Additional file 1 – PGxO reconciliation rules

Title: PGxO and PGxLOD: a reconciliation of pharmacogenomic knowledge of various provenances, enabling further comparison

Authors: Pierre Monnin, Joël Legrand, Graziella Husson, Patrice Ringot, Andon Tchechmedjiev, Clément Jonquet, Amedeo Napoli, Adrien Coulet

This document defines the reconciliation rules used with PGxO [1] for the comparison of pharmacogenomic knowledge units of various provenances. Only the necessary definitions are recalled in the next sections. For further information, please refer to the BioPortal page of $PGxO^1$ as well as the documentation page of PGxO on GitHub².

1 Definitions and notations

The PharmacogenomicRelationship concept is defined in Description Logic with the following axioms:

Axiom 1. DComponent \equiv Drug $\sqcup \exists$ dependsOn.Drug

Axiom 2. GFComponent \equiv GeneticFactor $\sqcup \exists$ dependsOn.GeneticFactor

Axiom 3. $PR_1 \equiv \exists causes.Phenotype \sqcap \exists isCausedBy.DComponent$

Axiom 4. $\mathtt{PR}_2 \equiv \exists \mathtt{causes}.\mathtt{Phenotype} \sqcap \exists \mathtt{isCausedBy.GFComponent}$

Axiom 5. $PR_3 \equiv \exists isCausedBy.DComponent \sqcap \exists isCausedBy.GFComponent$

Axiom 6. PharmacogenomicRelationship \sqsubseteq PR₁ \sqcup PR₂ \sqcup PR₃

Intuitively, it defines a PharmacogenomicRelationship as a relationship between three types of components: Drugs, GeneticFactors and Phenotypes. At least two of the three types of components must be present so that an individual can be an instance of the PharmacogenomicRelationship concept.

Considering an instance \mathbf{r} of the PharmacogenomicRelationship concept from a Knowledge Base \mathcal{KB} , we denote sets of individuals or classes associated to \mathbf{r} as follows.

Notation 1. We denote D, the set of instances of Drug that cause r. D is defined as follows:

 $D = \{ \mathtt{d} \mid \mathcal{KB} \models \mathtt{Drug}(\mathtt{d}) \text{ and } \mathcal{KB} \models \mathtt{causes}(\mathtt{d}, \mathtt{r}) \}$

Notation 2. We denote G, the set of instances of GeneticFactor that cause r. G is defined as follows:

 $G = \{ g \mid \mathcal{KB} \models \texttt{GeneticFactor}(g) \text{ and } \mathcal{KB} \models \texttt{causes}(g, r) \}$

¹http://bioportal.bioontology.org/ontologies/PGXO

²https://github.com/practikpharma/PGxO

Notation 3. We denote P, the set of instances of Phenotype caused by r. P is defined as follows:

$$P = \{ \texttt{p} \mid \mathcal{KB} \models \texttt{Phenotype}(\texttt{p}) \text{ and } \mathcal{KB} \models \texttt{causes}(\texttt{r},\texttt{p}) \}$$

Notation 4. We denote DC, the set of classes instantiated by all the individuals in D. DC is defined as follows:

$$DC = \{ \mathcal{C} \mid \forall \ d \in D, \ \mathcal{KB} \models \mathcal{C}(d) \}$$

Notation 5. We denote PC, the set of classes instantiated by all the individuals in P. PC is defined as follows:

$$PC = \{ \mathcal{C} \mid \forall \ p \in P, \ \mathcal{KB} \models \mathcal{C}(p) \}$$

Notation 6. We denote GHP, the set of instances of GeneticFactor associated through hasPart to individuals in G. GHP is defined as follows:

 $GHP = \{ \texttt{g} \mid \mathcal{KB} \models \texttt{GeneticFactor}(\texttt{g}) \text{ and } \exists \ v \in G, \ \mathcal{KB} \models \texttt{hasPart}(\texttt{g},\texttt{v}) \}$

Intuitively, GHP contains the genes whose variants are involved in G.

Notation 7. We denote DOP, the set of individuals associated through depends On^- to individuals in P. DOP is defined as follows:

$$DOP = \{ \mathbf{e} \mid \exists \ p \in P, \ \mathcal{KB} \models \mathtt{dependsOn}(\mathbf{p}, \mathbf{e}) \}$$

2 Rules definitions

We consider \mathbf{r}_1 and \mathbf{r}_2 two instances of the PharmacogenomicRelationship concept. As defined in the previous section, we also consider the sets of individuals or classes associated with \mathbf{r}_1 (respectively with \mathbf{r}_2) as D_1 , G_1 , P_1 , DC_1 , PC_1 , GHP_1 and DOP_1 (respectively D_2 , G_2 , P_2 , DC_2 , PC_2 , GHP_2 and DOP_2).

2.1 When r_1 and r_2 are equivalent

Rule 1.

$$D_1 = D_2 \text{ AND } G_1 = G_2 \text{ AND } P_1 = P_2 \Rightarrow \texttt{owl:sameAs}(r_1, r_2)$$

2.2 When r_1 is more specific than r_2

Rule 2 (When the three types of components exist).

$$\begin{array}{l} [D_1 \neq \emptyset \text{ AND } G_1 \neq \emptyset \text{ AND } P_1 \neq \emptyset] \text{ AND} \\ [D_1 \subseteq D_2 \text{ OR } (DC_2 \neq \emptyset \text{ AND } DC_2 \subseteq DC_1)] \text{ AND} \\ & \quad [G_1 \subseteq G_2] \text{ AND} \\ [P_1 \subseteq P_2 \text{ OR } (PC_2 \neq \emptyset \text{ AND } PC_2 \subseteq PC_1)] \qquad \Rightarrow \texttt{skos:broadMatch}(\texttt{r}_1,\texttt{r}_2) \end{array}$$

Rule 3 (When one type of components is missing).

$$\begin{pmatrix} [D_2 = \emptyset \text{ AND } G_1 \neq \emptyset \text{ AND } P_1 \neq \emptyset] \text{ AND} \\ [G_1 \subseteq G_2] \text{ AND} \\ [P_1 \subseteq P_2 \text{ OR } (PC_2 \neq \emptyset \text{ AND } PC_2 \subseteq PC_1)] \end{pmatrix} \text{ OR} \\ ([D_1 \neq \emptyset \text{ AND } G_2 = \emptyset \text{ AND } P_1 \neq \emptyset] \text{ AND} \\ [D_1 \subseteq D_2 \text{ OR } (DC_2 \neq \emptyset \text{ AND } DC_2 \subseteq DC_1)] \text{ AND} \\ [P_1 \subseteq P_2 \text{ OR } (PC_2 \neq \emptyset \text{ AND } PC_2 \subseteq PC_1)] \end{pmatrix} \text{ OR} \\ ([D_1 \neq \emptyset \text{ AND } G_1 \neq \emptyset \text{ AND } P_2 = \emptyset] \text{ AND} \\ [D_1 \subseteq D_2 \text{ OR } (DC_2 \neq \emptyset \text{ AND } DC_2 \subseteq DC_1)] \text{ AND} \\ [D_1 \subseteq D_2 \text{ OR } (DC_2 \neq \emptyset \text{ AND } DC_2 \subseteq DC_1)] \text{ AND} \\ [D_1 \subseteq G_2 \text{ OR } (DC_2 \neq \emptyset \text{ AND } DC_2 \subseteq DC_1)] \text{ OR} \\ (G_1 \subseteq G_2] \end{pmatrix} \Rightarrow \text{skos:broadMatch}(\mathbf{r}_1, \mathbf{r}_2)$$

Rule 4 (When $\mathtt{r_1}$ is at the variant-level and $\mathtt{r_2}$ at the gene-level).

$$\begin{bmatrix} GHP_1 \neq \emptyset \text{ AND } GHP_1 \subseteq G_2 \end{bmatrix} \text{ AND} \\ \begin{bmatrix} (D_2 = \emptyset \text{ AND } P_1 \neq \emptyset] \text{ AND} \\ P_1 \subseteq P_2 \text{ OR } (PC_2 \neq \emptyset \text{ AND } PC_2 \subseteq PC_1) \end{bmatrix} \text{ OR} \\ (D_1 \neq \emptyset \text{ AND } P_2 = \emptyset] \text{ AND} \\ \begin{bmatrix} D_1 \subseteq D_2 \text{ OR } (DC_2 \neq \emptyset \text{ AND } DC_2 \subseteq DC_1) \end{bmatrix} \text{ OR} \\ (D_1 \neq \emptyset \text{ AND } P_1 \neq \emptyset] \text{ AND} \\ \begin{bmatrix} D_1 \subseteq D_2 \text{ OR } (DC_2 \neq \emptyset \text{ AND } DC_2 \subseteq DC_1) \end{bmatrix} \text{ OR} \\ P_1 \subseteq D_2 \text{ OR } (DC_2 \neq \emptyset \text{ AND } DC_2 \subseteq DC_1) \end{bmatrix} \text{ AND} \\ \begin{bmatrix} P_1 \subseteq P_2 \text{ OR } (PC_2 \neq \emptyset \text{ AND } PC_2 \subseteq PC_1) \end{bmatrix} \text{ OR} \\ \end{bmatrix} \Rightarrow \text{skos:broadMatch}(\mathbf{r}_1, \mathbf{r}_2) \end{bmatrix}$$

2.3 When r_1 and r_2 are related

Rule 5.

$$\begin{aligned} DOP_1 \neq \emptyset \text{ AND} \\ [DOP_1 = DOP_2 \text{ OR } DOP_1 = D_2 \text{ OR } DOP_1 = G_2] \text{ AND} \\ [(G_1 \neq \emptyset \text{ AND } G_1 = G_2) \text{ OR } (D_1 \neq \emptyset \text{ AND } D_1 = D_2)] & \Rightarrow \texttt{skos:relatedMatch}(\texttt{r}_1, \texttt{r}_2) \end{aligned}$$

3 Examples

Figure 1: Examples of Rule (1) application.

Figure 2: Examples of Rule (2) application.

Figure 3: Example of Rule (3) application.

Figure 4: Example of Rule (4) application.

Figure 5: Example of Rule (5) application.

References

 Pierre Monnin, Clément Jonquet, Joël Legrand, Amedeo Napoli, and Adrien Coulet. PGxO: A very lite ontology to reconcile pharmacogenomic knowledge units. In Methods, tools & platforms for Personalized Medicine in the Big Data Era, 2017.