Supplementary Information:

Delayed maturation of GABAergic signaling in the *Scn1a* and *Scn1b* mouse models of Dravet Syndrome

Yukun Yuan^{1*}, Heather A. O'Malley^{1*}, Melissa A. Smaldino^{1#}, Alexandra A. Bouza¹, Jacob M. Hull², and Lori L. Isom^{1,2**}

¹Department of Pharmacology and ²Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109-5632

*These authors contributed equally to the work.

#Present address: Department of Biology, Ball State University, Muncie, IN 47306

**Corresponding Author: lisom@umich.edu, 734-936-3050

Supplementary Figures

Fig. S1: P17 *Scn1b*^{-/-} brain shows bicuculline-sensitive spontaneous inward currents. A: Representative spontaneous current events recorded with low [CI-]_i in a CA1 pyramidal cell of a hippocampal slice from a P17 WT mouse in the absence (top) or presence (middle) of 10 μ M bicuculline, and following washout with ACSF (bottom). The upward events were bicuculline-sensitive. Similar responses were also observed in cortical layer II/III neurons (data not shown). **B**: Representative spontaneous inward currents recorded with low [CI-]_i in a layer II/III pyramidal cell of a cortical slice from a P16 *Scn1b*^{-/-} mouse in the absence (top) and presence of 10 μ M bicuculline (middle). Washout of bicuculline completely recovered spontaneous inward currents (bottom), demonstrating that the disappearance of these bicuculline-sensitive inward currents was not due to current rundown or other artifacts. Data are representative of 9 cells from 5 WT and 16 cells from 12 *Scn1b*^{-/-} mice.

Е

Gene	Log2FC	Adjusted P value		
Eif2s3y	-8.938	7.16e-5		
Ddx3y	-7.975	0.002		
Uty	-7.689	0.002		
Kdm5d	-7.682	0.006		
Cpz	-6.074	0.002		
Txndc3	-5.281	0.005		
Pf4	-4.045	0.001		
1700056E22Rik	-3.967	0.038		
1500015O10Rik	-3.767	7.81e-6		
ltga2	-2.587	0.025		
Ebf2	-2.425	0.031		
Pkd2l2	-1.898	0.038		
Bmp6	-1.878	7.16e-5		
Col3a1	-1.869	0.002		
Pcolce	-1.780	0.020		
Col1a2	-1.712	0.002		
Spon2	-1.691	0.002		
lgf2	-1.512	0.002		
Thbd	-1.504	0.014		
Mybpc3	1.864	0.003		
A930011O12Rik	1.696	0.005		
NKCC1 (SLC12A2)	0.163	1		
KCC2 (SLC12A5)	0.106	1		
WNK1	0.170	1		
STK39	-0.025	1		

Fig. S2: mRNA transcript levels and RNAseq results from Scn1b brain. A-C:

Relative mRNA transcript levels of **A**. *Slc12a5* (KCC2), **B**. *Slc12a2* (NKCC1), or **C**. *Scn1a* (Na_v1.1) are not different between *Scn1b* WT and -/- brains at P17. Data are shown relative to WT. RQ: Relative quantity. **D**: Volcano plot showing differentially expressed genes in P10 *Scn1b* WT or -/- cortical layer VI. Red: Downregulated genes, Blue: upregulated genes (log2FC \geq 1.5 and false discovery rate \leq 0.05). **E**: Table showing genes differentially expressed between *Scn1b* WT and -/- cortical layer VI. In addition, there were no differences in expression between genotypes for the genes encoding NKCC1, KCC2, WNK1, or STK39.

Fig. S3: Protein expression of KCC2 or β 1 and mRNA expression of *Slc12a5*, *Slc12a2*, or *Scn1b* in *Scn1a* WT or +/- mouse brain. A-C: Protein expression levels of KCC2 and β 1 are not different between *Scn1a* WT and +/- mouse brains. A: KCC2 protein expression at P16. Top: Quantification of KCC2 expression in *Scn1a* WT vs +/- brain,

normalized to α-tubulin expression and shown relative to WT. Bottom: Representative Western blot image. **B**: β1 protein expression at P16-17. Top: Quantification of β1 expression in *Scn1a* WT vs +/- brain, normalized to α-tubulin levels and shown relative to WT. Bottom: Representative Western blot image. **C**: β1 protein expression at P21-24. Top: Quantification of β1 expression in *Scn1a* WT vs +/- brain, normalized to α-tubulin levels and shown relative to WT. Bottom: Representative Western blot image. **C**: β1 protein expression at P21-24. Top: Quantification of β1 expression in *Scn1a* WT vs +/- brain, normalized to α-tubulin levels and shown relative to WT. Bottom: Representative Western blot image. β1 null brain membranes were used as a negative control in **B** and **C**. **D-I**: Relative mRNA transcript levels of *Slc12a5* (KCC2), *Slc12a2* (NKCC1), and *Scn1b* (β1) are not different between *Scn1a* WT and +/- mice at P16 or P22. Data are shown relative to WT. **D**: Relative transcript levels of *Slc12a5* at P16. **E**: Relative transcript levels of *Slc12a5* at P16. **F**: Relative transcript levels of *Slc12a5* at P16. **C**: Relative transcript levels of *Slc12a5* at P22. **H**: Relative transcript levels of *Slc12a2* at P22. **H**: Relative transcript levels of *Slc12a2* at P22. **R**: Relative transcript levels of *Slc12a2* at P23. **R**: Rel

Fig. S4: GABA induces excitatory responses in *Scn1a*^{+/-} neurons. A, B:

Representative traces of GABA-evoked responses at different membrane holding potentials after establishing gramicidin perforated patch recording in two representative *Scn1a*^{+/-} neurons. At membrane potentials more hyperpolarized than -60 mV (-70 and - 80 mV are shown), puff application of GABA induced AP firing (arrows in **B-III** and **B-IV**). Each trace is representative of results from 6 individual mice.

Supplementary Tables:

Patient	Variant	Growth Parameters						
		Age	Weight (kg)	Percentile	Height (cm)	Percentile	Head (cm)	Percentile
1 c.449 2A>G		6 months	7.6	50-75	63	10-25	42.5	50
	c 449-	7 months	7.6	50	67.7	50	43	50
	2A>G	9 months	8.5	50	66	50	44.5	50
		30 months	10.7	<5	81	<5	47	<5
2 c.449- 2A>G	c.449-	3 months	5.4	50	57	10	40	50
	2A>G	8 months	8	25-50	68	25	43	50-75
3	c.355T>G: p.Y119D	10 years	11.52	<1	90	<1	43.5	<1

Table S1: Growth parameters of SCN1B-linked DS patients at multiple developmental

 milestones. Head: head circumference.

Original full-length images of Western blots are provided below:

Fig5A - KCC2

Fig. 5A - loading controls

Fig. 5B, KCC2 and loading controls

Fig. 5F - controls

(contraction)

Fig. 5F - IP lanes

Fig. 5G - controls

Fig. 5G - IP lanes

Fig. 5H - controls

Fig. 5H - IP lanes

Supp. Fig. 4A - KCC2

Supp. Fig. 4A - loading controls

-

.

Supp. Fig. 4B - β 1, lanes 3-9 shown in figure

Supp. Fig. 4B - loading controls, lanes 3-9 shown

Supp. Fig. 4C - β1 - lane 1 not shown

Supp. Fig. 4C - loading controls, lane 1 not shown

