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Supplementary Materials

Twitter data

For a month after the attacks, we used the Twitter search API on a daily basis to retrieve

tweets that contained any of the hashtags included in Table 1. We removed all tweets that were

not in French, as specified by Twitter’s metadata and language detection software (Shuyo,

2010). Out of a total of 492,994 users found in that tweet sample, 287,996 (58%) of them had

a non-empty user location field on their profile, which we used to select users that disclose

living in France. More precisely, we selected users through the following criteria:

1. Produced less than 3,200 tweets in our observation period

2. Had a ratio of followers to friends between 0.1 and 10

3. Provided a nonempty location field in their Twitter profile

4. Their location field text could be mapped to a European France location through Google

Maps Geocode API

The first two rules exclude bots (high amount of friends compared to followers or high

activity) and mass media or corporate accounts (high amount of followers compared to friends

or high activity). Rules 3 and 4 ensure that all users have self-disclosed their location that

places them in France. This geocoding step of user profiles differs from the technique of

geolocation by tweet GPS coordinates, as we do not require the users to actively disclose their

location in the metadata of their tweets. This leaves a user sample to 62,114 user accounts in

the country affected by the attacks. Some of these users reported their locations in a general

way (e.g. ”France“) that did not lead to a precise location estimate (longitude and latitude) in
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the geocoding step, but many had more precise locations that allowed us to have an insight into

the spatial distribution of the data, shown on the map of Figure 1 of the Main Text.

#parisattacks #PrayForParis #Paris #PorteOuverte

#JeSuisParis #NousSommesUnis #PeaceForParis #PrayForFrance

#jesuisparisian #FranceUnderAttack #PrayForTheWorld #NotInMyName

#MuslimsAreNotTerrorist #ViveLaFrance #notafraid #Bataclan

#Attacks #attaque #daesh #radical

#terror #terreur #molenbeek
Table 1

Hashtags used to sample users after the terrorist attacks of November 13th.

In early 2017, we retrieved the timeline of tweets of the users in our sample, removing

all retweets and all tweets not detected to be in French. We limit our analysis to the period

between April 1st 2015 and June 30th 2016, including 17,899,591 original tweets in French.

Some users in our sample (447 users, less than 1%) had only produced retweets and tweets not

in French during that period, and thus are excluded from our subsequent analyses.
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Ethical considerations

All data used in this article is publicly available archival data that was produced and

posted by the self-selected users. No private information of any user was retrieved at any point.

The study does not include any manipulation or intervention and constituted a purely

observational study. In line with the growing consensus in ethics (Metcalf & Crawford, 2016),

our work is excluded from ethics review. Minimum risk is associated with our research and the

inclusion through hashtags constitutes sufficiently informed consent and respects user

expectations. Before carrying this study, we assessed its potential to shed light in important

social and emotional processes, bringing opportunities to understand social resilience and the

impact of terrorism. These benefits greatly outweigh the risks of analyzing this kind of public

archival data, in particular given the self-selection of users and the observational nature of this

study. The research presented in here was considered exempt from ethics review by the Ethics

Commission of the Medical University of Vienna (decision 1600/2018).
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Validating French LIWC dictionaries for Tweets

We validated the emotion classes of LIWC in French against a dataset with manually

annotated tweets from the DEFT 2015 competition (Fraisse, Grouin, Hamon, Paroubek, &

Zweigenbaum, 2015). Among various tasks, this competition included a sentiment analysis

task in which participants classified tweets as positive (+), negative (-), or neutral (0). It als

included an emotion detection task to classify emotions from tweet text. Among the emotion

classes, it included “Colere”, which literally translates to “anger” in English, “Tristesse”,

literally translated as “sadness”, and “Peur”, which literally means “fear” but in the coding

instructions it included “anxiety” as an example (see

https://deft.limsi.fr/2015/descriptionTaches.fr.php?lang=fr). For

our validation exercise, we merge training and test datasets of the task, since the LIWC method

is unsupervised and can be validated against the whole dataset. The organizers of DEFT could

only share the ids of tweets, which need to be looked up through the Twitter API to recover

their text. This way we reconstructed 10,250 tweets for the first task and 4,123 tweets for the

second task.

To test the validity of the French adaptation of LIWC when applied to tweets, we

measured the frequencies of PA, NA, anger, sadness, and anxiety LIWC terms in each tweet of

the dataset. The results are shown on Table 2, evidencing significant and sizable differences in

the frequency of each term class when comparing tweets with the corresponding annotation

versus the rest of the dataset. This is specially notable for the negative affect classes, as for

example the text of tweets annotated as negative contain 5.2 times the amount of negative

terms of the text of tweets annotated as neutral or positive.

We also evaluate the French translation of the prosocial terms dictionary of Frimer,

Schaefer, and Oakes (2014) in Twitter. We selected a set of seven French Twitter accounts that

aim to promote prosocial behavior (MSF_france, SOSMedFrance, MdM_France,
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PA (not +) PA (+) Ratio χ2 p-value + count total

+ 1.9% 3.99% 2.1 676.49 < 10−10 3,243 10,250

NA (not -) NA (-) Ratio χ2 p-value - count total

- 0.64% 3.29% 5.2 1830.1 < 10−10 2,387 10,250

anger (not Col.) anger (Col.) Ratio χ2 p-value Col. count total

Colere 0.53% 2.44% 4.6 245.77 < 10−10 252 4,123

sadness (not Tri.) sadness (Tri.) Ratio χ2 p-value Tri. count total

Tristesse 0.37% 3.86% 10.33 234.16 < 10−10 46 4,123

anxiety (not Peur) anxiety (Peur) Ratio χ2 p-value Peur count total

Peur 0.17% 2.17% 12.5 657.19 < 10−10 349 4,123
Table 2

LIWC emotion validation results against annotations reconstructed from Fraisse et al. (2015).

UNICEF_france, restosducoeur, CroixRouge, caritasfrance) and retrieved their timelines up to

the last 3200 tweets in March 2017, gathering a total of 22,392 tweets. We applied the

prosocial terms dictionary and compared the frequencies against the 6 month baseline of tweets

in our dataset. Prosocial term frequency in prosocial accounts is 3.35%, while in the baseline

dataset is 1.31% (χ2 = 14357, p-value < 10−10). This means that prosocial terms have a

frequency ratio of 2.56 compared to the text of tweets in the baseline dataset, a significant and

sizable difference that evidences the validity of the lexicon and its French translation.
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Analysis of collective behavior

For each lexical indicator we calculated its daily mean X(t), and then we computed a

normalized score ZX(t) = log(X(t)/Xb), where Xb is the baseline value of the corresponding

weekday. This logarithmic transformation reduces the skewness of the ratio between term

class frequencies, such that ZX(t) lies in the interval [−∞,+∞] instead of in the interval

[0,+∞]. A negative score indicates that the daily frequency is below the baseline and a

positive score that the daily frequency is above the baseline.

We fitted the temporal evolution of each normalized score ZX(t) of each linguistic

variable X through a time series model of the form:

ZX(t) = ϕ ∗ ZX(t− 1) ∗Θ[t > t1] + ϕpre ∗ ZX(t− 1) ∗Θ[t < t1]

+D1 ∗Θ[t = t1] +D2 ∗Θ[t = t2] + c+ ε

In the above equation, c is a time-independent intercept. D1 and D2 measure the size of the

shock due to the attacks happening during the night of t1 (Nov 13th) and being widely reported

during day t2 (Nov 14th). The parameter ϕ quantifies the memory of the time series after the

attacks as the linear relationship between ZX(t− 1) and ZX(t). Positive values of ϕ can be

generated by synchronized behavior, as explained by the agent-based model described below.

The parameter ϕpre measures the memory of ZX(t) before the attacks, which should be much

smaller than ϕ and very close to zero if the attacks triggered emotion sharing feedback loops

that were not active before.

We fitted models with the bayesglm function of the arm R package (Gelman, Jakulin,

Pittau, & Su, 2008), taking weakly informative priors for all parameters. We report the median

value and the 95% CI of the posterior distribution of each parameter, along with the p-values

of standard statistical tests. After fitting, we ran regression diagnostics to validate the

assumptions of the above model.
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To shed light on the relationship between synchronization of behavior and the statistical

fit of the above model, we designed an agent-based model of the reaction of a community to a

collective trauma. We combined computational models of collective emotions (Schweitzer &

Garcia, 2010) with previous empirical results in experiments and diary studies in the design,

calibration, and analysis of this model. This way we aim to bridge the level of collective

behavior with the dynamics of individuals through the modeling of how they synchronize their

behavior (Smith & Conrey, 2007). We simulated a society composed of agents that have an

observable variable x(t) that represents a state such as affect or prosocial term use in a day.

Agent states are driven by three mechanisms:

1. Internal dynamics: a combination of random effects sampled from a normal distribution

of zero mean with a relaxation tendency γ = 0.005/min that drives state x(t) towards

its baseline x = 0. This internal dynamics are based on the empirical results of emotion

dynamics through self-reports (Kuppens, Oravecz, & Tuerlinckx, 2010).

2. Reaction to the attack: a fixed impulse of size D = 1 that is active during the day of the

attacks. This impulse is perceived by all agents at the same time and marks the onset of

any possible collective behavior. This principle is based on previous models of collective

emotions in online social media (Schweitzer & Garcia, 2010).

3. Synchronization of behavior: Agents react to each other at a rate α that is directly

proportional to the absolute value of their internal state, x(t). As a simplification, we

sample the peer of this synchronization at random and add a delay in the reception of an

online message that we sample from an exponential distribution of parameter λ = 0.001.

After that time the agent changes its state to the state of the other agent, as an event of

emotional or behavioral synchronization. This effect follows the results found in

experiments of emotional discussions in online media (Garcia, Kappas, Küster, &
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Schweitzer, 2016).

The above design allows us to calibrate the intensity of behavior synchronization

through the parameter α. The relationship between this strength of synchronization and the

internal relaxation tendency captured by γ will define the shape of the trend of the aggregate

response, which we quantify in our empirical analysis through parameter ϕ.
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Figure 1. Results of three simulations of the model for a reaction with no synchronization

(top), intermediate level of synchronization (middle), and strong synchronization (bottom).

Simulation examples can be found in Figure 1, which illustrate the relationship between

α and ϕ. When α = 0, there is no synchronization of behavior, and as a result, the collective

average response X(t) relaxes quickly towards zero and hence the value of ϕ extremely close

to zero. Examples with α vales of 20/day and 50/day lead to collective responses with longer

memory as quantified by significant estimates of ϕ = 0.55 and ϕ = 0.79. Furthermore,
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regression on the simulation results lead to positive estimates of ϕ when α is high and a

non-significant one for α = 0, as reported in Table 3.

coefficient α = 0/day α = 20/day α = 50/day

Intercept 0.0001 0.013∗∗∗ 0.017∗∗∗

ϕ (before shock) 0.217 0.216 0.695∗∗∗

ϕ (after shock) 0.0009 0.548∗∗∗ 0.789∗∗∗

D (shock size) 0.995∗∗∗ 0.978∗∗∗ 0.94∗∗∗

R2 0.999 0.989 0.994

N 55 55 55

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 3

Regression results of the memory model for a simulation collective responses. Increases in the

synchronization parameter α lead to collective responses with ϕ values significantly above

zero. This shows the relationship between the agent synchronization and the memory pattern of

the collective response X(t).
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Time series model fits

coefficient PA NA

Intercept −0.024∗∗∗ [−0.034,−0.014] −0.018∗ [−0.032,−0.003]

ϕpre −0.07 [−0.316, 0.181] −0.065 [−0.475, 0.34]

ϕ 0.26∗ [0.042, 0.474] 0.57∗∗∗ [0.418, 0.716]

D1 −0.09∗∗ [−0.148,−0.028] 0.48∗∗∗ [0.38, 0.58]

D2 −0.07∗ [−0.132,−0.008] 0.22∗∗∗ [0.104, 0.344]

R2 0.322 0.814

N 56 56

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 4

Regression results of the memory model for affective terms.

The fit results of the PA and NA models are reported on Table 4. Both models have

residual distributions roughly normally distributed (Shapiro-Wilk statistics of 0.88 and 0.91

respectively). KPSS tests cannot reject the null hypothesis that residuals are stationary

(p > 0.1 in both cases). In addition, the square root of the absolute value of residuals are not

significantly correlated with fitted values (p = 0.23 for PA, p = 0.08 for NA).
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coefficient Sadness Anger Anxiety

Intercept 0.0003 [−0.018, 0.019] −0.027∗ [−0.047,−0.007] −0.031∗ [−0.058,−0.01]

ϕpre −0.12 [−0.57, 0.35] 0.043 [−0.33, 0.414] 0.11 [−0.283, 0.53]

ϕ 0.43∗∗∗ [0.272, 0.594] 0.54∗∗∗ [0.31, 0.77] 0.62∗∗∗ [0.480, 0.766]

D1 0.344∗∗∗ [0.213, 0.478] 0.47∗∗∗ [0.336, 0.607] 0.99∗∗∗ [0.82, 1.18]

D2 0.46∗∗∗ [0.32, 0.60] 0.042 [−0.124, 0.203] 0.27∗ [0.051, 0.49]

R2 0.725 0.63 0.846

N 56 56 56

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 5

Regression results of the memory model for negative affect classes.

The fit results of the three negative emotion models are reported on Table 5. All models

have residual distributions roughly normally distributed (Shapiro-Wilk statistics of 0.97, 0.86,

and 0.94 respectively). KPSS tests cannot reject the null hypothesis that residuals are

stationary (p > 0.1 in all cases). In addition, the square root of the absolute value of residuals

are not significantly correlated with fitted values (p = 0.14 for sadness, p = 0.15 for anger, and

p = 0.34 for anxiety).
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coefficient Social Processes Prosocial Terms Shared Values

Intercept 0.004 [−0.003, 0.011] 0.041∗∗∗ [0.025, 0.057] −0.063 [−0.2, 0.067]

ϕpre 0.08 [−0.20, 0.365] 0.23 [−0.07, 0.529] 0.403∗ [0.011, 0.79]

ϕ 0.712∗∗∗ [0.567, 0.86] 0.65∗∗∗ [0.566, 0.742] 0.89∗∗∗ [0.698, 1.09]

D1 0.007 [−0.04, 0.055] 0.141∗∗∗ [0.077, 0.205] 0.97∗∗ [0.29, 1.65]

D2 0.162∗∗∗ [0.114, 0.207] 0.407∗∗∗ [0.342, 0.471] 1.00∗∗ [0.315, 1.67]

R2 0.727 0.906 0.715

N 56 56 56

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 6

Regression results of the memory model for terms related to social resilience.

The fit results of the three social resilience terms models are reported on Table 6. All

models have residual distributions roughly normally distributed (Shapiro-Wilk statistics of

0.92, 0.93, and 0.98 respectively). KPSS tests cannot reject the null hypothesis that residuals

are stationary (p > 0.1 in all cases but for shared values, where a weak autocorrelation is

present). In addition, the square root of the absolute value of residuals are not significantly

correlated with fitted values (p = 0.78 for social processes, p = 0.63 for prosocial terms, and

p = 0.22 for shared values).
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Individual-level analysis

Correction for self-selection

Term Estimate 95% CI

Intercept 0.0365∗∗∗ [0.0355, 0.0375]

Positive Affect 0.3095∗∗∗ [0.2942, 0.3248]

Negative Affect 0.3350∗∗∗ [0.3100, 0.3600]

Social Processes −0.0098 [−0.0303, 0.0108]

First Person Singular 0.2412∗∗∗ [0.2262, 0.2562]

log(Ntweets) −0.0015∗∗∗ [−0.0018,−0.0012]

R2 0.093

N 49001

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 7

Self-selection model based on personality correlates measured during the baseline period.

Table 7 presents the self-selection model of participating in the collective emotion as a

function of personality-related lexical indicators and activity levels. Users with high

emotionality in the two weeks after the attacks also had high emotionality in the three months

before, higher use of first person singular terms, and slightly lower activity levels.
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Tweet-level analysis

SocP A(t+ 1) PASoc(t+ 1) SocNA(t+ 1) NASoc(t+ 1)

intercept −0.76∗∗∗ −0.63∗∗∗ −0.76∗∗∗ −1.21∗∗∗

95% CI [−0.77,−0.75] [−0.64,−0.62] [−0.77,−0.75] [−1.22,−1.20]

Soc(t) 0.20∗∗∗ 0.03∗∗∗ 0.22∗∗∗ 0.03∗∗∗

95% CI [0.18, 0.21] [0.02, 0.04] [0.21, 0.23] [0.02, 0.04]

PA(t) 0.06∗∗∗ 0.15∗∗∗

95% CI [0.04, 0.07] [0.13, 0.16]

Soc(t) ∗ PA(t) −0.01 0.04∗∗∗

95% CI [−0.03, 0.008] [0.02, 0.06]

NA(t) 0.08∗∗∗ 0.21∗∗∗

95% CI [0.07, 0.10] [0.20, 0.23]

Soc(t) ∗NA(t) −0.06∗∗∗ 0.01

95% CI [−0.09,−0.04] [−0.01, 0.04]

AIC 1130448 1150383 1130418 996823

N 890994 890994 890994 890994

N users 53004 53004 53004 53004

Var(user) 0.23 0.23 0.23 0.24

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 8

Results of mixed models for tweet-level analysis.
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Table 8 presents an overview of the tweet-level models using the data for the two weeks

after the attacks. All models are mixed-effects logistic regression models with a dependent

variable that indicates if the next tweet of a user contains at least one term of a lexical

indicator. Both affect and social process terms are positively associated with each other, but

the association from affect to social process terms is stronger, as Wald 95% confidence

intervals of the corresponding parameters do not overlap. Reporting these intervals with more

precision, the effect of PA on social processes lies on the interval [0.0449, 0.0698], while the

effect of social processes on PA is on the interval [0.0162, 0.0418]. Since intervals do not

overlap and the latter one is below, we can conclude that the relationship is stronger in the

direction from PA to social processes. A similar pattern can be observed for NA: the interval of

the effect of social processes on NA ([0.0189, 0.0439]) is below the one of NA on social

processes ([0.0685, 0.0953]). In this case, we must note that there is an interaction effect in this

last model that attenuates the effect of NA when there is also a social process term in the

previous tweet, i.e. that NA terms predict changes from using no social process terms in a

tweet to using at least one in the following tweet.
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Individual effects models

Effect Social Prosocial Shared values PA NA

ACME 0.016∗∗∗ 0.0092∗∗∗ 0.0034∗∗∗ 0.0567∗∗∗ 0.0563∗∗∗

95% CI [0.013, 0.02] [0.0072, 0.01] [0.0004, 0.01] [0.0421, 0.07] [0.0477, 0.07]

ADE 0.022∗∗∗ 0.0157∗∗ −0.0053 0.0678∗∗∗ 0.0052

95% CI [0.011, 0.03] [0.0043, 0.03] [−0.0156, 0.00] [0.0499, 0.09] [−0.0074, 0.02]

Total Effect 0.038∗∗∗ 0.0249∗∗∗ −0.0019 0.1245∗∗∗ 0.0615∗∗∗

95% CI [0.027, 0.05] [0.0136, 0.04] [−0.0108, 0.01] [0.1122, 0.14] [0.0504, 0.07]

Prop. Med. 0.417∗∗∗ 0.3698∗∗∗ −1.85 0.4556∗∗∗ 0.9152∗∗∗

95% CI [0.297, 0.61] [0.2351, 0.69] [−10.5, 12.01] [0.3364, 0.58] [0.7394, 1.14]

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 9

Mediation analysis results

Table 9 shows the results of mediation analysis using the mediation R package (Imai,

Keele, Tingley, & Yamamoto, 2010),
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Long-term attack references

Term Estimate 95% CI

Count model: Intercept 0.3306∗∗∗ [0.3033, 0.3579]

Count model: Ec −4.5462∗∗∗ [−5.0645,−4.0278]

Count model: Ntweets 0.0071∗∗∗ [0.0069, 0.0073]

Zero model: Intercept 1.2527∗∗∗ [1.1426, 1.3627]

Zero model: Ec −0.5051 [−1.8141, 0.8038]

Zero model: Ntweets −0.1663∗∗∗ [−0.1813,−0.1513]

AIC 173139.3889

Log Likelihood -86562.6945

Num. obs. 49001

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 10

Regression results of the negative binomial model with zero inflation of the count attack

references in the three-month period. The model had a significant estimate of log(Θ) of

-0.7297.

Table 10 shows the results of a zero-inflated negative binomial model fitted with the

zeroinfl function of the pscl R package (Zeileis, Kleiber, & Jackman, 2008). Beyond

those results, the fraction of tweets with a reference to the attacks over all tweets of each user

in the three-month period is negatively correlated with affect and social process terms in the

same period. The correlation with PA is −0.1273 (CI=[−0.1360,−0.1186], p < 10−6), with

NA is −0.1559 (CI=[−0.1645,−0.1473], p < 10−6), and with social process terms is −0.0706

(CI=[−0.0794,−0.0618], p < 10−6)
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