Supplementary Information

Mechanism Unravelling for Ultrafast and Selective ⁹⁹TcO₄- Uptake by a Radiation-Resistant Cationic Covalent Organic Framework: A Combined Radiological Experiment and Molecular Dynamics Simulation Study

Linwei He,^{‡a} Shengtang Liu,^{‡a} Long Chen,^{‡a} Xing Dai,^a Jie Li,^a Mingxing Zhang,^{a,b} Fuyin Ma,^a Chao Zhang,^c Zaixing Yang,^{*a} Ruhong, Zhou,^a Zhifang Chai^a and Shuao Wang^{*a}

^aState Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China. ^bShanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jialuo Rd., Jiading Dist., Shanghai, 201800, China

^cSchool of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China

[‡]These authors contribute equally.

*shuawang@suda.edu.cn (Shuao Wang); zxyang@suda.edu.cn (Zaixing Yang)

Sorption data fitting by isotherm models

The Langmuir model supposes that the sorption of metal ions presents on a homogenous surface by monolayer sorption. There is no interaction between adsorbed ions. The binding sites are homogeneous and the metal ions have equivalent sorption energies. The linear equation of the Langmuir isotherm model is described and expressed as followed²⁴:

$$\frac{\mathbf{c}_e}{q_e} = \frac{1}{q_m k_L} + \frac{\mathbf{c}_e}{q_m}$$

where q_m is the maximum sorption capacity of the sorbents corresponding to complete monolayer coverage (mg/g) and k_L is a constant indirectly related to sorption capacity and energy of sorption (L/mg), which characterizes the affinity of the adsorbate with the adsorbent. The linearized plot was obtained when we plotted Ce/qe against Ce and qm and k_L could be calculated from the slope and intercept.

The Freundlich equation is an empirical equation based on sorption on a heterogeneous surface. The isotherm assumes that adsorbent surface sites have a spectrum of different binding energies. The linear equation can be described and expressed by:

$$\ln q_e = \ln k_F + \frac{1}{n} \ln c_e$$

where $k_{\rm F}$ and n are the Freundlich constants related to the sorption capacity and the sorption intensity, respectively.

The distribution coefficient K_d was calculated using the equation of $K_d = [(c_0 - c_e)V/c_e]/m$, where c_0 and c_e are the initial and equilibrium concentration of ReO₄⁻ (mg/L), V is the volume of the solution (L), m is the mass of SCU-COF-1 sample (mg).

Figure S1. SEM images of SCU-COF-1.

Figure S2. TEM images of SCU-COF-1.

Figure S3. EDS mapping images of SCU-COF-1 before and after sorption with ReO_4^- .

Figure S4. TGA curve of COF SCU-COF-1 under N_2 atmosphere.

Figure S5. PXRD patterns of SCU-COF-1 after irradiated by various doses of 60 Co γ -irradiation.

Figure S6. Reversibility of SCU-COF-1 for removing ReO_4^- in 3 M HNO₃ ($c_0 = 253$ ppm, solid-liquid ratio = 40 : 1).

Scheme S1. Synthetic procedures of Zincke salt [4,4'-bipyridine]-1,1'-diium dichloride (BDB) and aminated viologen (Viologen-NH₂).

Figure S7. ¹H NMR spectrum of ionic compound BDB salt in D₂O.

Figure S8. ¹H NMR spectrum of ionic compound Viologen-NH₂ in D₂O.

Figure S9. PXRD patterns of SCU-COF-1 after being immersed in 1 M NaOH.

Figure S10. Unit cells for AA-eclipsed, AB-staggered and ABC-staggered stacking model (right) and the corresponding simulated PXRD patterns (left).

Figure S11. (a) The unit cell of the SCU-COF-1 single layer. (b) The cluster model of the SCU-COF-1 single layer. The dangling carbons in (b) were saturated by H atoms. In both (a) and (b), the grey, red, blue and white balls represent the C, O, N and H atoms.

Geometry and lattice parameters of the unit cell of the SCU-COF-1 single layer, as shown in Figure S11a, were optimized at PBE/DNP¹ level using

Dmol3 program.² The symmetry was restrained to *P*6 (a = b, $a = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$) and the *c* value was fixed to 30 Å during optimizations. A 2 × 2 × 1 k-point set with a global cutoff of 3.7 Å were used. The calculated result showed a balanced lattice parameter of a = b = 44.5 Å.

Based on the optimized periodic unit cell, we constructed a large cluster model, as shown in **Figure S11b**, for calculating the atomic charges. Single point energy calculation were performed for this cluster model at HF/6-31G*³ level using Gaussian 09 program.⁴ The atomic charges fit to the electrostatic potential (ESP) according to the MK scheme were then deduced. The ESP charges distributed on the center region were selected for the following classical molecular dynamics simulations.

Figure S12. Effect of excessive SO_4^2 -on the removal percentage of ReO_4^- (molar ratio = 1 : 1, 1 : 10, 1 : 20, 1 : 100, initial concentration of $ReO_4^- = 15$ ppm).

Figure S13. Effect of excessive PO_4^{3-} on the removal percentage of ReO_4^{-} (molar ratio = 1 : 1, 1 : 10, 1 : 20, 1 : 100, initial concentration of $ReO_4^{-} = 15$ ppm).

Sorbents	Experimental conditions	Equilibrium time	Ref.
SLUG-21	$[\text{Re}]_0$ =1.26×10 ⁻³ mol/ L; half molar ratio	>24 h	5
Calcined LDH	$[Re]_0=1.26\times10^{-3}$ mol/ L; half molar ratio	>24 h	5
UiO-66-NH ₃ ⁺	molar ratio = 1:2 (ReO_4^- :UiO-66- NH_3^+)	>24 h	6
Acidosasa edulis shoot shell bio-char	T = 298 K; pH 1; 3 g/L; Re(VII)] ₀ = 20 mg/L	350 min	7
4-ATR resi n	Resin = 10.0 mg; [Re(VII)] ₀ = 7.2 mg/50.0 mL; pH = 2.6; 100 rpm.	8 h	8
SCU-100	$[\text{Re(VII)}]_0 = 28 \text{ mg/L}; \text{pH} = 7; 1 \text{ g/L}; \text{stirring}$	30 min	9
SCU-101	$[Re(VII)]_0 = 28 mg/L; pH = 7; 1 g/L; stirring$	10 min	19
SBN	$[Re(VII)]_0 = 28 mg/L; pH = 7; 1 g/L; stirring$	10 min	12
Purolite A532E	[Re(VII)] ₀ = 28 mg/L; pH = 7; 1 g/L; stirring	150 min	10
Purolite A530E	$[Re(VII)]_0 = 28 mg/L; pH = 7; 1 g/L; stirring$	150 min	10
Compound-1	[Re(VII)] ₀ = 28 mg/L; pH = 7; 1 g/L; shaking	20 min	21
SCU-COF-1	$[Re(VII)]_0 = 28 mg/L; pH = 7; 1 g/L;$ shaking	1 min	This work

Table S1. Comparison of equilibrium time of SCU-COF-1 with other reported materials.

Sorbents	K_d	Ref
Mg-Al-LDH	262	9
NDTB-1	652	9
Y ₂ (OH) ₅ Cl	112	9
Yb ₃ O(OH) ₆ Cl	120	9
PAF-1-F	2.55×10 ⁴	20
SCU-6	3.0×10 ³	23
SCU-7	63	23
SCU-100	3.3×10 ⁵	10
SCU-101	7.5×10 ⁵	19
SCU-COF-1	3.89×10 ⁵	This work

Table S2. Comparison of distribution coefficient (K_d , mL/g) by cationic materials.

	Langmuir model		
Sample	$q_{\rm m} ({\rm mg \ g^{-1}})$	$K_{\rm L}$ (L mg ⁻¹)	R^2
SCU-COF-1	367.65	0.14	0.98

Table S3. Fitting results of SCU-COF-1 based on the Langmuir models.

Table S4. Composition of Hanford LAW melter off-gas scrubber solution.

Anion	Concentration, mol/L	Anion : TcO_4^- molar ratio
TcO ₄ -	1.94×10 ⁻⁴	1.0
NO ₃ -	6.07×10 ⁻²	314
Cl-	6.39×10 ⁻²	330
NO ₂ -	1.69×10 ⁻¹	873
SO4 ²⁻	6.64×10 ⁻⁶	0.0343
CO ₃ ²⁻	4.30×10 ⁻⁵	0.222

Simulated wastes	Anions	Solid-to-liquid ratio (g L ⁻¹)	Anion removal percentage (%)
	ReO ₄ -	1:1	17.8
Hanford waste	ReO ₄ -	5:1	56.3
	TcO ₄ -	1:1	20.9
	TcO ₄ -	5:1	62.8

Table S5. Results of ReO_4^- and TcO_4^- sorption by SCU-COF-1 from simulated Hanford waste.

Table S6. Results of ReO_4^- desorption from sorbed SCU-COF-1 at 300 K.

Dsorption temperature	Concentrations of desorption solution (NaCl, mol/L)	Desorption percentage (%)
	1	79.24
25 °C	2	87.65
	3	95.03

Materials	Sorbents	Experimental conditions	Capacity (mg/g)	Ref.
	Biochar	T = 298 K; 12 h; 3 g/L	46.5	11
Inorganic Materials	Yb ₃ O(OH) ₆ Cl	Ambient temperature; pH = 7.0 ± 0.1 ; 0.5 g/L	48.6	10
	NDTB-1	Ambient temperature; pH = 7.0 ± 0.1 ; 0.5 g/L	49.4	10
	LDHs	Ambient temperature; pH = 7.0 ± 0.1 ; 0.5 g/L	130.2	10
	ZrO ₂ @rGO	T = 303 K; 24 h	43.55	13
	NZVI/rGOs	0.1 g/L; pH 5	85.77	14
	GO-DEA-DIBA	303 K; 2 g/L; 48 h	140.82	15
_	PS-g-4VP-IE	Ambient temperature; 2 h	252	16
	D318 resin	T = 298 K; pH 5.2; 1 g/L	351	17
Composites	4-ATR resin	T = 298 K; 8 h; pH 2.6; 10 h	354	8
, Pressed	R ₂ SO ₄ resin	Ambient temperature; 1.3 g/L; pH 6.25; 4 h	462	18
	Purolite A532E	Ambient temperature; $pH = 7.0 \pm 0.1$; 0.5 g/L	446	12
	Purolite A530E	Ambient temperature; pH = 7.0±0.1; 0.5 g/L	706	9
	UiO-66-NH ₃ ⁺	24 h	159	6
MOFs	SCU-101	Ambient temperature; pH = 7.0 ± 0.1 ; 1 g/L	217	19
	SCU-100	Ambient temperature; pH = 7.0 ± 0.1 ; 1 g/L	541	9
	SLUG-21	Ambient temperature; 48 h; 1.6 g/L	602	5
	SBN	Ambient temperature; pH = 7.0 ± 0.1 ; 0.5 g/L	786	10

		373 K; 14 h; 1g/L	702.4	
COFs	SCU-COF-1	Ambient temperature; 12 h; 1 g/L	367	This work
	SCU-CPN-1	Ambient temperature; 12 h; 1 g/L	999	22
POPs	Compuond-1	Ambient temperature; 24 h; 2 g/L	517	21
	PAF-1-F	Molar ratio, ReO ₄ :: PAF-1-F =1:2; 24 h	420	20

SCU-COF-1 (AA-Eclipsed)				
	P	°6		
N1	0.45929	0.90830	0.47138	
C2	0.44126	0.92434	0.36033	
C3	0.45647	0.95995	0.36335	
C4	0.49161	0.98099	0.46680	
C5	0.50983	0.96386	0.56987	
C6	0.49333	0.92812	0.57730	
C7	0.44252	0.87109	0.47796	
C8	0.40772	0.85165	0.59424	
С9	0.39126	0.81575	0.59879	
C10	0.40936	0.79870	0.48691	
C11	0.44450	0.81855	0.37717	
C12	0.46098	0.85445	0.37154	
N13	0.39405	0.76282	0.48242	
C14	0.35997	0.73917	0.49587	
C15	0.34758	0.70395	0.49755	
C16	0.37136	0.69024	0.49402	
017	0.30640	0.59625	0.48390	
H18	0.34120	0.74833	0.49702	
H19	0.40903	0.75059	0.46715	
H20	0.45848	0.80533	0.28498	
H21	0.48759	0.86917	0.26748	
H22	0.39386	0.86440	0.69962	
H23	0.36474	0.80116	0.70456	
H24	0.50595	0.91414	0.68007	
H25	0.53669	0.97820	0.66596	
H26	0.44098	0.97120	0.26595	
H27	0.41493	0.90745	0.25993	

Table S8. Fractional atomic coordinates for the unit cell of SCU-COF-1(AA-Eclipsed).

SCU-COF-1 (AB-Staggered)					
	<i>P</i> 6				
N1	-0.20737	0.57497	0.23569		
C2	-0.22541	0.59100	0.18017		
C3	-0.21020	0.62662	0.18167		
C4	-0.17506	0.64766	0.23340		
C5	-0.15683	0.63052	0.28493		
C6	-0.17334	0.59479	0.28865		
C7	-0.22415	0.53775	0.23898		
C8	-0.25895	0.51832	0.29712		
С9	-0.27540	0.48241	0.29940		
C10	-0.25731	0.46536	0.24345		
C11	-0.22216	0.48521	0.18859		
C12	-0.20569	0.52111	0.18577		
N13	-0.27262	0.42949	0.24121		
C14	-0.30670	0.40604	0.24794		
C15	-0.31909	0.37061	0.24877		
C16	-0.29530	0.35690	0.24701		
O17	-0.36027	0.26291	0.24195		
H18	-0.32547	0.41499	0.24851		
H19	-0.25764	0.41726	0.23358		
H20	-0.20818	0.47219	0.14249		
H21	-0.17908	0.53583	0.13374		
H22	-0.27281	0.53107	0.34981		
H23	-0.30192	0.46783	0.35228		
H24	-0.16072	0.58081	0.34004		
H25	-0.12998	0.64487	0.33298		
H26	-0.22569	0.63786	0.13298		
H27	-0.25174	0.57412	0.12997		
N28	-0.12596	-0.24163	0.23569		

Table S9. Fractional atomic coordinates for the unit cell of SCU-COF-1(AB-Staggered).

C29	-0.10793	-0.25767	0.18017
C30	-0.12313	-0.29328	0.18167
C31	-0.15827	-0.31432	0.23340
C32	-0.17650	-0.29719	0.28493
C33	-0.16000	-0.26146	0.28865
C34	-0.10919	-0.20442	0.23898
C35	-0.07439	-0.18498	0.29712
C36	-0.05793	-0.14908	0.29940
C37	-0.07603	-0.13203	0.24345
C38	-0.11117	-0.15188	0.18859
C39	-0.12765	-0.18778	0.18577
N40	-0.06072	-0.09616	0.24121
C41	-0.02663	-0.07271	0.24794
C42	-0.01424	-0.03728	0.24877
C43	-0.03803	-0.02357	0.24701
O44	0.02694	-0.07042	0.24195
H45	-0.00787	-0.08166	0.24851
H46	-0.07570	-0.08392	0.23358
H47	-0.12515	-0.13886	0.14249
H48	-0.15426	-0.0250	0.13374
H49	-0.06053	-0.19774	0.34981
H50	-0.03141	-0.13449	0.35228
H51	-0.17262	-0.24747	0.34004
H52	-0.20336	-0.31153	0.33298
Н53	-0.10765	-0.30453	0.13298
H54	-0.08159	-0.24079	0.12997

SCU-COF-1 (ABC-Staggered)				
R3				
N1	0.45929	0.90830	-0.00417	
C2	0.44126	0.92434	-0.04119	
C3	0.45647	0.95995	-0.04018	
C4	0.49161	0.98099	-0.00570	
C5	0.50983	0.96386	0.02866	
C6	0.49333	0.92812	0.03113	
C7	0.44252	0.87109	-0.00198	
C8	0.40772	0.85165	0.03678	
С9	0.39126	0.81575	0.03830	
C10	0.40936	0.79870	0.00100	
C11	0.44450	0.81855	-0.03557	
C12	0.46098	0.85445	-0.03745	
N13	0.39405	0.76282	-0.00049	
C14	0.35997	0.73917	0.00399	
C15	0.34758	0.70395	0.00455	
C16	0.39136	0.69024	0.00337	
O17	0.30640	0.59625	0.00000	
H18	0.34120	0.74833	0.00437	
H19	0.40903	0.75059	-0.00558	
H20	0.45848	0.80533	-0.06631	
H21	0.48759	0.86917	-0.07214	
H22	0.39386	0.86440	0.07191	
H23	0.36474	0.80116	0.07355	
H24	0.50595	0.91414	0.06539	
H25	0.53669	0.97820	0.06069	
H26	0.44098	0.97120	-0.07265	
H27	0.41493	0.90745	-0.07465	
N28	0.54071	0.09170	-0.00417	

Table S10. Fractional atomic coordinates for the unit cell of SCU-COF-1(ABC-Staggered).

C29	0.55874	0.07566	-0.04119
C30	0.54353	0.04005	-0.04018
C31	0.50839	0.01901	-0.00570
C32	0.49017	0.03614	0.02866
C33	0.50667	0.07188	0.03113
C34	0.55748	0.12891	-0.00198
C35	0.59228	0.14835	0.03678
C36	0.60874	0.18425	0.03830
C37	0.59064	0.20130	0.00100
C38	0.55550	0.18145	-0.03557
C39	0.53902	0.14555	-0.03745
N40	0.60595	0.23718	-0.00049
C41	0.64003	0.26063	0.00399
C42	0.65242	0.29605	0.00455
C43	0.62864	0.30976	0.00337
O44	0.69360	0.40375	0.00000
H45	0.65880	0.25167	0.00437
H46	0.59097	0.24941	-0.00558
H47	0.54152	0.19447	-0.06631
H48	0.51241	0.13083	-0.07214
H49	0.60614	0.13560	0.07191
H50	0.63526	0.19884	0.07355
H51	0.49405	0.08586	0.06539
H52	0.46331	0.02180	0.06069
Н53	0.55902	0.02880	-0.07265
H54	0.58507	0.09255	-0.07465

References

(1). J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.* 1996, **77**, 3865-3868.

(2). B. Delley, J. Chem. Phys., 2000, **113**, 7756-7764.

(3). W. J. Hehre, R. Ditchfield and J. A. Pople, *J. Chem. Phys.*, 1972, 56, 2257-2261.
(4). Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

(5) H. Fei, L. Paw U, D. L. Rogow, M. R. Bresler, Y. A. Abdollahian and S. R. Oliver, *Chem. Mater.*, 2010, **22**, 2027-2032.

(6) D. Banerjee, W. Xu, Z. Nie, L. E. Johnson, C. Coghlan, M. L. Sushko, D. Kim, M. J. Schweiger, A. A. Kruger, C. J. Doonan and P. K. Thallapally., *Inorg. Chem.*, 2016, **55**, 8241-8243.

(7) H. Hu, B. Jiang, J. Zhang and X. Chen, *RSC. Adv.*, **2015**, *5*, 104769-104778.

(8) C. Xiong, C. Yao and X. Wu, *Hydrometa*llurgy 2008, **90**, 221-226.

(9) D. Sheng, L. Zhu, C. Xu, C. Xiao, Y. Wang, Y. Wang, L. Chen, J. Diwu, J. Chen, Z. Chai, T. E. Albrecht-Schmitt and S. Wang, *Environ. Sci. Technol.*, 2017, **51**, 3471-3479.

(10) J. Li, L. Zhu, C. Xiao, L. Chen, Z. Chai and S. Wang, *Radiochim.* Acta., 2018, **106**, 581-591.

(11) J. H. Zu, Y. Z. Wei, M. S. Ye, F. D. Tang, L. F. He and R. Q. Liu, *J. Nucl. Sci. Tech.*, 2015, **26**, 69-75.

(12) L. Zhu, C. Xiao, X. Dai, J. Li, D. Gui, D. Sheng, L. Chen, R. Zhou, Z. Chai, T. E. Albrecht-Schmitt and S. Wang, *Environ. Sci. Technol. Lett.*, 2017, **4**, 316-322.

(13) Y. Gao, K. Chen, X. Tan, X. Wang, A. Alsaedi, T. Hayat, C. Chen, *ACS. Sustainable Chem. Eng.*, 2017, **5**, 2163-2171.

(14) J. Li, C. Chen, R. Zhang and X. Wang, *Sci. China Chem.*, 2016, **59**, 150-158.

(15) X. Cui, P. Zhang, Y. Wang, Z. Lou, W. Shan, *ACS. Sustainable Chem. Eng.*, 2017, **5**, 1010-1018.

(16) J. Zu, M. Ye, P. Wang, F. Tang and L. He, *RSC. Adv.*, 2016, **6**, 18868-18873.

(17) Z. Shu and M. Yang, Chin. J. Chem. Eng., 2010, 18, 372-376.

(18) M. Jia, H. Cui, W. Jin, L. Zhu, Y. Liu and J. Chen, *J. Chem. Technol. Biotechnol.*, 2013, **88**, 437-443.

(19) L. Zhu, D. Sheng, C. Xu, X. Dai, M. A. Silver, J. Li, P. Li, Y. Wang, Y. Wang, L. Chen, C. Xiao, J. Chen, R. Zhou, C. Zhang, O. K. Farha, Z. Chai, T. E. Albrecht-Schmitt and S. Wang, *J. Am. Chem. Soc.*, 2017, **139**, 14873-14876.

(20) D. Banerjee, S. K. Elsaidi, B. Aguila, B. Li, D. Kim, M. J. Schweiger, A. A. Kruger, C. J. Doonan, S. Ma and P. K. Thallapally, *Chem. Eur. J.*, 2016, **22**, 17581-17584.

(21) P. Samanta, P. Chandra, S. Dutta, A. V. Desai and S. K. Ghosh, *Chem. Sci.*, 2018, 9, 7874-7881.

(22) J. Li, X. Dai, L. Zhu, C. Xu, D. Zhang, M. A. Silver, P. Li, L. Chen, Y. Li, D. Zuo, H. Zhang, C. Xiao, J. Chen, J. Diwu, O. K. Farha, T. E. Albrecht-Schmitt, Z. Chai and S. Wang, *Nat. Commun.* 2018, **9**, 3007.

(23) Z. Bai, Y. Wang, Y. Li, W. Liu, L. Chen, D. Sheng, J. Diwu, Z. Chai, T. E. Albrecht-Schmitt and S. Wang, *Inorg. Chem.*, 2016, **55**, 6358-6360.

(24). I. Langmuir, J. Am. Chem. Soc., 1918, 40, 1361-1403.