AURKB as a target in non-small cell lung cancer with acquired resistance to anti-EGFR therapy

Bertran-Alamillo et al.

SUPPLEMENTARY FIGURES

PC9-GR1-AZD1 PC9-GR1-AZD2 PC9-GR1-AZD3 PC9-GR1-AZD4 PC9-GR4-AZD1* PC9-GR4AZD2**

PC9-GR1-AZD1 PC9-GR1-AZD2 PC9-GR1-AZD3 PC9-GR1-AZD4 PC9-GR4-AZD1* PC9-GR4AZD2**

Supplementary Fig. 1: Characterization of the EGFR TKI resistant cell lines used in this study. **a** Microscopic photographs of the parental and resistant PC9 cells. Asterisks indicated cell lines harboring the T790M resistant mutation at >0.1% (*) or <0.1% (**) allelic fraction. Scale bars indicate 10 μ m. **b** Relative expression levels of the *AXL* and *FGFR* mRNAs. No significant differences were found on the case of *MER* and *MET*. Experiments were conducted in triplicates, values shown are means ± S.D. and asterisks indicate statistical significance (*P*<0.05 in a Student's t test). **c** IHC staining of GAS6, showing the cytoplasmic localization of the protein in all cell lines of the panel. Images were obtained with an x40 objective. Scale bars indicate 20 μ m.

Supplementary Fig. 2: Dose-response plots of PC9-ER cells treated with BGB324, BGB324 in combination with capmatinib and S49076. Experiments were conducted in triplicates, values shown are means \pm S.D.

Supplementary Fig. 3: a Effects of S49076, crizotinib and nintedanib and BGB324 on the phosphorylation of MET, FRS and AXL. **b** Expression of AXL by Western blotting in the control and the silenced clones. **c**, **d** Dose-response plots to gefitinib and S49076 of the PC9-ER control clones and the clones with stable *AXL* silencing. Experiments were conducted in triplicates, values shown are means

Supplementary Fig. 4: Dose-response curves of selected parental and EGFR TKI resistant cells to the AURKB inhibitor barasertib at 24 (a) and 48 h (b). Asterisks indicated cell lines harboring the T790M resistant mutation. Experiments were conducted in triplicates, values shown are means \pm S.D.

Supplementary Fig. 5: Effects of Barasertib on PC9-ER (p.T790M-negative) and PC9-GR4 (p.T790M-positive) cell lines. **a** Microscopic photographs of the cells at different concentrations of the inhibitor. Scale bars indicate 50 μ m. **b** Growth curves of the cell lines in presence of the inhibitors, determined by MTT (left) or direct counting (right). **c** Comparison of the final numbers of cells of the growth curves presented in (**b**), as estimated by MTT (left) or direct count (right). Experiments were conducted in triplicates, values shown are means \pm S.D. and asterisks indicate statistical significance (*P*<0.05 in a Student's t test)

Supplementary Fig. 6: Effects of the MET/AXL/FGFR/AURKB inhibitor S49076 on EGFR TKI resistant cell lines. **a** Dose-response curves of the parental and the EGFR TKI resistant cells to S49076. Experiments were conducted in tri or quadruplicates and values shown are means \pm S.D. **b** Effects of the S49076 on the phosphorylation of Erk1/2 and Akt. Incubation time was 2 h. **c** Quantification of the Western blot for pAkt. **d** Western blot showing the dose-dependent decrease of pH3 levels induced by S49076 at 24 h. **e** Western blot demonstrating the inhibition of pH3 by S49076 after 24 h in EGFR-mut cell lines

Supplementary Fig. 7: Effects of S49076 on PC9-ER (p.T790M-negative) and PC9-GR4 (p.T790M-positive) cell lines. **a** Microscopic photographs of the cells at different concentrations of the inhibitor. Scale bars indicate 50 μ m **b** Growth curves of the cell lines in presence of the inhibitors, determined by MTT (left) or direct counting (right). **c** Comparison of the final numbers of cells of the growth curves presented in (**b**), as estimated by MTT (left) or direct count (right). Values shown are means \pm S.D. of six replicates and asterisks indicate statistical significance (*P*<0.05 in a Student's t test)

a

Supplementary Fig. 8: a Microscopic photographs of the parental PC9-ER cells, the clones partly silenced for *AURKB* (siAURKB1-3) and the clone transfected with a control plasmid. Scale bars indicate 20 μ m **b** Relative expression levels of the *AURKB* mRNAs in the PC9-ER control clone and the clones with AURKB CRISPR silencing. Values shown are means \pm S.D. of three replicates and asterisks indicate statistical significance (*P*<0.05 in a Student's t test). **c** Dose-response plots to barasertib of the PC9-ER control clone and the clones with AURKB CRISPR silencing. Values Shown are means \pm S.D. of six replicates

PC9-ER

PC9-GR4

Supplementary Fig. 9: Effects of S49076 on the growth of subcutaneous PC9-ER (left panels) and PC9-GR4 xenografts (right panels). **a** Time course assessment of total tumor volume. **b** Weight of the animals used in the study. Values shown are means \pm S.E.M of six replicates

a

Supplementary Fig. 10: Effects of Barasertib on 11-18-GR5 (*NRAS* and T790M-negative) and 11-18-GR2 (*NRAS* Q61L) cell lines. **a** Microscopic photographs of the cells at different concentrations of the inhibitor. Scale bars indicate 50 μ m. **b** Comparison of the dose-response to barasertib, as determined by MTT or direct counting in 11-18 GR2 (left) or 11-18 GR5 (right). **c** Comparison of the dose-response to barasertib of 11-18 GR2 and GR5, as determined by MTT (left) or direct counting (right). Values shown are means \pm S.D. of six replicates and asterisks indicate statistical significance (*P*<0.05 in a Student's t test).

Supplementary Fig. 11: Representative FACS plots showing the gating strategy for flow cytometry analysis of: **a** cell-cycle profile (Propidium Iodide staining), **b** cell death (Annexin-V and Propidium Iodide staining), **c** senescent cells (C12FDG).

SUPPLEMENTARY TABLES

Supplementary Table 1: Doubling times and IC50 of selected inhibitors in the *AURKB* and *AXL* silenced clones derived from PC9-ER and used in this study. Values shown are the means of at least three different experiments. ND, not determined.

	Doubling	S49076	Barasertib	Tozasertib	BGB324	Foretinib	Crizotinib	Gefitinib
Cell line/Clone	time (h)							
PC9-ER	27±2	0.3	0.06	0.2	2.3	0.7	1.4	12.2
PC9-ER siCont 1	27±4	0.3	0.04	0.2	2.1	0.6	1.6	10.4
PC9-ER siCont 2	31±3	0.4	0.05	0.2	2.3	0.6	1.8	8.8
PC9-ER siAXL1	31±7	0.5	0.05	ND	1.5	ND	1.7	10.6
PC9-ER siAXL2	31±2	0.4	0.05	ND	1.2	ND	1.6	10.3
PC9-ER siAXL3	ND	0.5	0.06	ND	1.0	ND	1.4	8.9
PC9-ER siAURKB1	28±3	>50	16.0	3.2	1.7	1.6	4.8	14.3
PC9-ER siAURKB2	30±4	>50	22.6	10.1	2.7	1.1	3.5	16.5
PC9-ER siAURKB3	28±4	>50	17.2	3.7	1.7	1.2	4.5	14.2

Gender	no. (%)
Male	15 (25.4)
Female	44 (74.6)
Age - years	
Median	66
Range	36–90
ECOG performance status	
0	15 (25.4)
1	26 (44.1)
2	15 (25.4)
3	3 (5.1)
Smoking status	
Never	41 (69.5)
Former	14 (23.7)
Current	4 (6.8)
Disease stage	
IIIB	14 (23.7)
IV	45 (76.3)
Brain metastasis	
No	40 (67.8)
Yes	19 (32.2)
Bone metastasis	
No	33 (55.9)
Yes	26 (44.1)
Other metastatic sites	
No	23 (39.0)
Yes	36 (61.0)
Type of EGFR mutation	
Exon 19 deletion	36 (61.0)
L858R	19 (32.2)
Other	4 (6.8)
Type of EGFR TKI	
Erlotinib	44 (58.7)
Gefitinib	29 (38.7)
Afatinib	2 (2.6)
Response*	
PD	6 (10.1)
SD	19 (32.2)
PR	32 (54.2)
CR	2 (3.4)

Supplementary Table 2: Characteristics of the 59 patients with *EGFR* mutant NSCLC treated with first line EGFR TKIs (pre-treatment samples) included in the study.

*PD, progressive disease; SD, stable disease; PR, partial response; CR, complete response

Supplementary Table 3: Overall survival of *EGFR*-mut patients treated with EGFR TKIs (n=59) classified according to IHC H-scores.

H-score	OS / Q4	OS / Q1-Q3	p (Long-rank)
Non-mitotic pH3	18.8 months	34.9 months	0.413
Mitotic pH3	20.8 months	35.4 months	0.126
Ki67	21.9 months	36.7 months	0.071

Antibody	Vendor (IHC)	Vendor (Western blotting)	Dilution
EGFR		Cell Signaling Technology	1:1000
		(CST)-Cat#4267	
pEGFR		CST-Cat#3777	1:500
AXL	CST-Cat#8661	CST-Cat#8661	1:100 (IHC); 1:1000 (WB)
GAS6	R&D Systems-Cat#		1:50
	AF885		
MET	Roche Diagnostics,	CST-Cat#8198	Ready to use (IHC);
	Clone SP44-Cat#790-		1:1000 (WB)
	4430		
pMET		CST-Cat#3077	1:500
FGFR1		CST-Cat#9740	1:1000
FRS		R&D Systems-Cat#AF4069	1:1000
pFRS		CST-Cat#3861	1:500
ERK1/2		CST-Cat#9102	1:1000
pERK1/2		CST-Cat#9101	1:500
Akt		CST-Cat#9272	1:1000
pAkt		CST-Cat#9271	1:500
AURKB	Abcam-Cat# ab2254*	CST-Cat#3094	1:50 (ICC); 1:1000 (WB)
Ki67	Roche Diagnostics,		Ready to use
	Clone 30-9-Cat#790-		
	4286		
Н3		Abcam-Cat# ab1791	1:1000
pH3	Abcam-Cat# ab5176	Millipore-Cat#06-570*	1:200 (IHC); 1:2000 (ICC);
			1:250 (WB)
PARP		CST-Cat#9542	1:1000
Actin		Sigma Aldrich-Cat#A5441	1:2000
Tubulin		Sigma-Aldrich-Cat#T9026	1:2000

Supplementary Table 4: Antibodies used in this study.

*Indicates the antibodies employed for ICC

Gene		Sequence
	F	5´ CATGAGCCGCTCCAATGTC 3´
AURKB	R	5' TGCTATTCTCCATCACCTTCTGG 3'
	Probe	6FAM 5' AGCCCACAGCTGCC 3' MGB
	F	5´ TGGTGTGAAATATCTCAGCAACAGT 3´
ATM	R	5' CTTGTGAAGGTTTCAGATAGAGCCT 3'
	Probe	6FAM 5' AGAATTGTTCTCTGTGTACTT 3' MGB
	F	5´ TCCTCAACTTCCAGAACAACCTG 3´
NFKBIA	R	5´ TTCTGGCTGGTTGGTGATCA 3´
	Probe	6FAM 5' CAGCAGACTCCACTCC 3' MGB
	F	5´ GTCAGGTCATTGAGCAGTTACCTC 3´
53BP1	R	5´ TCCTCCACAGCAGGAGCAG 3´
	Probe	6FAM 5' GGACAAGCAGTGTTCT 3' MGB
	F	5'TCCAAAGGCACGTTTTACGAC 3'
CHEK2	R	5'TGTCTTCATCCTGAAGCCACG 3'
	Probe	6FAM 5'AGAAGAAGCCTTAAGACACC 3' MGB
AXL silencing	shRNA	5'CCGGCGTGGAGAACAGCGAGATTTACTCGAGTAAA
		ICICGCIGIICICCACGIIIIIIG 3
AURBK silencing	shRNA	5'CCGGCCTGCGTCTCTACAACTATTTCTCGAGAAATA
		GTTGTAGAGACGCAGGTTTTT 3′
AURBK silencing (CRISPR)	sgRNA	5' ATTCTAGAGTATGCCCCCGCGG 3'

Supplementary Table 5: Primers and probes used in this study