680±4.544*	27.775±1.496	42.307±2.661*	31.988±0.980	20.586±1.834	34.190±2.518*	32.164±1.407*
LV Mass(mg)	81.080±5.915	118.765±5.158*	156.161±9.908**	116.427±3.932	104.325±7.972	135.851±12.487	100.676±4.753	93.367±12.100	132.468±2.728*	123.697±3.46	130.690±10.396	148.531±3.222*
LV Mass(Corrected,mg)	64.863±4.732	95.012±4.127*	124.929±7.927**	93.142±3.146	83.460±6.377	108.681±9.990	80.450±3.802	74.693±9.680	105.974±2.183*	98.958±2.770	104.552±8.317	118.825±2.577*
LV Vol;d(ul)	58.328±3.744	50.175±2.666	47.128±3.658	66.966±3.100	43.986±3.598*	51.564±4.919*	39.946±3.158	37.800±7.069	59.984±1.028**	70.348±4.136	67.514±4.526	75.325±6.465
LV Vol;s(ul)	42.842±3.900	18.162±2.681*	21.708±2.398*	43.208±3.196	17.223±2.705	21.711±4.374*	18.251±1.994	11.085±3.430	23.970±0.141	41.111±3.563	26.881±3.886	31.888±4.034

Wild type C57BL/6 mice were randomly subjected to intra-cardiac injection of miR-19a, miR-19b or control mimics after myocardium infarction (MI) surgery, respectively. Echocardiography analyses of cardiac function were performed at multiple time points post-MI surgery from miR-19a/19b and control group. N of each group was indicated. *: *P*<0.05; **: *P*<0.01 vs. control group. IVS;d: Interventricular septal thickness at diastole; IVS;s Interventricular septal thickness at systole; LVID;d: Left ventricular end diastolic internal dimension; LVPW;d: Left ventricular end diastolic posterior wall dimension; LVPW;s: Left ventricular end systolic posterior wall dimension; EF: Ejection fraction; FS: Fractional shortening; LV Vol;d: Left ventricular end diastolic volume. LV Vol;s: Left ventricular end systolic volume.

Supplementary Table2. Echocardiography examination of cardiac function after intra-cardiac injection of miR-19a/19b or control mimics at multiple time points of post-MI.

	2 - 4 weeks post-MI		2 mont	hs post-MI	4 months post-MI		1 year post-MI	
	Control	miR-19a/19b	Control	miR-19a/19b	Control	miR-19a/19b	Control	miR-19a/19b
	(n=8)	(n=12)	(N=5)	(N=10)	(N=5)	(N=10)	(N=3)	(N=4)
IVS;d (mm)	0.463±0.074	0.523±0.093	0.735±0.219	0.606±0.088	0.921±0.160	0.731±0.093*	0.561±0.134	1.036±0.229*
IVS;s (mm)	0.520±0.074	0.634±0.083**	0.767±0.238	0.861±0.148	1.151±0.162	0.977±0.088*	0.604±0.178	1.362±0.209**
LVID;d (mm)	5.024±0.805	4.383±0.522*	5.693±0.707	4.773±0.601*	5.733±1.322	4.937±0.524	5.299±0.818	4.680±0.632
LVID;s (mm)	4.038±0.948	3.027±0.550**	4.824±0.921	3.464±0.723**	4.970±1.503	3.641±0.686*	5.010±0.945	3.762±0.619
LVPW;d (mm)	0.483±0.043	0.575±0.029**	0.730±0.198	0.703±0.077	0.877±0.141	0.787±0.105	1.285±0.251	1.069±0.270
LVPW;s (mm)	0.637±0.080	0.774±0.110**	0.848±0.180	0.947±0.112	1.010±0.082	0.980±0.179	1.525±0.265	1.313±0.195
EF (%)	41.05±12.16	59.04±8.20**	32.51±11.06	53.72±10.45**	29.62±11.39	51.51±11.32**	12.853±7.755	39.24±14.61*
FS (%)	20.43±6.90	31.34±5.55**	15.78±5.79	28.08±6.76**	14.20±5.69	26.79±7.34**	5.786±3.560	19.48±8.46*
LV Mass (mg)	90.77±20.68	85.50±19.12	189.06±45.08	124.86±36.07*	257.47±102.49	159.40±39.33*	238.43±116.70	218.36±34.36
LV Mass (Corrected, mg)	72.62±16.55	68.40±15.29	151.25±36.06	99.89±28.86*	205.98±81.99	127.52±31.47*	190.74±93.36	174.69±27.48
LV Vol;d (uL)	123.39±45.51	88.58±24.58*	162.33±47.56	108.30±31.62*	171.78±100.73	116.48±27.10	138.30±49.93	103.38±29.45
LV Vol;s (uL)	76.79±41.78	37.56±16.16**	113.36±52.01	52.67±25.59**	128.91±101.62	58.67±24.10	122.80±53.69	62.50±24.55
Heart Rate (BMP)	626±31	633±24	612±66	665±21*	585±60	631±16*	533.04±42.55	478.68±87.03

Wild type C57BL/6 mice were randomly subjected to intra-cardiac injection of miR-19a/19b or control mimics after myocardium infarction (MI) surgery, respectively. Echocardiography analyses of cardiac function were performed at multiple time points post-MI surgery from miR-19a/19b and control group. N of each group was indicated. *: *P*<0.05; **: *P*<0.01 vs. control group. IVS;d: Interventricular septal thickness at diastole; IVS;s Interventricular septal thickness at systole; LVID;d: Left ventricular end diastolic internal dimension; LVID;s: Left ventricular end systolic internal dimension; LVPW;d: Left ventricular end diastolic posterior wall dimension; EF: Ejection fraction; FS: Fractional shortening; LV Vol;d: Left ventricular end diastolic volume. LV Vol;s: Left ventricular end systolic volume.

Supplementary Table 3. Echocardiography examination of cardiac function after intra-cardiac injection of AAV9-cTNT-miR-19a/19b or control AAV at multiple time points post-MI.

	1 day post-MI		7 days post-MI		2 weeks post-MI		2 months post-MI		3 months post-MI	
	AAV-Ctrl	AAV-miR-19a/b	AAV-Ctrl	AAV-miR-19/b	AAV-Ctrl	AAV-miR-19a/b	AAV-Ctrl	AAV-miR-19a/b	AAV-Ctrl	AAV-miR-19a/b
	(n=4)	(n=6)	(n=4)	(n=6)	(n=4)	(n=6)	(n=6)	(n=6)	(n=6)	(n=7)
IVS;d (mm)	.832±0.117	0.994±0.109	0.653±0.184	0.842±0.187	0.563±0.086	0.577±0.022	0.718±0.123	0.622±0.084	0.595±0.040	0.583±0.078
IVS;s (mm)	1.481±0.172	1.509±0.096	0.912±0.346	1.313±0.277*	0.617±0.102	0.657±0.103	0.753±0.129	0.823±0.088	0.644±0.149	0.747±0.083
LVID;d (mm)	3.261±0.727	3.245±0.238	4.087±0.389	3.905±0.391	4.554±0.466	3.754±0.647	5.024±0.603	4.387±0.568	5.082±0.402	4.273±0.483**
LVID;s (mm)	1.991±0.728	2.128±0.325	3.338±0.659	2.846±0.417	3.595±0.628	2.291±0.537**	4.190±1.015	2.804±0.502*	4.218±0.646	2.833±0.660**
LVPW;d (mm)	0.981±0.494	0.855±0.139	0.537±0.129	0.510±0.092	0.667±0.107	0.688±0.079	0.736±0.139	0.675±0.047	0.610±0.073	0.701±0.084
LVPW;s (mm)	1.373±0.449	1.193±0.226	0.748±0.166	0.788±0.188	0.771±0.120	0.849±0.150	0.805±0.104	0.932±0.143	0.687±0.117	0.882±0.067**
EF (%)	71.276±13.160	64.015±11.407	38.542±16.902	53.474±8.388	43.32±10.18	70.27±6.86**	35.11±19.84	66.28±5.77**	35.62±12.48	62.63±12.59**
FS (%)	40.754±11.513	34.466±8.696	19.019±9.830	27.324±5.320	21.45±5.63	39.34±5.83**	17.48±10.47	36.49±4.29**	17.42±6.92	34.32±9.49**
LV Mass (mg)	97.872±14.605	102.926±8.454	82.520±14.168	90.889±19.562	104.03±16.21	79.39±26.37	155.65±43.46	104.61±18.61*	123.54±14.83	100.02±25.33
LV Mass (Corrected, mg)	78.297±11.684	82.341±6.763	66.016±11.334	72.711±15.650	83.23±12.97	63.51±21.10	124.52±34.76	83.69±14.89*	98.83±11.86	80.02±20.27
LV Vol;d (uL)	45.592±21.514	42.679±7.496	74.494±15.712	66.942±15.132	96.18±24.05	62.47±25.26	121.60±34.32	88.85±23.70	123.73±21.45	83.16±21.88**
LV Vol;s (uL)	15.001±10.537	15.390±5.537	47.685±19.217	31.679±10.651	56.20±24.89	19.40±11.21*	83.86±49.05	30.95±11.10*	81.67±26.79	32.77±17.26**

Wild type C57BL/6 mice were randomly subjected to intra-cardiac injection of AAV-miR-19a/19b or control AAV after myocardium infarction (MI) surgery, respectively. Echocardiography analyses of cardiac function were performed at multiple time points post-MI surgery from miR-19a/19b and control group. N of each group was indicated. *: *P*<0.05; **: *P*<0.01 vs. control group. IVS;d: Interventricular septal thickness at diastole; IVS;s Interventricular septal thickness at systole; LVID;d: Left ventricular end diastolic internal dimension; LVID;s: Left ventricular end systolic internal dimension; LVPW;d: Left ventricular end diastolic posterior wall dimension; EF: Ejection fraction; FS: Fractional shortening; LV Vol;d: Left ventricular end diastolic volume. LV Vol;s: Left ventricular end systolic volume.

	MI-2w		MI	MI-6w		MI-11w		4w
	Control	miR-19a/19b	Control	miR-19a/19b	Control	miR-19a/19b	Control	miR-19a/19b
	(N=4)	(N=4)	(N=4)	(N=4)	(N=5)	(N=10)	(N=5)	(N=6)
IVS;d(mm)	0.905±0.023	1.127±0.033*	0.689±0.168	1.088±0.019*	0.693±0.044	1.047±0.017**	0.804±0.068	0.970±0.022
IVS;s(mm)	1.236±0.037	1.755±0.043**	1.191±0.278	1.697±0.029	1.115±0.068	1.546±0.027**	1.216±0.112	1.520±0.024
LVID;d(mm)	3.538±0.097	2.504±0.458**	3.683±0.146	3.374±0.114	3.861±0.159	3.570±0.087	4.217±0.221	3.812±0.086
LVID;s(mm)	2.669±0.084	1.581±0.106**	2.473±0.036	2.022±0.104	2.926±0.222	2.379±0.104	3.459±0.285	2.398±0.082
LVPW;d(mm)	1.046±0.096	1.747±0.046**	0.766±0.059	0.860±0.025	0.943±0.037	0.992±0.029	0.909±0.037	0.884±0.012
LVPW;s(mm)	1.391±0.135	2.002±0.032*	1.320±0.059	1.423±0.014	1.334±0.079	1.547±0.032	1.149±0.048	1.472±0.021
EF(%)	49.449±2.103	68.663±2.688*	61.593±1.062	71.961±1.690*	40.386±2.560	63.489±2.044*	40.229±4.795	67.588±1.378*
FS(%)	24.560±1.233	37.254±2.172*	32.501±0.800	40.398±1.398*	19.671±1.425	36.113±1.597*	20.433±2.715	37.431±1.220*
LV Mass(mg)	128.490±8.735	149.726±9.956	84.608±13.046	119.694±6.832	126.771±6.592	137.607±3.990	134.345±5.245	135.573±5.928
LV Mass(Corrected,mg)	102.792±6.988	119.781±7.964	70.369±9.782	95.755±5.465	101.418±5.274	110.086±3.192	107.476±4.196	108.459±4.742
LV Vol;d(ul)	52.969±3.513	23.392±2.726**	57.618±2.570	47.579±3.829	72.306±5.481	57.865±3.454	85.816±10.287	63.903±3.330
LV Vol;s(ul)	42.842±3.900	7.698±1.357**	21.589±0.385	10.750±4.396	36.466±4.444	12.106±1.296**	44.631±9.1300.97	19.163±1.776

Supplementary Table 4. Echocardiography examination of cardiac function after tail-vein injection of LANCER II delivered miR-19a/19b in adult mice.

Wild type C57BL/6 mice were randomly subjected to tail-vein injection of miR-19a/19b or control mimics after myocardium infarction (MI) surgery, respectively. Echocardiography analyses of cardiac function were performed at multiple time points post-MI surgery from miR-19a/19b and control group. N of each group was indicated. *: *P*<0.05; **: *P*<0.01 vs. control group. IVS;d: Interventricular septal thickness at diastole; IVS;s Interventricular septal thickness at systole; LVID;d: Left ventricular end diastolic internal dimension; LVPW;d: Left ventricular end diastolic posterior wall dimension; LVPW;d: Left ventricular end diastolic posterior wall dimension; EF: Ejection fraction; FS: Fractional shortening; LV Vol;d: Left ventricular end diastolic volume. LV Vol;s: Left ventricular end systolic volume.

	MI-2w		MI-6w		MI-11w		MI-14w	
	Control	miR-19a/19b	Control	miR-19a/19b	Control	miR-19a/19b	Control	miR-19a/19b
	(N=7)	(N=7)	(N=7)	(N=7)	(N=9)	(N=9)	(N=8)	(N=8)
IVS;d(mm)	1.047±0.013	0.990±0.015	0.648±0.026	0.920±0.019**	0.794±0.016	1.083±0.026**	0.629±0.028	0.892±0.028*
IVS;s(mm)	1.522±0.015	1.612±0.020	0.889±0.048	1.459±0.025***	1.032±0.036	1.545±0.020***	0.794±0.044	1.357±0.043**
LVID;d(mm)	3.424±0.090	3.006±0.088	4.428±0.079	3.245±0.066***	4.146±0.067	3.190±0.051***	4.635±0.045	3.588±0.057***
LVID;s(mm)	2.375±0.099	1.577±0.056*	3.567±0.107	1.939±0.078***	3.324±0.094	2.046±0.045***	3.973±0.073	2.297±0.047***
LVPW;d(mm)	0.850±0.015	0.962±0.034	0.784±0.015	0.951±0.021*	0.778±0.021	0.913±0.028	0.778±0.017	0.912±0.017*
LVPW;s(mm)	1.242±0.017	1.507±0.022**	1.194±0.022	1.549±0.027**	1.136±0.032	1.420±0.025*	1.019±0.025	1.386±0.021***
EF(%)	59.618±1.985	80.252±0.795**	40.088±2.215	72.061±1.716***	37.025±1.410	66.626±0.930***	30.463±1.638	65.919±1.206***
FS(%)	31.551±1.319	47.795±0.821***	19.915±1.293	41.143±1.422***	17.904±0.732	36.138±0.741***	14.595±0.904	36.014±0.920***
LV Mass(mg)	118.148±4.615	100.363±3.583	120.366±3.335	105.834±3.093	124.260±3.641	114.742±3.576	128.396±3.952	117.761±3.537
LV Mass(Corrected,mg)	94.518±3.692	80.291±2.866	96.293±2.668	84.668±2.474	99.408±2.913	91.793±2.861	102.717±3.161	94.209±2.830
LV Vol;d(ul)	50.461±3.003	37.238±2.516	90.772±3.725	43.572±2.062***	81.362±2.730	41.848±1.580***	99.819±2.276	55.200±2.095***
LV Vol;s(ul)	22.158±2.139	7.627±0.639*	47.524±2.585	13.239±1.205	52.420±2.611	14.322±0.699***	70.842±2.990	18.824±0.864***

Supplementary Table 5. Echocardiography examination of cardiac function after tail-vein injection of RNAiMAX delivered miR-19a/19b in adult mice.

Wild type C57BL/6 mice were randomly subjected to tail-vein injection of miR-19a/19b or control mimics after myocardium infarction (MI) surgery, respectively. Echocardiography analyses of cardiac function were performed at multiple time points post-MI surgery from miR-19a/19b and control group. N of each group was indicated. *: *P*<0.05; **: *P*<0.01 vs. control group. IVS;d: Interventricular septal thickness at diastole; IVS;s Interventricular septal thickness at systole; LVID;d: Left ventricular end diastolic internal dimension; LVPW;d: Left ventricular end diastolic posterior wall dimension; LVPW;d: Left ventricular end diastolic posterior wall dimension; EF: Ejection fraction; FS: Fractional shortening; LV Vol;d: Left ventricular end diastolic volume. LV Vol;s: Left ventricular end systolic volume.

Primary antibodies						
Antigen	Company	Catalog #	Origin	Working dilution		
Socs1	Abcam	ab9870	Goat	1:1000 for WB		
Socs3	Abcam	ab16030	Rabbit	1:1000 for WB		
STAT3	CST	9139	Mouse	1:1000 for WB		
p-STAT3	CST	9145	Rabbit	1:1000 for WB		
PTEN	CST	9188	Rabbit	1:1000 for WB		
Bim	CST	2933	Rabbit	1:1000 for WB		
c-caspase3	CST	9661	Rabbit	1:1000 for WB		
Bcl2	CST	3498	Rabbit	1:1000 for WB		
Bax	CST	2772	Rabbit	1:1000 for WB		
CD80	Hangzhou Huaan	M1007-10		1:50 for IHC		
	Biotechnology		Mouse			
iNOS	Hangzhou Huaan	RT1332		1:200 for IHC		
	Biotechnology		Rabbit			
Arginase1	Hangzhou Huaan	RT1051		1:200 for IHC		
	Biotechnology		Rabbit			
phospho-Histone H3	Millipore	06-570	Rabbit	1:400 for IF		
Aurora B	Abcam	ab2254	Rabbit	1:100 for IF		
Connexin 43	Abcam	ab11370	Rabbit	1:1000 for IF		
PAN cadherin	Sigma	C3678	Rabbit	1:500 for IF		
Alpha-actinin	Abcam	ab9465	Mouse	1:250 for IF		
cTNT	DSHB	CT3	Mouse	1:500 for IF		
Secondary antibodies						
Alexa Fluor® 594	Invitrogon	A 11005	Coat	1,400 for IE		
Goat Anti-Mouse	Invitrogen	A-11003	Goal	1:400 101 11		
Alexa Fluor® 594	Invitrogon	A 11012	Goat	1:400 for IF		
Goat Anti-Rabbit	mvnuogen	A-11012	Goal	1.400 101 1F		
Alexa Fluor® 488	Invitrogon	A 11001	Goat	1:400 for IF		
Goat Anti-Mouse	mvnuogen	A-11001	Uuai	1.400 101 11		
Alexa Fluor® 488	Invitrogen	Δ_11008	Goat	1:400 for IF		
Goat Anti-Rabbit	minuogen	A-11000	UUai	1.700 101 11		

Supplementary table 6. Antibodies used in this study

Supplementary table 7. Primers Used in This Study

SYBR Green PCR primers						
Gene	Forward	Reverse				
Mst1	GCCTCCAGCTTAGGAGAATG	GGAAGTCATTCAGTGGTGAGC				
Mst2	TGCTGATATACATCCGATGAGG	CAGACCAAAGTTCAGGTTTCCT				
Lats1	TCCACAGATGTTTCAGGATTTG	GAAGAGCTTGAATAACCATGTCC				
Lats2	GAGGTGCTTCTCCGCAAA	AGCATCTCAAAGAGAATCACACC				
Mob1b	AACCTACGGATGGCTGTCA	AAAATCCACAGCTGCAAAGC				
Yap	AAATGCTCCAAAATGTCAGGA	CATTCGGAGTCCCTCCATC				
Taz	GCTGCAGACATCTGCTTCAC	TGAAGTCCATCCCTTTCTGG				
Sav1	TACAGGCACCCCTGTGCT	TGTTGTGGCTGATACGTGATG				
Irf9	TGAGGCCACCATTAGAGAGG	AGCAGCAGCGAGTAGTCTGA				
PML	TGACCTCAAGATTGACAATGAAA	CAGGGAGACAGCTTTGGAGT				
Sp100	AGGAATTGATGGAGGGAACC	AGCTGGCACCAGGTCCTT				
Col2A1	GAAGGTGCTCAAGGTTCTCG	GCAATTCCAGGAGCACCA				
Col4A1	TGGCACAAAAGGGACGAG	GGCCAGGAATACCAGGAAGT				
Col8A1	GGCCAGCCAAGCCTAAAT	TGATGAACAGTATTCCCAGCA				
Tgfb2	TTGTTCCACAGGGGTTAAGG	AGCTCGGTCCTTCAGATCCT				
IFI35	TCACTTCCGAGTCAAGCTAGG	TTCTTGGTAGCATTAGGCAGTAAG				
Bcl6	TTCCGCTACAAGGGCAAC	CAGCGATAGGGTTTCTCACC				
Pik3ap1	GACGATGAGCTCTACGAGTCC	GGCCTGAAGCATTTCAACA				
Xafl	TGTTGTCAGTGCCGAATTTT	CCCACTGGAGTTTCTTTTGG				
Slc15a2	TCTGCTATTTCACCCCCATC	CACCAGGGACAGATAGATGATTG				
Acot1	TACGATGACCTCCCCAAGAA	CCAATTCCAGGTCCTTTTACC				
Clec3b	GGAGAAGCAGGCCTTACAGA	ATGGAAGGTCTTCGGTTGG				
Stmn2	GGAGCTGTCTATGCTGTCACTG	CTGCTTCACCTCCATGTCG				
HDAC11	TGCAGACATCACACTGGCTAT	GGTGGGCATCGAGATCAA				
IL-1-β	TCTTCCTAAAGTATGGGCTGGA	AAAGGGAGCTCCTTAACATGC				
IL-6	CAAAGCCAGAGTCCTTCAGAG	GCCACTCCTTCTGTGACTCC				
ΤΝFα	CCACCACGCTCTTCTGTCTA	AGGGTCTGGGCCATAGAACT				
CD68	CCAGCTGTTCACCTTGACCT	CAATGATGAGAGGCAGCAAG				
MCP-1	GTTGGCTCAGCCAGATGCA	AGCCTACTCATTGGGATCATCTTG				
Arginase 1	GAATCTGCATGGGCAACC	GAATCCTGGTACATCTGGGAAC				
Cd163	TCACTTCTCAGTGCCTCTGC	CGCCAGTCTCAGTTCCTTCT				
IL-10	ATCGATTTCTTCCCTGTGAA	TGGCCTTGTAGACACCTTGG				
Socs1	GTGGTTGTGGAGGGTGAGAT	CCTGAGAGGTGGGGATGAGG				
Socs3	ATTTCGCTTCGGGACTAGC	AACTTGCTGTGGGTGACCAT				
ANP	CAC AGA TCT GAT GGA TTT CAA GA	CCT CAT CTT CTA CCG GCA TC				

BNP	GTC AG	T CGT TTG GGC TGT AAC	AGA CCC AGG CAG AGT CAG AA
b-MHC	CGC AT	C AAG GAG CTC ACC	CTG CAG CCG CAG TAG GTT
TGFBR2	GGCTC	IGGTACTCTGGGAAA	AATGGGGGCTCGTAATCCT
ELN	TGGAG	CAGGACTTGGAGGT	CCTCCAGCACCATACTTAGCA
FBN1	CCTTCC	CTGTGGCTCCAGAT	GCTGCCCCCATTCATACA
Bim	GGAGA	CGAGTTCAACGAAACTT	AACAGTTGTAAGATAACCATTTGAGG
Ctgf	TGACC	IGGAGGAAAACATTAAGA	AGCCCTGTATGTCTTCACACTG
CDK1	CTCTAT	TAAAAGAACTTCGACATCCA	CCATGGACAGGAACTCAAAGA
Ccnb1	TGTGTG	GAACCAGAGGTGGAA	GGCTTGGAGAGGGATTATCA
Cend1	GAGAT	TGTGCCATCCATGC	CTCCTCTTCGCACTTCTGCT
THBS1	CACCTO	CTCCGGGTTACTGAG	GCAACAGGAACAGGACACCTA
ABI Taqman pro	obes acce	ession number	
TaqMan® M	icroRNA		
Assays- hsa-miR-19a		4427975 (Assay ID 000395)	
TaqMan® M	icroRNA		
Assays- hsa-miR-19b		4427975 (Assay ID 000396)	
TaqMan® MicroRNA			
Assays- U6 snRNA		4427975 (Assay ID 001973)	

Supplementary Data

Supplementary Figure 1. Pharmacokinetics of miRNA mimics after intra-cardiac injection and myocardial infarction in adult mice.

Immediately after MI surgery, Cy-3 labeled micrONTM agomir Negative Control (10 μ g per heart in 50 μ l) were injected into 3 sites around the infarcted area (anterior wall, lateral wall, and apex area). At varied time points (2h, 6h, 12h, 24h, 48h) post myocardial infarction (MI), collected heart samples, performed immune-stating. Representative images of pharmacokinetics of miRNA mimics after intra-cardiac injection and MI in adult mouse heart. Cy3 marks miRNA mimic (red); α -actinin (ACTN1) marks cardiomyocytes (green); WGA marks cell surface (white) and DAPI labels nuclei (blue).

Supplementary Figure 2. Intra-cardiac injection of miR-19a/19b mimics in adult mice. (A) Kaplan-Meier survival curves of injection of miR-19a/19b mimics compared to injection of control mimic after MI injury. The n number for each group is indicated. (B) Triphenyltetrazolium chloride (TTC) staining of transverse section of hearts 24h after intra-cardiac injection of 19a/19b or control mimics post MI injury in adult mice. (C) Quantification of TTC staining. n=3. (D) Echocardiography analyses of left ventricle cardiac function of mice 24 h after intra-cardiac injection of individual miR-19a/19b or control mimics post MI. FS%, fractional shortening; EF%, ejection fraction.

Supplementary Figure 3. Expression of Hippo/Yap pathway related gene. Quantitative RT-PCR (qPCR) analyses of the expression of Hippo/Yap pathway related genes (Yap, Taz, Tead1, Last1, Last2, Mst1, Mst2, Sav1, Sav2) in mouse hearts 24, 48 and 72 hours post MI injury with control and miR-19a/19b mimic injection. Data are presented as mean \pm SEM; *P < 0.05, relative to control. N=3 for MI-24h samples; N=4-5 for MI-48h samples, N=5-6 for MI-72h samples.

Supplementary Figure 4. Over expression of miR-19a/19b by AAV9 protected myocardium from apoptosis.

(A) Western blot analysis of apoptosis marker proteins Caspase-3 and Bim. (B) Quantification of Western blot analysis. N=3, Data are presented as mean \pm SEM; *P < 0.05, relative to control.

B

Supplementary Figure 5. Therapeutic potential of miR-19a/19b mimics via tailvein RNAiMax delivered in protecting hearts from myocardial infarction injury. (A) Schematic of tail-vein injection of RNAiMax delivered miR-19a/19b or control mimics post MI injury. (B) miR-19a expression at 6 h after tail-vein injection post MI. (C-D) Echocardiography analyses of cardiac function in tail-vein injection of RNAiMax delivered miR-19a/19b or control mimics at different time points after MI. FS%, fractional shortening. LVID;s, LV internal dimension at end-systole. (D) Representative images of series of transverse heart sections of injection of miR-19a/19b or control mimic 14 weeks post MI injury. Sirius red/fast green collagen staining marks myocardium (green) and scar (red). (E) Quantification of the size of scar. N=3. Data are presented as mean \pm SEM; *P < 0.05, ***P < 0.01, relative to control.

